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ABSTRACT

Tor, one of the most popular censorship circumvention systems,
faces regular blocking attempts by censors. Thus, to facilitate access,
it relies on “pluggable transports” (PTs) that disguise Tor’s traffic
and make it hard for the adversary to block Tor. However, these are
not yet well studied and compared for the performance they provide
to the users. Thus, we conduct a first comparative performance
evaluation of a total of 12 PTs—the ones currently supported by the
Tor project and those that can be integrated in the future.

Our results reveal multiple facets of the PT ecosystem. (1) PTs’
download time significantly varies even under similar network
conditions. (2) All PTs are not equally reliable. Thus, clients who
regularly suffer censorship may falsely believe that such PTs are
blocked. (3) PT performance depends on the underlying commu-
nication primitive. (4) PTs performance significantly depends on
the website access method (browser or command-line). Surpris-
ingly, for some PTs, website access time was even less than vanilla
Tor.

Based on our findings from more than 1.25M measurements, we
provide recommendations about selecting PTs and believe that our
study can facilitate access for users who face censorship.
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1 INTRODUCTION

Internet censorship has become pervasive over the years, and hence,
there exists a plethora of research, both in identifying censorship
mechanisms [22, 63, 78, 87, 96, 103] as well as bypassing them [18,
59, 94]. Among various circumvention solutions, Tor is one of the
oldest and most popular systems [18] with more than 2.5M average
concurrent users [27]. Thus, Tor has witnessed several attempts
by adversaries to prevent users from accessing it [19, 22, 100]. But,
such attempts have been dealt with a suitable workaround, leading
to a cat-and-mouse game between the censors and anti-censorship
researchers.

Thus, it is becoming increasingly important to enhance the cir-
cumvention ecosystem. This is also highlighted by Russia’s exces-
sive Internet restrictions during the Ukraine war [61, 62], which
prevented Russian citizens from accessing information from outside
the country. Similarly, in September 2022, civil unrest and massive
protests erupted in Iran [60]. To curb the unrest, the Iranian gov-
ernment blocked access to numerous Internet services [34, 40],
along with regular Internet shutdowns [64, 65]. The regime also
censored the Tor network [67]. Thus, people resorted to using “plug-
gable transports” (PTs) offered by the Tor project [90] to access the
blocked content.

PTs essentially work as a gateway to the Tor network and mas-
querade Tor traffic as some random-looking or benign Internet
application traffic (e.g., web streaming). This makes it hard for the
adversary to fingerprint and filter Tor traffic. Thus, almost all re-
search on PTs focuses on making them unobservable to the censor
to resist blocking. However, another crucial aspect that warrants
attention is the performance provided by these PTs when used in
conjunction with Tor. In scenarios where users are stressed and
under fear of using circumvention solutions, poorly performing
PTs might add to their woes. There exist many PTs, but there is
no comprehensive analysis about how they perform, how reliable
they are, whether they can facilitate access only for websites or for
other applications like bulk downloads etc.

To this end, we conduct the first comparative performance evalu-
ation of PTs. We evaluated a total of 12 PTs—meek [3], conjure [92],
snowflake [25], dnstt [24], webtunnel [93], marionette [21], psiphon
[74], stegotorus [98], camoufler [83], cloak [14], shadowsocks [81],
and obfs4 [2]. We assess their performance for the most common
use cases of accessing websites and bulk downloads. Apart from
website access (or file download), we also consider additional pa-
rameters such as the time to first byte (TTFB), speed index [12], the
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impact of location, the impact of the transmission medium, and how
reliably the PTs can download the content. Through 1.25M measure-
ments spanning more than a year, we made multiple observations
and deduced statistically significant inferences.

Performance trend for website accesses: For website access
performance, we visited the Tranco top 1k and a curated list of
blocked 1k websites. Our evaluation reveals that obfs4, webtunnel,
cloak, and conjure were the best-performing PTs with an average
access time of 2.4s, 3.2s, 2.8s, and 2.5s, respectively. But, camoufler,
meek, and dnstt took significantly more time for the same with
12.8s, 5.8s, and 4.4s. The least performing PT with respect to website
access was marionette (20.8s), with 8X more time in comparison to
vanilla Tor (2.3s).

Performance trend for bulk downloads and reliability impli-
cations: For bulk downloads, we recorded the time for downloading
files of varying sizes (5, 10, 20, 50, and 100 MB). Here again, we
observed that some PTs, e.g., obfs4 and cloak, performed better than
all other PTs. For instance, they took 64s and 53s to download a file
of 50 MB; whereas camoufler incurred the maximum time of 173s
to download the same file. Interestingly, we observed that some PTs
were not able to download the files in all the download attempts.
We quantified this unreliable behavior and observed that meek,
dnstt, and snowflake were unable to download files successfully in
more than 80% of the attempts. Thus, these PTs may not be the best
choice for downloading bulk content.

Impact of change in location and transmission medium: We
performed our experiments (website access and bulk downloads)
across nine different client and server locations. We did not observe
any change in trends for the performance of these PTs based on
location. Similarly, our experiments of accessing these PTs via wire-
less medium did not have any significant impact on performance.
Thus, any of these PTs can be used across locations and across
mediums without any observable degradation in performance.

Inferences on overall PT ecosystem: Using our measurement
results, we found multiple insights. Firstly, we analyzed the per-
formance of these PTs based on their underlying technology that
provides unobservability to the PTs. To this end, we categorize them
as tunneling, mimicry, fully encrypted, and proxy-layer PTs (for
details, see Section 2). We observed that the fully-encrypted and
proxy-layer-based PTs performed better than the other categories.
This is because the PTs in mimicry and tunneling categories are re-
stricted by the underlying protocol they try to mimic or tunnel. We
observed variations in performance even within the categories. For
example, in tunneling-based PTs, camoufler and dnstt took signifi-
cantly longer time to access resources in comparison to webtunnel.
This is because camoufler relies on instant messaging apps to send
content and is thus rate-limited in the number of requests a client
can send using the API of these apps. Similarly, dnstt requires send-
ing DNS requests to DoH/DoT servers for which the response size is
limited, resulting in slightly reduced performance. However, there
is no such limitation in webtunnel. We discuss other categories and
their performance in detail in Section 4.2.

Secondly, as a common practice for evaluating circumvention
systems, we used a command-line utility curl to perform our exper-
iments. However, an actual user generally accesses websites using
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the browser; thus, we did additional experiments to access websites
via browser automation using the selenium framework [80]. As
expected, we observed that overall, all the PTs took more time to
access the websites compared to curl as multiple web resources
would be requested via the browser compared to the default page of
the website requested by curl. However, with the selenium-based
website access, we noticed that a few PTs viz. obfs4, webtunnel,
and conjure incurred less time than vanilla Tor. We investigated
this observation and found that the first hop (in the Tor circuit
construction) may significantly impact the performance observed
via these PTs (see details in Section 4.2.1).

Thirdly, some of our measurements coincided with the unrest
in Iran [34, 40]. For this duration, there was a sudden increase in
the usage of PTs. We particularly were able to see and quantify
variation in the performance of snowflake during this time as it
was the most widely used PT during the unrest in Iran [55]. Our
results indicate that under high load, the performance of these PTs
deteriorates, and further efforts are required to scale these systems
during the peak loads (see Section 5.3).

Since our measurement study involved accessing websites and
downloading files via the public Tor network, we carefully planned
our measurements so as not to overload the volunteer-operated Tor
relays. We followed the ethical practices mentioned in the Belmont
report [7] throughout the study (see Section 5.1).

Notably, we analyzed a total of 28 PTs for evaluation, out of
which only 12 were either already integrated or had the possibility
of integration with Tor. We provide a summary of all these 28 PTs
along with their features and implementation challenges in Table 2.
We make our code and analysis scripts public at [76, 77].

2 BACKGROUND

Tor is an overlay network of proxies (or relays) that uses onion
routing to facilitate anonymous communication over the Internet
[18]. Since Tor is a proxy-based system, it is often also used to
bypass censorship in various countries. This results in censors re-
stricting access to Tor by blocking the publicly known IP addresses
of relays [17, 50]. Tor thus relies on pluggable transports (PTs) to
safeguard itself from being blocked by determined censors such as
China. These PTs facilitate access to the Tor network by providing
alternate means to connect. They disguise the Tor traffic, making
them difficult to classify and block. Interestingly, some existing
anti-censorship systems (e.g., camoufler [83], psiphon [74]) can also
be used to transport the Tor traffic outside the censor’s purview.
Thus, in this work, we test the feasibility of using them as PTs in
addition to the standard PTs supported by Tor (e.g., obfs4 [2]).

Generally, a PT consists of two components: the client and the
server (proxy). The client connects to the server while maintain-
ing the properties (such as traffic patterns) of the corresponding
transport. Once the connection is established, it acts as a tunnel to
transfer Tor traffic.

There are multiple ways in which pluggable transports can be
categorized. For example, they can be classified based on— commu-
nication primitive they use to evade blocking (mimicry, obfuscation,
adding an extra layer of the proxy, tunneling etc.)—their integration
status with Tor (officially integrated, in the process of integration
etc.)—their implementation style (PT server acting as Tor guard,
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PT server separate from Tor guard etc.). Since PTs use different
communication primitives to masquerade their clients’ traffic as
uncensored traffic, it may impact their performance. For instance,
dnstt [24] sends content inside the encrypted DNS request-response
pairs using DNS over HTTPS servers [69, 72], whereas cloak [14]
mimics users’ traffic to resemble regular web browser traffic. Thus,
we categorize PTs based on the underlying technology they use to
evade blocking.

2.1 Proxy-layer based pluggable transports

This class of PTs adds an additional layer of proxy before connecting
with the Tor network.

Meek [3], uses domain fronting [31] as the underlying tech-
nology to evade censors. Domain fronting enables a user to de-
ploy a service (e.g., appspot . com) with a service-specific domain
(e.g., forbidden.appspot.com). However, to access the deployed
service, the user can use the domain of the fronting service (e.g.,
appspot.com) in the plain text headers and specify the service-
specific domain in the encrypted payload. This keeps a pretense to
the adversary that the client is accessing some benign domain of
the fronting service (visible in all plain-text fields viz. DNS and TLS
ClientHello SNI field). However, in practice, the deployed service
facilitates the client to access the censored content, all hidden inside
the encrypted HTTPS communication."

Psiphon [74] provides a network of proxy servers that the clients
can connect to circumvent censorship. The core mechanism for
connecting to psiphon servers is establishing an SSH tunnel [75].
The SSH public key for authenticating to the server is pre-shared
with the client. Psiphon can also be manually configured to add
different tunneling or obfuscation protocols. For the purpose of
evaluation, we use the default psiphon configuration that uses SSH
tunneling.

Conjure [36] is a refraction networking (formerly called decoy
routing) system [94] that relies on support from an Internet Service
Provider (ISP) to deploy the circumvention infrastructure. The basic
idea behind decoy routing is to make a router as a proxy (also
known as a decoy router) such that when a user sends a request
to an uncensored website, an on-path decoy router can proxy the
request to a censored website. To a censor, it would appear that the
user is communicating with a legitimate website, while in practice,
it accesses the censored website (with the help of the decoy router).
However, there are a limited number of such uncensored sites; thus,
conjure leverages the unused IP address space of ISPs deploying the
decoy routing infrastructure. Instead of using actual uncensored
destinations for proxy connections, it connects to ISP’s phantom
IP addresses where no web server exists.

Snowflake [25] relies on WebRTC services to function. A
snowflake client uses a domain fronted (or HTTPS) server (known
as a broker) to connect to volunteer-run short-lived WebRTC
snowflake proxies. Broker is used only once for connecting clients to
the proxies. Subsequently, clients and proxies communicate directly
(without involving the broker). Snowflake relies on the availability
of a large number of WebRTC proxies such that blocking all of

"Note that assigning PTs to different categories is not mutually exclusive. For instance,
meek can also be considered as tunneling as it tunnels the censored traffic inside the
innocuous-looking web traffic. As a best effort, we assign a PT to a category where
the underlying technology could heavily impact its performance.
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them by the censor is difficult. Thus, these proxies are essentially
browser plugins designed so non-technical users can easily run
them. It must be noted that since the target users deploying the
proxy are in a home network, they would probably be behind a
NAT. Thus, it would be difficult for the censor to recklessly block
requests to public IPs as they would unintentionally also block
access to legitimate users behind those NATs.

2.2 Tunneling-based pluggable transports

These PTs encapsulate the web traffic in standard application pro-
tocol messages e.g., video streams, IM apps etc.

Dnstt [24] is a recent tunneling-based solution. To a censor,
it would appear that the dnstt client is communicating with a
DNS resolver over an encrypted channel. But in practice, the client
would fetch the censored content. It takes advantage of DNS over
HTTPS/TLS resolvers [69, 72] to hide the traffic from a censor.
These recursive resolvers (in our case OpenDNS DoH resolvers
[68]) act as a proxy to forward the dnstt client’s requests to dnstt
servers. Note that there is a limit on the size of response messages
that a public DoH server supports, typically 512 bytes [24].

Camoufler [83] uses instant messaging (IM) applications (such
as WhatsApp, Telegram etc.) as a medium to tunnel censored con-
tent. A client is required to have an account on any IM app. It can
then use this account to send messages/content to another IM ac-
count in a non-censored region. The IM app in the non-censored
region deploys the proxy software in the background. Thus, the
censor only observes standard IM traffic being exchanged between
IM clients and IM servers. Moreover, IM apps are generally end-to-
end encrypted, making it more difficult for the censor to identify
camoufler. Thus, to block the system, the censor requires blocking
all IM apps. This may cause collateral damage as IM apps are an
important part of digital space with high personal and business
usage.

WebTunnel [93] tunnels the censored content inside the regular
HTTPS traffic. At its core, it uses HTTPT [37] (an existing anti-
censorship system) to establish the HTTP tunnel. The webtunnel
server side has two components—a customized server program
(with a valid TLS certificate) and the Tor bridge program. The client
first establishes a TLS connection with the webtunnel server, and
thus a censor can only observe a regular TLS connection with an un-
blocked domain. Once the connection is established, the webtunnel
client sends Tor traffic (received from the Tor client utility) inside
the established HTTPS tunnel. On the other side, the webtunnel
server decapsulates the Tor traffic and forwards the traffic to the
Tor bridge utility.

2.3 Mimicry-based pluggable transports

These PTs disguise and transport blocked content as other regu-
lar application protocol messages. They attempt to mimic all the
features of the underlying protocol.

Cloak [14] provides a communication channel that obfuscates
the user traffic to resemble regular web browser traffic. It can also be
used to obfuscate the proxy’s traffic. The cloak server uses a series
of steganographic techniques to authenticate clients in zero RTT.
Whenever a client wants to connect to the cloak server, it creates a
TLS ClientHello packet with appropriate values, including the client
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Figure 1: Overview of our approach: At multiple geographic locations, we host our pluggable transport (PT) clients and servers.
We measure the performance of 12 PTs, including dnstt, cloak, and shadowsocks etc. We measure the download time for
different targets viz. Tranco top-1k, 1k blocked websites, and files of different sizes.

random, desired proxy type (e.g., Tor), and a non-blocked domain
name (e.g., uncensored. com). The plain text TLS ClientHello SNI
field is set as an unblocked domain to fool the adversary. Once the
cloak server receives the packet from a client, it validates the packet
by inspecting the client random, and on successful validation, relays
the traffic to the Tor network.

Stegotorus [98] uses steganography to encode and hide the Tor
clients’ data into innocuous-looking cover traffic such as HTTP.
Stegotorus client uses a “chopper” method to convert fixed-size Tor
cells to variable-sized blocks. At the client side, the chopper protocol
sends these blocks unordered over multiple TCP connections to the
Stegotorus server that reassembles them in Tor cells format. Finally,
it relays the traffic to the Tor network.

Marionette [21] tries to obfuscate network traffic by giving a tun-
able and programmable network traffic generator. Marionette gives
the control of using appropriate obfuscation methods to clients
since each client might be facing a different kind of adversary. Such
capability is controlled by using a lightweight domain-specific lan-
guage. It takes arguments such as connection type (i.e., TCP), port
where the server is listening, and the method (e.g., FTP) with which
Marionette obfuscates the traffic. The flexibility to program the en-
crypted traffic properties using statistical methods makes it difficult
for the censors to block the system using standard traffic analysis.

2.4 Fully-encrypted pluggable transports

These PTs encrypt the traffic to make it appear as a random byte
stream to a censor.

Obfs4 [2] is a proxy system. It is a successor of the the scram-
blesuit protocol proposed by Winter et al. [99, 101]. Apart from the
traditional proxy functionality, obfs4 provides additional features.
These features include (1) obfuscating the application data (using
scramblesuit) such that it appears completely random to a cen-
sor, (2) authenticating the legitimate clients using an out-of-band
shared secret, making it difficult for the censor to probe for proxy
functionality.

Shadowsocks [81] is also a proxy system that obfuscates the
proxied content. It comprises two components. A client that en-
crypts the application traffic to appear as a uniformly random byte
stream. A server that decrypts and proxies the client’s traffic to
the blocked destinations. There are multiple configurable options
available to the shadowsocks clients that can lead to different types
of traffic obfuscation.

2.5 Other pluggable transports

Apart from the PTs mentioned above, there exist other circum-
vention systems that cannot be evaluated as potential PTs due to
various reasons. Some of them have publicly available source code
but still can not be integrated with Tor due to reasons like depen-
dency and code compilation issues e.g., deltaShaper. Then, some
systems like covertCast [53] are non-functional (e.g., source code
not available). We summarize all such PTs in Table 2.

3 RELATED WORK

The prior work on pluggable transports has mainly focused on
their detectability by a censor. Khattak et al. [45, 46] surveyed
different censorship resistance systems, including the PTs. They
proposed a framework to gauge and classify the circumvention ca-
pabilities of such systems. Other studies [47, 82] focus on detecting
different PTs under changing adversarial conditions. The authors
show that the packet size and number of bytes sent in a flow are
important features for detecting pluggable transports. Similar de-
tection strategies have been developed by multiple other studies
[41, 51, 86, 102] that use machine learning methods to evaluate
meek, obfs3, obfs4, scrambleSuit [101] and Format-Transforming
Encryption (FTE) [20]. However, none of the above studies focus
on the performance evaluation of PTs with respect to real-world de-
ployment, varying geographical locations etc. Thus, in this research,
we present the first study to quantify the comparative performance
of PTs comprehensively.



PTPerf: On the performance evaluation of Tor Pluggable Transports

IMC 23, October 24-26, 2023, Montreal, QC, Canada

Measurement Type Number of Measurements Target

Website Download (curl) 149.5k Tranco top-1k & CBL-1k

Website Download (selenium) 174 k Tranco top-1k & CBL-1k

File Downloads (curl) 2.7k 5 MB, 10 MB, 20 MB, 50 MB, 100 MB
File Downloads (selenium) 2.7k 5 MB, 10 MB, 20 MB, 50 MB, 100 MB
Medium Change (wired/wireless) 60 k Tranco top-500 & CBL-500

Speed Index 60 k Tranco top-1k

Pluggable Transport Overhead 40 k Tranco top-1k

Location Variation 686 k Tranco top-1k & CBL-1k

Table 1: Overview of different measurement types. CBL-1k represents 1000 blocked websites from Citizen Lab [48] and Berkman

research center [8].

4 EVALUATION & ANALYSIS

In this section, we present the evaluation of the 12 PTs described
in Section 2. Figure 1 illustrates the overview of our experimental
setup and approach, and Table 1 presents an overview of the in-
dividual measurements. We now describe our experimental setup,
performance parameters, and the evaluation of the PTs.

4.1 Experimental setup

A PT consists of two components: a PT client and a PT server. De-
pending upon how PTs are implemented (e.g., some PT servers can
act as guard nodes and some cannot), they have different configu-
rations. The PTs we study can be divided into three sets based on
implementation.

The first set of PTs is where the PT server also acts as the first
hop in a Tor circuit. This effectively leads to a total of three hops
between the client and the website—PT server/guard, middle Tor
relay, and exit Tor relay. PTs belonging to this category are obfs4
meek, conjure, and webtunnel. Note that in dnstt, the PT server
acts as a guard node. But still, there are four hops between the
client and the website as the client first communicates with the
DoH recursive resolver before accessing the Tor network.

The second set of PTs is where the PT server is separate from
the Tor circuit’s first hop, effectively leading to four hops between
the client and the website. In this class of PTs, at the client side,
application traffic is sent to the Tor client, which in turn forwards it
to the PT client utility (all running inside the client’s host machine).
PT client utility then transfers the traffic to the PT server (a different
host). PT server relays the traffic to the Tor guard node specified by
the client. The PTs in this category include shadowsocks, snowflake,
camoulfler, stegotorus, massbrowser, and psiphon.

The third set of PTs also has four hops between the client and the
website. However, in this category, on the client side, application
traffic is directly sent to the PT client (all inside the client’s host). PT
client forwards the received traffic to the PT server (a different host),
where the standard Tor client runs. The Tor client then creates
a three-hop circuit to the website. PTs in this category include
marionette and cloak.

Wherever required, we hosted our PT client, PT server, and Tor
client on cloud hosting infrastructure. Our experimental setups
include a client machine that runs the PT client along with the Tor
client utility (for sets 1 and 2). The other end of the setup consisted
of a server machine that runs the server PT utility (and Tor client

utility for set 3). For accessing the default webpage of websites,
the client requests a web resource with the help of curl [15] or
selenium (for browser automation). We configured curl to send all
the requests to the local SOCKS port. This SOCKS port was of the
Tor client utility for sets 1 and 2, whereas it was of the PT client
for set 3. Based on the underlying transport, PT obfuscates and
sends the content to the PT server. The PT server then forwards
the request to the Tor network, through which the request finally
reaches the web server that hosts the content. Additionally, a sig-
nificant implementation effort was required to integrate some of
the PTs with Tor. We highlight some of those challenges in Table 2
and Appendix A.3.

Using our experimental setup, we launched a measurement cam-
paign to measure the performance of 12 PTs with different parame-
ters, targets, location variation etc.2 Table 1 presents an overview
of our individual measurements.

4.2 Website access time

Website access time captures a prevalent use case of these PTs. It
represents the time the PTs took to access the default web pages
of different websites. A PT that yields lower access time is better
suited for accessing websites.

To assess the web access performance, we consider two sets
of websites: (1) Tranco top-1k popular websites [71], and (2)
randomly selected 1000 potentially blocked websites from Citi-
zen Lab [48] and Berkman research center [8] lists (abbreviated
as CBL-1k). The CBL-1k websites are a good representative of
websites that Tor clients might access.

Using curl, we accessed each website five times using PT’s
default configuration and computed the average access time per
website. Figure 2a shows the box plot of average access time for
each of Tranco top-1k and CBL-1k websites (via different PTs and
vanilla Tor). The PTs are arranged based on their classification
category (e.g., green color representing proxy-layer PTs). Within
each category, we arrange them in decreasing value of the median
download time. To measure the statistical significance of our results,
we performed paired t-tests [43] for each pair of PTs. We report the
corresponding P-value, t-value, 95% confidence interval (CI), and
the mean difference in Appendix Tables 3 and 4.

2For obfs4, meek, and snowflake PTs, we use their default servers (provided by Tor).
For the rest, we host our own PT servers as they are currently not supported by Tor.
See Appendix A.3 for details.
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Figure 2: Website access time for all pluggable transports.

Overall, we observe that proxy-layer and fully encrypted PTs
perform better than tunneling-based and mimicry-based PTs. The
paired t-test results reveal that the mean download time of proxy-
layer PTs is 2.88s less than tunneling-based PTs (t=-20.23, P<.001)
with 95% CI [-3.16, -2.60] and 3.23s less than mimicry-based PTs
(t=-24.55, P<.001) with 95% CI [-3.49, -2.97]. Similarly, the mean
download time of fully encrypted PTs is 4.91s less than tunneling-
based PTs (t=-30.26, P<.001) with 95% CI [-5.23, -4.59] and 5.21s
less than mimicry-based PTs (t=-38.25, P<.001) with 95% CI [-5.48,
-4.94]. We tabulate the test results for different PT category pairs in
Appendix Table 10.

In the proxy-layer PTs, meek takes the most time of 5.8s to
access websites, and snowflake takes the least 2.3s. We statistically
verify that meek incurs significantly higher time than the rest of
the proxy-layer PTs, and snowflake takes significantly lower time
than the others (see Appendix Table 4). Further, the paired t-test
shows a significant difference between meek (M=8.37, SD=4.49) and
snowflake (M=3.93, SD=3.72); [t=35.59, P<.001]. The 95% CI is [4.19,
4.68].

Whereas in tunneling-based PTs, camoufler takes the maximum
time of 12.8s and webtunnel the lowest with a value of 2.9s. We
statistically verify the same (see Appendix table 4 for details). The
paired t-test shows a significant difference between camoufler

(M=16.04, SD=4.74) and webtunnel (M=4.70, SD=3.64); [t=60.55,
P<.001]. The 95% Cl is [10.97, 11.70]. Most PTs in the fully encrypted
and mimicry category performed well except for marionette, which
took an average time of 20.8s. Across all PTs, marionette was the
least performing PT, whereas obfs4 and snowflake were the best
ones. The reason for the marionette’s low performance can be attrib-
uted to the fact that it attempts to obfuscate traffic by programming
a user model, which can be harder to optimize for good perfor-
mance [21]. Moreover, the good-performing transports introduce
minimal overhead, leading to web access times nearly the same as
vanilla Tor.?

For many existing anti-censorship systems, the web access per-
formance is evaluated using the command line utilities (e.g., curl)
[83, 84]. However, from the user experience perspective, a better
approach would be capturing the actual browsing behavior. When
a user types in a URL in the browser, first, the default webpage
is downloaded, and subsequently, there are multiple web requests
generated by the default webpage to load additional resources (e.g.,
javascript, embedded images). This behavior is not captured by
simply using curl to access the default webpage and thus may not
reflect the actual performance experienced by a regular user [1].

*The trend for accessing CBL-1k was similar to Tranco top-1k. Thus, we show a
common box plot for both sets.
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Figure 3: Website access time using a fixed circuit.

Thus, to observe any potential difference in the download times, we
extended our evaluation by accessing the websites using selenium
web browser automation. Here again, we accessed the Tranco top-1k
and CBL-1k websites and recorded the time different PTs took to
load all the components of a webpage. Figure 2b depicts the average
page load time for each website. Here again, we conducted paired
t-tests for each pair of PTs and reported the P-value, t-value, 95%
CI, and the mean difference in Appendix Tables 5 and 6.

As expected, the overall website access time significantly in-
creased for all PTs compared to accessing just the default webpage
using curl. In general, the trend was similar to curl download
times, but there were a few deviations. In the proxy-layer PTs,
although meek still remained the worst-performing PT, the best-
performing PT changed from snowflake to conjure. Snowflake’s
median time of 32s was almost 2.5X more than conjure (13.7s).
The paired t-test shows a significant difference between snowflake
(M=35.64, SD=22.37) and conjure (M=17.36, SD=14.09); [t=29.00,
P<.001]. The 95% ClI is [17.04 to 19.52]. One possible explanation
is that the snowflake server was overloaded when we performed
selenium-based experiments (see details in Section 5.3). Addition-
ally, we note that in tunneling-based PTs, camoufler could not be
evaluated as it does not support multiple simultaneous requests
(generated by the selenium browser automation).

4.2.1 Some PTs performed better than vanilla Tor. PTs modify
the Tor traffic, involve additional proxying operations, and some
involve additional hop(s) as well. Thus, their download performance
should either be inferior (or, in the best case, similar) to Tor. But our
experimental results indicate otherwise. We observed a surprising
trend—obfs4, webtunnel, and conjure performed better than vanilla
Tor (see Figure 2b). The paired t-test shows a significant difference
between Tor and obfs4 ([t = 16.68, P<.001], the 95% Cl is [5.23, 6.63]),
Tor and webtunnel ([t = 8.68, P<.001], the 95% CI is [3.25, 5.14]),
Tor and conjure ([t = 7.90, P<.001], the 95% Cl is [2.28, 3.79]).

To investigate this performance difference, we revisited the ar-
chitectures of these PTs and communicated with the Tor developers
who maintain these PTs. We realized that Tor manages some high-
end servers of these PTs, and there is a consistent effort to optimize

for performance. Since the PT servers (of these PTs) themselves
act as the guard relay (see Section 4.1), we hypothesized that these
PT servers are more optimized for performance compared to a
volunteer-operated guard relay. This might explain the potential
reason for the observed performance differences.

Hosting private PT servers: To confirm the hypothesis, we de-
signed an experiment where rather than using Tor’s default PT
servers, we deployed our private PT servers.* We again accessed
these websites involving our PT servers with the expectation that
for low-end cloud servers, the download time should be comparable
to the vanilla Tor. But, the trend did not change—these PTs incurred
lower time to access the websites than direct Tor; for obfs4, the
average download time was 19.2s, but for vanilla Tor, it was 24.6s
(22% more than obfs4). These results challenged our initial hypoth-
esis and indicated that there is something more fundamental than
just high-end servers and optimizations that are affecting the per-
formance of these PTs. Thus, we designed a series of experiments
to identify the precise reason for such performance differences.”

Fixing the Tor circuit: In this set of experiments, we accessed
websites using vanilla Tor and PT via a fixed Tor circuit (i.e., the
same guard, middle, and exit node). The rationale for this exper-
iment was to fix the variable components and observe if there is
still any difference in performance.

For both PT and vanilla Tor, fixing the middle and exit nodes is
straightforward; however, it’s non-trivial to ensure the same host
as the first hop. This is because vanilla Tor uses a regular guard
node, whereas a PT uses the PT server as the first hop of the circuit.
Thus, to ensure the same first hop, we configured our guard node
and private PT server on the same cloud host. We sampled five
Tranco websites (static, news, video streaming, gaming, and online
shopping) as target websites for this test. In a single iteration, we
accessed each of them using vanilla Tor, obfs4, and webtunnel. Note
that in each iteration, we used our own guard (for vanilla Tor) and

*We could not host our own conjure server as it needs ISP deployment.

5Initially, we decided to use Ting [11] to identify and quantify the bottleneck in the
Tor circuit. But on careful inspection, we found that it cannot be used with PTs (see
Appendix A.5 for details).
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Figure 4: Website access time for Tor and obfs4 using a fixed
guard and variable middle and exit nodes. (Y-axis in log scale)

our private PT server (for obfs4 and webtunnel) as the first hop and
a fixed middle and exit node. We performed a total of 500 iterations
(for each website), and for every iteration, the middle—exit node
pairs were different.

Figure 3a shows three box plots of website access time corre-
sponding to vanilla Tor (M=13.41, SD=14.58), obfs4 (M=13.17, SD=
14.54), and webtunnel (M=13.59, SD=14.81). Ideally, using the same
circuit, we should observe similar performance with and without PT
for a given website. In Figure 3a, we see the expected behavior—i.e.,
nearly identical boxplots. Moreover, the results of the paired t-test
further indicate that there is a non-significant, very small differ-
ence between webtunnel-Tor, obfs4-Tor, and webtunnel-obfs4. For
webtunnel-Tor, the 95% CI is [-0.34, 0.70], with [t=0.66, P=0.508].
For obfs4-Tor, the 95% Cl is [-0.72, 0.24], with [t=-0.98, P=0.327]. For
webtunnel-obfs4, the 95% CI is [-0.07, 0.91] with [t=1.66, P=0.95].

We went a step ahead and made a more nuanced comparison.
We analyzed the results for each accessed website individually. To
that end, we calculated the absolute time difference of a particular
website when accessed via PT and via vanilla Tor.® Figure 3b depicts
the ECDF of these time differences. It is evident that for more than
80% of the cases, the difference in download time was less than 5s.

Overall, this result establishes that when the relays are the same,
the performance of vanilla Tor and PT is also nearly the same. But,
during our initial experiments (see Figure 2b), the circuits and the
corresponding relays were not the same. This indicates that the
performance difference could be due to the different selected relays.

Fixing the guard node: We designed our second set of exper-
iments to study the impact of the middle and exit nodes on the
observed performance. Generally, for a client, the guard node does
not change often [73]. Thus, in this set of experiments, on the same
cloud host, we ran our own guard utility and also the PT server. We
used this host as our first hop: for vanilla Tor, we used our guard,;
for PTs, we used our private PT server. Middle and exit relays were
selected by the Tor client program using Tor’s default circuit selec-
tion algorithm. We then accessed Tranco top-1k websites via vanilla
Tor and the PT. As can be seen in Figure 4, we observed almost the

®Note that these time values are always positive as we apply the modulus function on
the difference in time values.
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Figure 5: File download time for files of varying sizes using
different pluggable transports. (Y-axis in log scale)

same performance for vanilla Tor and obfs4.” We repeated the same
set of experiments by running our own guard and PT server on the
cloud-hosting machines at three geographic locations. The trend
was similar; download times of Tranco top-1k were nearly the same.
This strongly suggests that a sufficient variety of middle and exit
nodes does not influence the overall performance, and the first hop
(guard node/PT server) largely impacts the download performance.

With this knowledge, we can explain the anomalous behavior
of seeing a better performance of some PTs than vanilla Tor. The
regular guard nodes are volunteer-run and transfer most of the
client traffic seen by the Tor network. But, in contrast, PTs are
only used when the default Tor is blocked, and thus, PT servers are
generally less occupied by clients, leading to better performance.
Note that this observation is only for the proxy-layer PTs. Other PTs
do not perform better than Tor despite having low client traffic, as
the actual bottleneck may be the restrictive nature of the underlying
communication method they use.® For instance, dnstt is limited by
DNS packet sizes.

Our experimental results thus indicate that the first hop largely
governs the download performance for a Tor circuit. This observa-
tion can be extended to the general performance characteristics of
the Tor network. However, it is a separate research project in itself,
and thus, we keep it out of the scope of current work.

4.3 File download time

This parameter represents the time taken to download files of vary-
ing sizes (i.e., 5, 10, 20, 50, and 100 MB). It represents the scenario
where clients download videos, documents etc. via these PTs. To
perform the experiments, we set up a cloud server and hosted files
of varying sizes on it. We then used different PTs to download
each file multiple times (10) via the Tor network. We recorded the
average download time (via curl) and plotted it for different PTs
in Figure 5.

In Figure 5, we see that across file sizes, some PTs (e.g., obfs4,
cloak) perform well compared to other transports, and some yielded

"We repeated the same experiment for the other PT, and we observed a similar trend.
®Note that there may also be other reasons for this observation (see Sec. 5.3 for details).
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Figure 6: Time to first byte (TTFB) for all pluggable transports
when accessing websites.

poor performance (e.g., marionette, camoufler). Paired t-test for
all PT pairs shows that four PTs, viz. obfs4, cloak, psiphon, and
webtunnel, performed significantly better than the remaining PTs,
and there were no significant differences among these four PTs. In
contrast, these tests also reveal that marionette’s download time is
significantly more than that of other PTs. See Appendix Table 7 for
details.

For a file size of 10 MB, obfs4 and cloak took, on average, 33s and
36s. Other transports took considerably more time, with camoufler
taking 98s, almost 3X more than obfs4. The high download time
for camoufler can be attributed to the rate limit imposed by IM
providers to send and receive content via their APIs. We obtained
similar results for selenium-based file downloads, with obfs4, cloak,
and conjure performing better than other transports.

Note that there were other PTs that did not succeed in download-
ing a file at all. In Figure 5, we only show the values for PTs that
succeeded in downloading files of each size at least twice. Dnstt,
snowflake, and meek could not do that for most of the file sizes
in our experiments and thus are excluded from the figure. For in-
stance, meek could download files of different sizes only once out
of ten attempts, with significantly high download times. For a 5
MB file, it required 110.5s; for 10 MB, it took 224.9s; for 50 MB,
it incurred 1028.8s; a 100 MB file was downloaded in 1558.9s. We
quantify this unreliable behavior of the PTs failing to download
content in detail in Section 4.6. Overall, our results suggest that
PTs such as obfs4, cloak, psiphon, and webtunnel can be used for
fast downloads, whereas others can be used to achieve satisfactory
performance.

4.4 Time to first byte (TTFB)

TTFB is the time difference between initiating a request for a web
resource and receiving the first byte of application data. Thus, it
captures the initial bootstrap latency incurred by the PT. If the
TTFB is high, the transport may not be well suited for interactive
applications such as web browsing.

We show the ECDF of TTEB values for all PTs across all websites
in Figure 6. Except for meek (shown as x ), marionette (shown as
#), and camoufler (shown as ), the response time of other PTs is
relatively small, with more than 80% of the websites getting their
first data byte in less than 5s. Marionette has the highest response
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Figure 7: Website access time for meek, obfs4, and snowflake
for different locations: Bangalore (BLR), London (LON),
Toronto (TORO). (Y-axis in log scale)

time, with about 40% of websites taking more than 20s to get their
first byte. In meek, the response time is between 2.5s to 7.5s for
about 90% of the websites, whereas in camoufler, it was 2.5s to 17.5s
for the same.

The potential reason for meek and camoufler resulting in high re-
sponse time is likely due to their design considerations. For instance,
meek involves substantial initial processing. The fronting service
(to which the client connects) completes the TLS handshake (with
the meek client), decrypts the HTTPS request, and then forwards it
to the actual intended server. Also, the meek bridge is rate-limited
by its maintainer [28]. This could also be the reason for high TTFB.
Thus, any PT except for meek, marionette, and camoufler can be
considered for applications that require low response time.

4.5 Impact of location

Clients residing at different geographical locations might experi-
ence different performances for the same PT. Thus, we measure the
performance of a PT by varying client and server locations among
a total of six countries across three continents. We selected two
locations each in North America (New York and Toronto), Europe
(Frankfurt and London), and Asia (Bangalore and Singapore). We
then considered three locations for clients (Bangalore, London, and
Toronto) and three for servers (Singapore, Frankfurt, and New York)
and performed the experiments for all 9 (3x3) possible client-server
combinations.

Here again, we accessed websites and downloaded files via all
the PTs. As an example, in Figure 7, we show the website access
time of meek, snowflake, and obfs4 across the three different client
locations. It can be seen that the trend of snowflake and obfs4 being
better than meek remains consistent across different locations. For
other PTs also, we observed a similar performance trend as the one
shown in Figure 2a. Moreover, irrespective of the server location,
we observed that the access time was higher when the client was in
Bangalore than in London or Toronto. This is because most Tor re-
lays are hosted in Europe and North America [13], and thus, clients’
traffic from Asia may have to travel longer geographical distances.
We obtained a similar performance trend when downloading files
of different sizes.
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Figure 8: Reliability of pluggable transports.

4.6 Reliability

As previously mentioned in Section 4.3, some PTs may not always
be able to download the complete content. We characterize this
behavior by collecting instances where a particular file download
(or website access) was not at all completed or partially completed.
We count such instances for all PTs across all experiments.

In Figure 8a, we show these values as a stacked bar plot for
file downloads. It is clear that dnstt, meek, and snowflake do not
perform well while downloading files. In more than 80% of the
instances, the files were only partially downloaded by these. More-
over, in camoufler and meek, in about 10% of the instances, the file
was not at all downloaded.

In Figure 8b, we plot the ECDF of the portion of the file down-
loaded in different attempts. The figure contains the result for meek,
dnstt, and snowflake as we observed maximum unsuccessful down-
load attempts with these PTs. We downloaded different file sizes (5,
10, 20, 50, and 100 MB) 20 times each and recorded what fraction
of a file was downloaded to the client machine. We can see that
in 60% of the download attempts, snowflake downloaded less than
40% of any file. But, meek and dnstt were able to download more
content, ie., less than 92% and 96% of the total file size. In just about
10%-20% of total attempts, we observed a complete download.

The reason meek cannot download files reliably is likely because
the public meek bridge is rate-limited [28].9 Since file access re-
quires downloading significantly more data than accessing websites,
the impact of rate limiting seems more pronounced.

In dnstt, data transmission is limited by the underlying DNS
packet sizes (see Section 2), and snowflake servers observed an
unprecedented increase in users from Iran (see Section 5.3). As
snowflake downloaded the least content for most of the incomplete
file downloads, we may infer that an increase in user load at the PT
server more drastically impacts the overall performance than other
causes of performance degradation (e.g., constraints imposed by the
underlying communication primitives). But there could be other
potential reasons for such frequent incomplete file downloads, e.g.,
multiple proxy transitions in an ongoing snowflake connection. If

°We contacted the developers of the meek bridge, and they confirmed the same.

the snowflake proxy changes while downloading a file, it may lead
to failure. In the future, we plan to conduct a detailed investigation
to identify the precise reason for these failures.

Although for website access, meek, dnstt, and snowflake resulted
in higher web access times than other PTs (see Figure 2b), we did not
observe this unreliable behavior of incomplete webpage download
by them. Hence, they can still be used for accessing websites. A
potential reason for this behavior is that file download requires
maintaining a connection for a long time compared to web access.
Thus, there is a higher chance of connection termination if the PTs
have high resource utilization. The remaining PTs, however, can be
reliably used for both website access and file downloads.

Moreover, such unreliable behavior of the PTs may falsely lead
the user to believe that the PT is blocked, but in practice, it is just
not able to perform well. This can be detrimental to the reputation
of the PT and beneficial for the censor as the PT might not be
accessed by the clients without the censor having to block it.

4.7 Effect of transmission medium

All our previous experiments were performed with client machines
connected via Ethernet. Thus, we conducted experiments to study
the impact of change in connection medium on PT performance. We
configured the Tor client and PT client utility on lab machines. The
machines were connected to the Internet with a more error-prone
wireless medium (WiFi). While conducting the experiments, we
ensured that our lab WiFi routers were not congested. We accessed
the Tranco top-500 and CBL-500 websites (five times each), using all
aforementioned PTs, and recorded the download times. Overall, we
did not see any observable change in the trends when we switched
the medium compared to wired connections (see Section 4.2). For
example, on average, meek incurred 16.4s, whereas dnstt, cloak,
and obfs4 took 5.1s, 3.9s, and 3.7s time to access the websites.
Note that in all our experiments, we simply changed the medium
(from wired to wireless) and did not introduce any congestion at the
router (e.g., by introducing more clients or artificially deteriorating
the signal strength). Thus, a detailed study may be performed to
analyze the PT ecosystem in the wireless medium under different
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settings. We consider such a study out of scope for the current
project and keep it as a part of our future work.

5 DISCUSSION
5.1 Ethical Considerations

In this research, we conducted a large-scale measurement campaign
involving the live Tor network and Tor-supported pluggable trans-
port infrastructure. Tor network is used by millions of users, and
thus, we ensured that our measurements should not impede regular
Tor users. We followed the principles prescribed in the Belmont
report [7]. The three important principles are:

e Respect for persons: We did not involve human subjects
in our studies and thus did not require obtaining consent.

e Beneficence: In our study, we evaluate the performance of
PTs over Tor, which can ultimately result in enhanced user
experience, offering benefits to the users of the system.

o Justice: No user apart from the authors was involved in the
experiments; thus, this study does not pose risks to any third-
party users. On the contrary, the outcomes of our research
can benefit users for whom censorship is a daily reality.

Since our experiments involved sending traffic over Tor, we
carefully planned our measurements (spread out across multiple
weeks) to not overload the Tor infrastructure. We conducted our
experiments from VPSes hosted on cloud infrastructure at different
locations and did not involve any residential networks. We use
standard Tor client utility similar to any regular Tor user. Through-
out our experiments, we only accessed Tranco top-1k websites
and CBL-1k, and file sizes of no more than 100 MB (hosted on our
servers only). We took extra caution while performing our experi-
ments involving pluggable transports that are used en masse e.g.,
Instant Messaging apps (camoufler), DNS resolvers (dnstt) etc. We
ensured that at any point in time, we do not burden these systems
(by running experiments in small batches).

For some experiments, we hosted our own Tor guard nodes on
cloud-hosting machines. We used them only for accessing websites
and downloading file sizes necessary for experiments. We never
recorded any personally identifiable information of users (e.g., IP
address) connecting our guard nodes. Moreover, we hosted them
only for the duration of the experiment. Across all our experiments,
we hosted a guard node maximum for a duration of four weeks
after it received the guard status.

5.2 Evaluation of PTs without Tor

Our PT measurements in earlier sections were conducted over the
Tor network and are thus representative of how the PTs perform
when they are used in conjunction with Tor. However, it is useful
to measure the performance overhead solely due to the PTs (i.e.,
without the involvement of Tor). PTs that result in low-performance
overhead can be important to other overlay networks (e.g., Nym
[16]) that desire censorship resistance [66] without relying on third-
party anti-censorship solutions (e.g., VPN, Tor). These networks
can integrate good-performing PTs directly with their network
infrastructures.

Thus, we analyzed if it’s possible to isolate the effect of PTs on
the observed performance (i.e., the download time). It would be
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very convenient to perform such an evaluation if all the PTs had the
capability to run independently (without Tor). In such a case, we
would download websites (1) via the PTs alone and (2) download the
same websites directly over the Internet. The difference between
the two would estimate the performance overhead by the PT (if
any). But this is not the case; a good fraction of these PTs (5 out of
12) by default are built to work only in conjunction with the Tor
network and not independently. These include obfs4, webtunnel,
meek, snowflake, and conjure.

Thus, we used an alternate strategy to measure the performance
of all 12 PTs (irrespective of whether PTs can work with/without
Tor). The key idea is to access websites first via PT+Tor and then
only via vanilla Tor. The difference between the two would estimate
the PT overhead (if any). We now explain how we designed the
experiments for PTs that cannot be isolated from Tor and the ones
that can be isolated.

PTs inseparable from Tor: As previously mentioned, for such
PTs, the PT server and the first hop in the Tor circuit are the same.
But for measuring the PT overhead, we require the client to access
a website through a fixed circuit (guard, middle, and exit)—via (1)
the PT+Tor and (2) vanilla Tor. Thus, we needed to ensure that each
node in the circuit was the same for vanilla Tor and PT. To make
the first hop in the circuit identical, we deployed the PT server and
ran our own guard node on the same cloud host. Subsequently, we
configured the Tor client utility to use the same middle and last
hop for the remaining part of the Tor circuit.

We then recorded the time it took to access the website via vanilla
Tor and the PTs. The difference in the time provided us with the
overhead (if any) caused by the PT for that particular website. We
performed this evaluation for Tranco top-1k websites. Each website
was accessed using a different circuit, but as described earlier, for a
particular website, the circuit remained the same for Tor as well as
the PTs. Even with this approach, we could not evaluate all those
PTs that are inseparable from Tor. For some PTs, controlling the
PT server is relatively difficult due to deployment hurdles such as
hosting proxy on the CDN in meek, ISP collaboration in conjure
etc. Hence, we analyzed three (obfs4, dnstt, and webtunnel) out of
the six PTs with this capability.
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Figure 10: The impact of increasing load on snowflake’s performance.

PTs separable from Tor: We similarly designed experiments for
PTs that allow the PT server to run independently of the Tor net-
work. In this case, selecting the same Tor circuit for the PT and
vanilla Tor was relatively easier than in the previous case. This
is because the PT server and guard node were separate, and we
can specify the complete circuit from the Tor client utility itself.
Notably, we wanted to capture the overhead of these PTs only due
to their underlying technology. This required us to minimize the
impact of external factors, such as the delay due to the packets trav-
eling from the PT client to the PT server. To that end, we deployed
the PT client and server in the same cloud location.

We plot the difference in download times for the PTs for which
we could perform this evaluation in Figure 9. It can be seen that most
of the PTs did not introduce any significant overhead due to their
functioning. This can be attributed to the fact that most of these PTs
introduce an extra layer of a proxy, and we minimize the impact
of the added latency due to one hop by keeping the PT client and
server in the same location. The only exception is marionette, for
which we could quantify its overhead with our approach (average
website access time is more than 30s). Marionette’s main aim is
to obfuscate the user’s traffic with some cover traffic, such that
the two seem indistinguishable from each other. To do so, it uses
probabilistic automata at its core, and each transition between the
states has an associated action (e.g., encrypting a message).

5.3 Increased user load on snowflake

In September 2022, massive protests and civil unrest erupted inside
Iran [39, 60]. As a consequence, the government of Iran imposed
severe restrictions on Internet access (including blocking the Tor
network [67]). Thus, Iranian citizens resorted to using snowflake
pluggable transport to access the Tor network [90], and the number
of users grew abruptly in the last week of September. Figure 10a
shows that after September 2022, a large number of users were ac-
tively using snowflake. In October 2022, users decreased drastically
[26] due to the blocking of snowflake using TLS fingerprint [30].
In November 2022, the issue was resolved by the snowflake main-
tainers [30]. Since then, we have seen an overall increasing trend
in users connecting to the snowflake servers.

Interestingly, our results correlate with these observations. Our
pre-September 2022 snowflake PT experiments yield comparatively
better performance than post-September 2022 experiments. Using
curl, we accessed the Tranco top-1k websites pre-September 2022
and post-September 2022. In Figure 10b, we see that post-September
2022"°, the average web access time has increased. The paired t-test
also shows a significant difference between pre-September (M=3.42,
SD=4.30) and post-September (M=4.77, SD=5.42); [t=-10.76, P<.001].
The 95% Cl is [-1.59, -1.10].

Moreover, we attempted to download a small file of size 5 MB, but
post-September 2022, in 8 out of 10 attempts, we failed. We repeated
this experiment five times once every week. In all attempts, in the
majority of the cases, we were unable to download the complete file.
This further supports our observation that the PT server (or guard
node) largely impacts the download performance (see Section 4.2.1).

It also explains the anomalous behavior of snowflake with sele-
nium (see Figure 2b); the website load time is much higher compared
to the snowflake with curl experiments i.e., more than five times
(see Figure 2a). The increase is not only due to the use of selenium
but also due to the fact that we performed the selenium-based
experiments starting in November 2022 with a high user load."!

However, since we observed that the user load on snowflake
servers increased (in September end), we performed our post-
September measurements with extra caution. We did not want
to add undue load on the already overloaded server. Thus, we per-
formed only 100-200 measurements in a day. This led us to complete
the post-September measurements in months. We further continued
performing the experiments for the subsequent months to monitor
the change in performance with fluctuations in the number of users.
However, the number of snowflake users did not decrease after the
substantial increase in September 2022, and thus, the observed av-
erage download time remained consistently greater than what was
seen pre-September (see Appendix A.2 for details).

we performed this experiment in November as the snowflake server was not stable
in October.

11Velry recently, Fifiled and Nordberg [32] also report the problem of high traffic load
on snowflake bridges and even proposed solutions to manage the increasing load.
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Figure 11: Speed index for all pluggable transports using
browsertime.

5.4 Performance evaluation using speed index

Our evaluation of PTs involves calculating the website access time,
TTEFB etc., using curl and selenium-based automation. However, re-
cently other performance metrics such as speed index [12] have also
been proposed. The speed index captures the time it takes to load
all the visual elements of a webpage and provides a nuanced per-
spective on usability. Thus, we performed additional experiments
to calculate the speed index for the PTs (using browsertime frame-
work [9]). Figure 11 depicts the results. We observe that the trend
among individual PT categories and across the categories remains
consistent with our results from the selenium-based evaluation. For
instance, in proxy-layer based PTs, meek incurs the maximum time,
and in mimicry-based PTs, marionette takes the highest time. The
results of the paired t-test between all combinations of PT pairs are
summarized in Appendix Tables 8 and 9.

Additionally, one can see that the speed index is lower for all
PTs, signifying that the users will be able to visualize the webpage
much before all the elements of the webpage are loaded. However,
note that this lowering of the time is exclusively the property of
the webpage itself, and the PTs themselves do not optimize for
identifying and loading the visual elements.

5.5 Limitations

Our research provides valuable insights into the PT ecosystem.
However, it is important to consider certain limitations when inter-
preting our results.

First, our measurements are time-gapped, and this might impact
the trends and statistical significance of the results. Since Tor is
a volunteer-operated network (often with limited bandwidth re-
lays), we intentionally time-gapped the measurements so as not to
overload this network (following the best ethical practices).

Second, there are confounding factors that can also impact the
download time. For instance, the traffic load on relay nodes, back-
ground Internet traffic, etc. are some of the external factors [89, 91]
that can further impact our measurements. Thus, in some of our
experiments, we even used our own hosted Tor relays to reduce the
impact of external traffic on the relays (see section 4.2.1). Moreover,
as a general rule, we conducted multiple measurements at different
times on the actual Tor network to minimize the impact of such
factors.

Third, the PT performance in censored countries might deviate
from what we report in the paper. Although we consider multiple
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vantage points to study the impact of location, we could not get
access to vantage points hosted within censored countries (e.g., Iran,
Russia, and China). The sophisticated censorship infrastructure de-
ployed within these countries might further affect the performance
of the PTs [70].

Overall, while our study provides useful insights, real-world com-
plexities introduce some limitations. We took reasonable steps to
minimize variability, but some factors remain beyond our control.

6 CONCLUSION

Pluggable Transports (PTs) for Tor are becoming increasingly im-
portant to stay ahead in the censorship arms race. Thus, it is es-
sential to evaluate different aspects of PTs (e.g., unobservability,
performance, usability) for their continual improvement. In this
paper, we conduct a first performance evaluation of all Pluggable
Transports (PTs) presently used in Tor and those that can be inte-
grated with Tor in the future. Out of the 28 PTs that we analyzed, we
were able to run and test 12 PTs. Amongst the remaining 16 PTs, 13
are non-functional; two are for specific use cases (e.g., messaging),
and one has restricted access (requires a passcode from developers).

For the 12 functional PTs, we recorded the website access time,
file download time, time to first-byte etc., from different locations
around the globe. Our results show that the PT performance is
largely impacted by the underlying technology (e.g., content tun-
neled inside DNS packets) and load at the PT server. Moreover, not
all PTs can be used to access different types of content. For instance,
meek and dnstt cannot completely download a file most (80%) of the
time. These frequent failed download attempts could be inimical to
PT’s reputation as clients may falsely believe that PTs are subjected
to blocking.

Overall, our study highlights that crucial aspects like PTs’
performance warrant attention from the research community.
Users need to be made aware of the right choice of PT, depending
upon the application they would use. Otherwise, it may result in
the inaccessibility of the content, which may cause user fatigue.
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A.1 Pluggable Transports at a glance (a
comparative analysis)

In Section 2, we provided a brief description of different PTs that
were evaluated in our study. However, the regular attempts to block
Tor by China [19], coupled with the recent events of excessive
banning of Tor and PTs by different regimes [4, 67], highlights the
pressing need for more feasible options for PTs. Thus, in this work,
we studied a total of 28 systems that could become PTs. But, many
were not part of our experiments for various reasons. With the help
of Table 2, we provide an overview of all 28 PTs and the challenges
involved in their adoption.

The parameters in the table are suitably chosen for comparison.
For instance, in the first row, for obfs4, we mention that its code
was available, it is functional and integrated into Tor, and thus
we measured its performance. But for torCloak the code is not
publicly available, and thus we can not test it to ascertain whether
it can be integrated with Tor. Thus, we mark not applicable (N/A)
in the respective fields. Additionally, we could only partially test
the working of the massbrowser. This is because it requires an
access code to function for each unique device. We obtained only
one access code from the authors, and thus, we could test it from
a single vantage point. For a fair comparison, we do not include
it in our analysis, as we tested other PTs from several geographic
locations. Similarly, we contacted the developers of all those PTs
whose source codes were available, but we encountered errors
while installing and running them. We succeeded in running and
testing some PTs (e.g., webtunnel) based on the response from their
developers. However, for some PTs, it was not possible to fix the
bugs with the suggested changes.

Next, depending upon their adoption status by the Tor project, we
categorize these PTs broadly into four categories—(1) PTs bundled
with the Tor browser, (2) PTs listed by the Tor project and are under
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PTs bundled in the Tor Browser

Name Code Functional| Integratable| Performance| Implementation chal-| Underlying technol-
available evaluated lenges ogy
Obfs4 [2] v v v v None Random obfuscation
Meek [3] v v v 4 Requires CDN with do- | Domain fronting
main fronting support
Snowflake [25] v v v 4 Dependency on domain | WebRTC
fronting
PTs listed by the Tor project and currently under deployment/testing
Dnstt [24] v v 4 v None DoH/DoT tunneling
Conjure [92] v v v v Needs ISP support Decoy routing
WebTunnel [93] v v v v None Tunneling over HTTP
TorCloak [35, 85] X N/A N/A N/A N/A Tunneling over WebRTC
PTs listed by the Tor project but undeployed
Marionette [21] v v v v Dependency issues (sup- | Network traffic obfusca-
ports only Python 2.7) tion
Shadowsocks [81] | v v v v None Network traffic obfusca-
tion
Stegotorus [98] v v v v None Steganographic obfusca-
tion
Psiphon [74] v v v v None Proxy-based
Lantern Lampshade | v/ X X N/A Unavailability of ready to | Obfuscated encryption
[49] deploy code
PTs neither listed nor deployed by the Tor Project
Cloak [14] v v v v None Network traffic obfusca-
tion
Camoufler [83] v v v v Dependency on IM ac- | Tunneling over IM appli-
counts cation
Massbrowser [59] v v v v (partial) Requires invite-code from | Domain fronting and
authors browser based proxy
Protozoa [5] v X X X Code compilation issues Tunneling over WebRTC
Stegozoa [33] v X X X Provides basic functional- | Tunneling over WebRTC
ity, sends only text data
over sockets
Sweet [104] v X X N/A Dependency issues Tunneling over emails
DeltaShaper [6] v X X N/A Requires Skype version | Tunneling over video
that is no longer supported
Rook [95] v v X N/A Can only be used for mes- | Hiding data using online
saging; no proxy support | gaming
Facet [23] v X X N/A Requires Skype version no | Tunneling over video
that is longer supported
Mailet [52] v v X N/A Can only be used to access | Tunneling over email
Twitter; no proxy support
MinecruftPT [57] v X X N/A Issues in the source code | Hiding data using online
[56] gaming
CloudTransport X N/A N/A N/A N/A Tunneling over cloud
(10]
CovertCast [53] X N/A N/A N/A N/A Tunneling over video
FreeWave [42] X N/A N/A N/A N/A Tunneling over VoIP
Balboa [79] X N/A N/A N/A N/A Obfuscation based on
user-traffic model
Domain Shadowing | X N/A N/A N/A N/A Domain shadowing
[97]

Table 2: Comparison of Pluggable Transports
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deployment and testing, (3) PTs listed by the Tor project and are
not under deployment (4) PTs not listed by Tor. Currently, only
three PTs (obfs4, meek, and snowflake) are integrated with the
Tor browser and can be easily used by the clients. Four are under
deployment testing (i.e., dnstt, conjure, webtunnel, and torcloak).
The remaining 21 PTs are not under consideration for adoption. As
previously stated, we aimed to deploy and run all these systems
for performance comparisons. However, we found that 13 of the
considered PTs were non-functional. We found multiple issues
with them e.g., source code not available, compilation errors, and
deprecated versions of the underlying technology (mentioned in
the table). Our analysis reveals that more focus should be given to
the reproducibility of the proposed systems. Thus, we make our
code and analysis scripts public at [76] to foster future research on
PTs.

A.2 Snowflake post-September monitoring
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Figure 12: Snowflake performance before and after Iran
protests. Note that the y-axis is in the log scale.

We measured the performance of snowflake for March 2023 after
the unrest in Iran (refer Section 5.3). We randomly selected 100 web-
sites from Tranco top-1k websites and downloaded each website
five times using curl. Figure 12 first shows the box plot of measure-
ments conducted before the unrest (in orange color). Second, all
subsequent box plots (in blue color) correspond to measurements
conducted in March 2023 (after the unrest). We can observe that af-
ter the unrest, the average download time is always high compared
to pre-September download values.

A.3 Implementation Details

We deployed all PT clients and server machines on the Digital
Ocean cloud hosting service. We used Ubuntu 20.04 (kernel v5.15
generic) on all machines.

PT specific implementation details: For snowflake, meek,
obfs4, and conjure, we do not host our own PT server instances.
Instead, we directly use the ones provided by the Tor Project page
[88] due to deployment hurdles in hosting them. For instance, meek
requires the server to be hosted on a CDN with domain fronting
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support involving monthly subscription fees; conjure requires place-

ment of a server within an ISP (see Table 2 for more details). This
can act as a deterrent for the end users to host their own servers.

Thus, wherever possible, we use the PT servers provided by the
Tor project, as our goal is to study PT performance perceived by
the users. For the rest of the PTs, we hosted our own PT server
instances in different geographical locations.

Furthermore, dnstt requires a domain name to be registered (see
Section 2). Thus, we registered a domain name on Namecheap host-
ing service [58] and added multiple sub-domains to it. All these
sub-domains further pointed towards custom authoritative name-
servers, which are actually PT server machines corresponding to
each sub-domain.

Selenium setup: For chrome browser automation, we selected
Selenium-v4.4.3 along with Chromedriver-v105.0.5195.52
(as a webdriver). Chrome web driver provides flexible and custom
capabilities to add a wide range of proxy protocols over different
ports. To block advertisements on websites fetched by selenium, we
added uBlock origin [38] as an extension to Chrome. We added
appropriate options such as -no-sandbox, —headless in the sele-
nium browser instance and set a page load timeout of 120 seconds
with each instance for website download. In the case of file down-
loads, we set the default minimum timeout to 1200s so that selenium
can take enough time to download files of size 100MB (maximum
file size in our experiments).12 We used the same timeout for our
curl based file download experiments.

Browsertime setup: To measure the speed index, we used
browsertime [9]—a framework to perform web-related measure-
ments and record values of various performance metrics. It takes
multiple arguments as input parameters such as chrome options,
URLs to observe, number of iterations, and type of metrics (e.g.,
visual metrics like speed index). For the experiments, we specify
the same chrome options as in the previous Selenium setup (e.g.,
chrome driver version 105.0.5195.52, page load timeout of 120s
etc.). Upon completion of the specified iterations, browsertime gen-
erates a JSON file specifying the value of the speed index (in ms)
that we use for plotting results.

Tor circuit selection: Some of our experiments in Section 4.2
required fixing the complete circuit or just the guard (middle
or exit) nodes in a circuit. To fix the nodes, the underlying
PT code communicates with Tor over the control port specified
in the torrc file. In our scripts, we used stem library [44]
to instruct Tor not to make new circuits on their own. Thus,
we set MaxClientCircuitsPending configuration parameter to
1. Also, we ensured that for the duration of our experiment,
the created circuit should persist. Hence, we also set parame-
ters NewCircuitPeriod and MaxCircuitDirtiness to sufficiently
high integer values. The higher the value, the more the retention
time of the circuit. Once these parameters are set, Tor does not cre-
ate new circuits on its own. Further, in Section 5.2, we set the value
of LeaveStreamsUnattached to 1 and use carml [54] to instruct
Tor to attach incoming streams to our created specific circuits.

Eor PTs that resulted in incomplete file downloads with a 1200s timeout value (see
Figure 8a), we increased their timeout to 7200s to provide them additional time to
download the content. However, the results did not change.
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A.4 Future Directions

In our study, we considered the most common use cases for access-
ing a website or downloading files. Thus, in the future, other use
cases, e.g., audio streaming, could be explored for evaluating PTs’
performance. We note that our analysis can be extended to more
websites, client locations (in censored countries) etc. We envision
that periodic performance measurements of deployed PTs could
also be integrated with the Tor project for long-term analysis.
Additionally, apart from performance, there were other usabil-
ity concerns that we encountered while evaluating the PTs. For
instance, camoufler requires creating an account on the IM app,
which in turn involves a mobile number for registration. This may
lead to usability challenges. Similarly, massbrowser’s performance
can also be evaluated, but it requires (per device) access code from
the authors. Thus, in the future, a detailed usability study of PTs
can also be conducted such that a wider audience can use them.

A.5 On using Ting to identify the bottleneck in
Tor circuit

In Section 4.2.1, we report that obfs4 and webtunnel performed
better than vanilla Tor. We subsequently conducted a series of ex-
periments to understand why that is the case. All such experiments
involved creating Tor circuits with different combinations of fixed
and variable relays to identify the bottlenecks in performance. How-
ever, it could be argued that one could use Ting [11] (an approach
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for measuring latency between arbitrary Tor relays) to identify the
bottlenecks. Ting can be used to quantify the delay introduced be-
tween the PT server/guard node and the middle node and compare
it with the delay between the middle and the exit node.

However, it is not possible to use Ting to measure the latency
when PTs are involved. This is because Ting requires setting up a
circuit in which the first hop in the circuit should be controlled by
the Ting operators while the second hop should be the Tor node that
one wants to measure the latency about. B3 For circuits involving
PTs, the PT server can only act as the first hop, and cannot be used
as a second hop in the circuit. Thus, PT-based circuits do not satisfy
the necessary conditions required by Ting. Hence, Ting cannot be
used to measure the latency for PT-based circuits.

Note that we also considered modifying Ting for measuring
circuit delays involving PTs. However, any modifications in Ting
(specific to PTs) violated its assumptions. For instance, with one
of our modifications, we could have approximated the latency be-
tween the PT server and the middle node. However, this involves
an assumption that the regular TCP packets and Tor packets are not
treated differently by the ISPs. This assumption was shown in Ting
to yield potentially inaccurate results; thus, we did not consider
using it.

Note that there are a total of three different configurations of circuits in Ting. In all
the configurations, the first and the last hop Tor nodes should be controlled by Ting

operators, while the nodes in between them are the ones for which the latency is to be
measured. These nodes can be any of the guard, middle, or exit nodes.
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PT Pair CILower CIUpper t-value P-value Mean diff.
Tor-Dnstt -5.222 -4.359 -21.751 <.001 -4.791
Cloak-Dnstt -5.541 -4.736  -25.028  <.001 -5.138
Stegotorus-Dnstt -4.948 -4.140 -22.040  <.001 -4.544
Marionette-Camoufler 2.229 4.035 6.798 <.001 3.132
Dnstt-Psiphon 3.824 4.684 19.401 <.001 4.254
Obfs4-Conjure -1.328 -0.828 -8.450 <.001 -1.078
Stegotorus-WebTunnel -0.935 -0.348 -4.281 <.001 -0.641
Snowflake-Camoufler -12.793 -12.040  -64.553  <.001 -12.416
Stegotorus-Snowflake 0.425 0.850 5.876 <.001 0.638
Shadowsocks-Snowflake -0.566 -0.069 -2.506 0.01 -0.318
Shadowsocks-WebTunnel — -1.929 -1.263 -9.393 <.001 -1.596
Tor-Cloak 0.129 0.659 2.918 0.004 0.394
Tor-Psiphon -0.721 -0.164 -3.117 0.002 -0.443
Tor-Obfs4 0.824 1.441 7.196 <.001 1.133
Snowflake-WebTunnel -1.528 -0.933 -8.094 <.001 -1.230
Shadowsocks-Meek -4.972 -4.426 -33.750  <.001 -4.699
Tor-Conjure -0.184 0.244 0.273 0.78 0.030
Cloak-Camoufler -12.895 -12.173 -68.022 <.001 -12.534
Cloak-Conjure -0.506 -0.104 -2.974 0.003 -0.305
Dnstt-WebTunnel 3.549 4.421 17.908 <.001 3.985
Tor-Stegotorus -0.428 0.074 -1.383 0.17 -0.177
Meek-Psiphon 3.328 3.854 26.761 <.001 3.591
Stegotorus-Cloak 0.380 0.740 6.097 <.001 0.560
Tor-Meek -4.305 -3.882 -37.896 <.001 -4.094
Obfs4-Snowflake -1.012 -0.492 -5.672 <.001 -0.752
Tor-WebTunnel -1.110 -0.491 -5.067 <.001 -0.800
Obfs4-Shadowsocks -0.597 -0.329 -6.774 <.001 -0.463
Obfs4-Camoufler -13.561 -12.854  -73.149 <.001 -13.208
Obfs4-Meek -5.407 -4.826 -34.479 <.001 -5.117
Psiphon-Conjure 0.291 0.740 4.501 <.001 0.516
Cloak-Meek -4.633 -4.118 -33.277 <.001 -4.375
Camoufler-Conjure 11.789 12.479 68.891 <.001 12.134
Marionette-Shadowsocks 15.038 16.393 45.453 <.001 15.715
Marionette-Conjure 14.424 15.730 45.255 <.001 15.077
Tor-Snowflake 0.086 0.608 2.606 0.009 0.347
Obfs4-Stegotorus -1.496 -1.085  -12.328  <.001 -1.291
Meek-Camoufler -8.216 -7.490 -42.424  <.001 -7.853
Snowflake-Conjure -0.526 -0.142 -3.408 <.001 -0.334
Obfs4-Cloak -0.968 -0.605 -8.495 <.001 -0.786
Marionette-Stegotorus 14.210 15.522 44.413 <.001 14.866
Shadowsocks-Camoufler ~ -13.165 -12.441  -69.359  <.001 -12.803

Table 3: Paired t-test results for PTs in Figure 2a—website access using curl [Part I].
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PT Pair ClLower CIUpper t-value P-value Mean diff.
Snowflake-Dnstt -5.594 -4.763 -24.439 <.001 -5.178
Obfs4-Dnstt -6.370 -5.530 -27.779 <.001 -5.950
Tor-Camoufler -12.417 -11.648  -61.336 <.001 -12.032
Cloak-Psiphon -1.121 -0.564 -5.933 <.001 -0.843
Marionette-Snowflake 14.764 16.047 47.071 <.001 15.406
Camoufler-Dnstt 6.961 7.953 29.467 <.001 7.457
Obfs4-Psiphon -1.907 -1.332 -11.039 <.001 -1.620
Psiphon-WebTunnel -0.662 -0.052 -2.293 0.02 -0.357
Shadowsocks-Dnstt -5.966 -5.118 -25.625  <.001 -5.542
Marionette-Dnstt 9.426 11.038 24.879 <.001 10.232
Tor-Shadowsocks 0.455 1.023 5.105 <.001 0.739
Meek-Dnstt -1.183 -0.354 -3.634 <.001 -0.768
Camoufler-WebTunnel 10.974 11.708 60.555 <.001 11.341
Meek-Conjure 3.878 4.327 35.859 <.001 4.102
Tor-Marionette -15.717 -14.442 -46.393 <.001 -15.079
Camoufler-Psiphon 11.145 11.978 54.428 <.001 11.561
Marionette-Meek 10.313 11.628 32.717 <.001 10.970
Stegotorus-Camoufler -12.238 -11.590  -72.067  <.001 -11.914
Cloak-Snowflake -0.208 0.275 0.272 0.79 0.033
Dnstt-Conjure 4.425 5.241 23.208 <.001 4.833
Marionette-Cloak 14.708 16.043 45.159 <.001 15.376
Shadowsocks-Cloak -0.524 -0.174 -3.906 <.001 -0.349
Marionette-WebTunnel 13.482 14.824 41.342 <.001 14.153
Shadowsocks-Psiphon -1.419 -0.880 -8.358 <.001 -1.150
Cloak-WebTunnel -1.487 -0.894 -7.873 <.001 -1.190
Stegotorus-Psiphon -0.566 -0.109 -2.896 0.004 -0.338
Meek-WebTunnel 2.959 3.565 21.080 <.001 3.262
Stegotorus-Meek -4.112 -3.612 -30.310  <.001 -3.862
Marionette-Psiphon 13.888 15.200 43.461 <.001 14.544
Shadowsocks-Stegotorus ~ -1.051 -0.674 -8.955 <.001 -0.863
Snowflake-Psiphon -1.060 -0.623 -7.545 <.001 -0.842
Conjure-WebTunnel -1.185 -0.614 -6.179 <.001 -0.899
Obfs4-Marionette -16.843 -15.478 -46.418 <.001 -16.161
Stegotorus-Conjure 0.100 0.472 3.019 0.003 0.286
Obfs4-WebTunnel -2.408 -1.712 -11.607 <.001 -2.060
Snowflake-Meek -4.685 -4.196 -35.599 <.001 -4.440
Shadowsocks-Conjure -0.873 -0.426 -5.706 <.001 -0.649

Table 4: Paired t-test results for PTs in Figure 2a—website access using curl [Part II].
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PT Pair ClLower CIUpper t-value P-value Mean Diff.
Tor-Dnstt -21.627 -18.545 -25.540 <.001 -20.086
Cloak-Dnstt -21.733 -18.716 -26.271 <.001 -20.224
Stegotorus-Dnstt -14.508 -8.500 -7.505 <.001 -11.504
Dnstt-Psiphon 20.319 24.575 20.679 <.001 22.447
Obfs4-Conjure -3.417 -1.967 -7.279 <.001 -2.692
Stegotorus-WebTunnel 10.456 16.249 9.036 <.001 13.352
Stegotorus-Snowflake -11.294 -4.189 -4.271 <.001 -7.742
Shadowsocks-Snowflake ~ -10.525 -8.253  -16.200  <.001 -9.389
Shadowsocks-WebTunnel 9.108 11.454 17.175 <.001 10.281
Tor-Cloak -0.621 0.872 0.329 0.74 0.125
Tor-Psiphon -0.612 1.613 0.881 0.38 0.500
Tor-Obfs4 5.237 6.630 16.688 <.001 5.934
Snowflake-WebTunnel 17.980 20.887 26.206 <.001 19.433
Shadowsocks-Meek -37.525 -32.485  -27.221  <.001 -35.005
Tor-Conjure 2.286 3.794 7.902 <.001 3.040
Cloak-Conjure 2.161 3.638 7.699 <.001 2.899
Dnstt-WebTunnel 22.298 25.979 25.699 <.001 24.138
Tor-Stegotorus -14.467 -8.907 -8.239 <.001 -11.687
Meek-Psiphon 38.246 44.357 26.493 <.001 41.301
Stegotorus-Cloak 9.155 14.581 8.574 <.001 11.868
Tor-Meek -42.429 -37.552 -32.145 <.001 -39.991
Obfs4-Snowflake -22.072 -19.389 -30.290 <.001 -20.731
Tor-WebTunnel 3.250 5.145 8.681 <.001 4.198
Obfs4-Shadowsocks -12.766 -10.818 -23.728 <.001 -11.792
Obfs4-Meek -47.169 -41.918 -33.247 <.001 -44.544
Psiphon-Conjure -0.169 1.971 1.651 0.1 0.901
Cloak-Meek -42.907 -38.108 -33.090 <.001 -40.507
Marionette-Shadowsocks  36.119 48.980 12.969  <.001 42.549
Marionette-Conjure 42.612 54.722 15.753 <.001 48.667
Tor-Snowflake -16.483 -14.178 -26.065 <.001 -15.331
Obfs4-Stegotorus -21.663 -15.173 -11.123 <.001 -18.418
Snowflake-Conjure 17.052 19.523 29.001 <.001 18.288
Obfs4-Cloak -6.467 -4.940 -14.643 <.001 -5.703
Marionette-Stegotorus 23.130 41.024 7.027 <.001 32.077
Snowflake-Dnstt -6.264 -3.623 -7.339 <.001 -4.944
Obfs4-Dnstt -27.093 -23.618 -28.604 <.001 -25.356
Cloak-Psiphon -0.658 1.444 0.733 0.46 0.393
Marionette-Snowflake 19.868 35.129 7.063 <.001 27.498
Obfs4-Psiphon -6.733 -4.217 -8.530 <.001 -5.475

Table 5: Paired t-test results for PT pairs in Figure 2b—website access using selenium [Part I].
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PT Pair ClLower CIUpper t-value P-value Mean Diff.
Psiphon-WebTunnel 1.723 4.364 4.517 <.001 3.044
Shadowsocks-Dnstt -16.284 -13.434  -20.437  <.001 -14.859

Marionette-Dnstt 23.225 38.892 7.771 <.001 31.059
Tor-Shadowsocks -6.860 -5.168 -13.936  <.001 -6.014
Meek-Dnstt 25.148 30.497 20.389 <.001 27.822
Meek-Conjure 39.628 44.520 33.711 <.001 42.074
Tor-Marionette -52.550 -41.498  -16.678  <.001 -47.024
Marionette-Meek -26.509 23.634 -0.112 0.91 -1.438
Cloak-Snowflake -16.281 -13.880  -24.617  <.001 -15.081
Dnstt-Conjure 21.346 24.597 27.699 <.001 22971
Marionette-Cloak 42.501 54.202 16.198 <.001 48.352
Shadowsocks-Cloak 5.187 6.961 13.415 <.001 6.074
Marionette-WebTunnel 44.080 56.749 15.599 <.001 50.414
Shadowsocks-Psiphon 6.409 8.867 12.184  <.001 7.638
Cloak-WebTunnel 3.209 5.130 8.509 <.001 4.170
Stegotorus-Psiphon 9.723 15.514 8.540 <.001 12.619
Meek-WebTunnel 40.695 46.267 30.589 <.001 43.481
Stegotorus-Meek -65.078 -36.334 -6.915 <.001 -50.706
Marionette-Psiphon 39.314 52.652 13.514 <.001 45.983
Shadowsocks-Stegotorus ~ -7.521 -2.640 -4.080 <.001 -5.080
Snowflake-Psiphon 16.650 19.977 21576  <.001 18.313
Conjure-WebTunnel 0.541 2.276 3.181 0.002 1.408
Obfs4-Marionette -57.120 -46.416  -18.958  <.001 -51.768
Stegotorus-Conjure 10.338 16.033 9.075 <.001 13.185
Obfs4-WebTunnel -2.385 -0.565 -3.175 0.002 -1.475
Snowflake-Meek -31.124 -26.015  -21.921 <.001 -28.570
Shadowsocks-Conjure 8.020 9.930 18.426 <.001 8.975

Table 6: Paired t-test results for PT pairs in Figure 2b—website access using selenium [Part II].
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PT Pair ClLower CIUpper t-value P-value Mean Diff.
obfs4-Stegotaurus -141.854 -54.056 -4.605 <.001 -97.955
obfs4-Shadowsocks -201.300  -26.632  -2.693 0.01 -113.966
obfs4-Psiphon -37.557 22.618 -0.512 0.61 -7.470
obfs4-Tor 7.736 82.363 2.492 0.02 45.049
obfs4-Cloak -21.047 77.185 1.179 0.25 28.069
obfs4-Webtunnel -17.103 77.308 1.316 0.2 30.103
obfs4-Conjure -147.839 2.570 -1.993 0.06 -72.635
obfs4-Camoufler -136.373  -39.103  -3.723 0.001 -87.738
obfs4-Marionette -2171.253  -217.858  -2.524 0.02 -1194.555
Stegotaurus-Shadowsocks  -96.331 64.310 -0.411 0.68 -16.011
Stegotaurus-Psiphon 43.461 137.510 3.971 <.001 90.486
Stegotaurus-Tor 76.059 209.950 4.409 <.001 143.005
Stegotaurus-Cloak 52.648 199.401 3.545 0.002 126.024
Stegotaurus-Webtunnel 55.412 200.703 3.638 0.001 128.058
Stegotaurus-Conjure -65.413 116.054 0.576 0.57 25.321
Stegotaurus-Camoufler -38.435 58.870 0.433 0.67 10.217
Stegotaurus-Marionette  -2075.884 -117.317  -2.311 0.03 -1096.600
Shadowsocks-Psiphon 28.114 184.879 2.804 0.01 106.496
Shadowsocks-Tor 78.692 239.339 4.086 <.001 159.015
Shadowsocks-Cloak 58.470 225.600 3.508 0.002 142.035
Shadowsocks-Webtunnel 67.595 220.543 3.888 <.001 144.069
Shadowsocks-Conjure -89.598 172.261 0.652 0.52 41.331
Shadowsocks-Camoufler -32.371 84.828 0.924 0.36 26.228
Shadowsocks-Marionette  -2107.966  -53.213  -2.171 0.04 -1080.589
Psiphon-Tor 13.818 91.220 2.801 0.01 52.519
Psiphon-Cloak -18.538 89.615 1.356 0.19 35.539
Psiphon-Webtunnel -5.903 81.048 1.784 0.09 37.572
Psiphon-Conjure -154.954 24.623 -1.498 0.15 -65.165
Psiphon-Camoufler -124.412  -36.125  -3.753 <.001 -80.268
Psiphon-Marionette -2174.942  -199.229  -2.480 0.02 -1187.086
Tor-Cloak -52.687 18.726 -0.982 0.34 -16.980
Tor-Webtunnel -39.904 10.011 -1.236 0.23 -14.947
Tor-Conjure -209.323 -26.045 -2.650 0.01 -117.684
Tor-Camoufler -176.706 -88.869 -6.240 <.001 -132.787
Tor-Marionette -2233.277  -245.933  -2.575 0.02 -1239.605
Cloak-Webtunnel -27.976 32.044 0.140 0.89 2.034
Cloak-Conjure -189.178 -12.229 -2.349 0.03 -100.704
Cloak-Camoufler -158.276  -73.338  -5.628 <.001 -115.807
Cloak-Marionette -2230.841 -214.408  -2.503 0.02 -1222.625
Webtunnel-Conjure -196.256 -9.219 -2.267 0.03 -102.737
Webtunnel-Camoufler -158.284  -77.397  -6.014  <.001 -117.840
Webtunnel-Marionette -2230.391  -218.925  -2.513 0.02 -1224.658
Conjure-Camoufler -111.709 81.503 -0.323 0.75 -15.103
Conjure-Marionette -2103.733  -140.109  -2.358 0.03 -1121.921
Camoufler-Marionette -2113.559  -100.076  -2.269 0.03 -1106.818

Table 7: Paired t-test results for PT pairs in Figure 5—file download.
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PT Pair CILower CIUpper t-value P-value Mean Diff.
Cloak-Snowflake -16.062 -5.941 -4.261 <.001 -11.001
Psiphon-WebTunnel -0.412 0.048 -1.550 0.12 -0.182
Shadowsocks-Snowflake  -15.137 -4.830 -3.797 <.001 -9.984
Cloak-Meek -27.588 -25.223 -43.763 <.001 -26.405
Obfs4-Marionette -60.212 -31.773  -6.339 <.001 -45.992
Marionette-WebTunnel 34.789 64.290 6.582 <.001 49.539
Obfs4-Shadowsocks -0.103 0.879 1.548 0.12 0.388
Shadowsocks-Psiphon 1.752 2.497 11.170  <.001 2.125
Meek-Psiphon 26.289 28.637 45.844 <.001 27.463
Tor-Psiphon 0.646 1.292 5.875 <.001 0.969
Obfs4-Snowflake -16.091 -7.781 -5.630 <.001 -11.936
Obfs4-Stegotorus -0.840 0.119 -1.472 0.14 -0.360
Obfs4-Psiphon 2.026 2.898 11.063 <.001 2.462
Tor-Meek -27.529 -25.282  -46.071 <.001 -26.405
Obfs4-Meek -25.847 -23.645 -44.043 <.001 -24.746
Snowflake-Psiphon 5.083 15.395 3.892 <.001 10.239
Tor-Snowflake -17.487 -6.724 -4.409 <.001 -12.106
Dnstt-WebTunnel 6.351 8.092 16.264 <.001 7.222
Stegotorus-Meek -24.864 -22.425  -38.003  <.001 -23.645
Tor-Shadowsocks -1.612 -0.745 -5.328 <.001 -1.178
Shadowsocks-Conjure 2.513 3.349 13.758 <.001 2.931
Tor-Stegotorus -2.483 -1.604 -9.105 <.001 -2.043
Tor-Obfs4 -2.006 -1.254 -8.489 <.001 -1.630
Marionette-Snowflake 17.386 49.685 4.070 0.001 33.536
Stegotorus-Snowflake -17.443 -4.310 -3.246 0.004 -10.877
Marionette-Conjure 35.787 65.260 6.720 <.001 50.524
Marionette-Cloak 34.489 64.707 6.434 <.001 49.598
Snowflake-WebTunnel 8.806 16.293 6.570 <.001 12.549
Cloak-Conjure 1.133 1.897 7.764 <.001 1.515
Shadowsocks-Cloak 1.195 1.967 8.022 <.001 1.581
Stegotorus-Cloak 1.776 2.867 8.347 <.001 2.321
Stegotorus-Conjure 3.312 4.177 16.972 <.001 3.745
Meek-Conjure 27.038 29.396 46.901 <.001 28.217
Snowflake-Dnstt 5.787 17.650 3.872 <.001 11.719
Marionette-Dnstt 27.386 60.823 5.170 <.001 44.105
Meek-WebTunnel 25.903 28.243 45.353 <.001 27.073
Dnstt-Conjure 7.463 9.173 19.073 <.001 8.318
Tor-WebTunnel 0.416 0.989 4.812 <.001 0.702
Obfs4-Conjure 2.894 3.694 16.137 <.001 3.294

Table 8: Paired t-test results for PT pairs in Figure 11—speed index [Part I].
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PT Pair ClLower CIUpper t-value P-value Mean Diff.
Dnstt-Psiphon 6.447 8.193 16.433 <.001 7.320
Shadowsocks-Stegotorus -1.075 -0.198 -2.845 0.005 -0.636
Tor-Dnstt -7.188 -5.545 -15.193 <.001 -6.366
Obfs4-Cloak 1.372 2.262 8.001 <.001 1.817
Marionette-Psiphon 33.461 63.266 6.361 <.001 48.363
Obfs4-Dnstt -5.542 -3.986 -12.004 <.001 -4.764
Tor-Cloak -0.319 0.408 0.239 0.81 0.044
Stegotorus-Dnstt -4.908 -3.100 -8.682 <.001 -4.004
Cloak-Psiphon 0.671 1.211 6.824 <.001 0.941
Stegotorus-WebTunnel 2.257 3.240 10.968  <.001 2.749
Shadowsocks-Meek -26.274 -24.006  -43.451  <.001 -25.140
Tor-Conjure 1.394 1.925 12.235 <.001 1.659
Cloak-Dnstt -8.345 -6.532 -16.083 <.001 -7.439
Snowflake-Meek -18.355 -8.839 -5.601 <.001 -13.597
Shadowsocks-Dnstt -5.921 -4.236 -11.816 <.001 -5.078
Psiphon-Conjure 0.449 1.136 4.517 <.001 0.793
Marionette-Shadowsocks ~ 34.535 62.909 6.731 <.001 48.722
Marionette-Stegotorus 31.222 62.641 5.855 <.001 46.931
Cloak-WebTunnel 0.324 0.892 4.192 <.001 0.608
Conjure-WebTunnel -1.216 -0.568 -5.397  <.001 -0.892
Meek-Dnstt 19.315 21.379 38.653 <.001 20.347
Tor-Marionette -60.658 -30.748 -5.990 <.001 -45.703
Obfs4-WebTunnel 1.965 2.774 11.477 <.001 2.370
Shadowsocks-WebTunnel 1.647 2.395 10.589 <.001 2.021
Marionette-Meek 2.987 35.628 2.319 0.03 19.307
Snowflake-Conjure 10.653 22.271 5.555 <.001 16.462
Stegotorus-Psiphon 2.285 3.362 10.281 <.001 2.824

Table 9: Paired t-test results for PT pairs in Figure 11—speed index [Part II].

PT Category Pair CIlUpper ClILower t-value P-value Mean Diff.
fully encrypted-mimicry -5.481 -4.946  -38.256  <.001 -5.214
mimicry-Tor 3.974 4.557 28.692 <.001 4.265
proxy layer-Tor 0.809 1.229 9.507 <.001 1.019
Tor-tunneling -4.211 -3.581 -24.232  <.001 -3.896
mimicry-tunneling 0.019 0.692 2.069 0.04 0.355
fully encrypted-proxy-layer — -2.191 -1.730  -16.643  <.001 -1.960
fully encrypted-tunneling -5.234 -4597  -30.266  <.001 -4.915
mimicry-proxy layer 2.974 3.490 24.554 <.001 3.232
fully encrypted-Tor -1.239 -0.650 -6.279 <.001 -0.944
proxy layer-tunneling -3.167 -2.607  -20.235  <.001 -2.887

Table 10: Paired t-test results for PT category pairs in Figure 2a—website access using curl.



	Abstract
	1 Introduction
	2 Background
	2.1 Proxy-layer based pluggable transports
	2.2 Tunneling-based pluggable transports
	2.3 Mimicry-based pluggable transports
	2.4 Fully-encrypted pluggable transports
	2.5 Other pluggable transports

	3 Related Work
	4 Evaluation & Analysis
	4.1 Experimental setup
	4.2 Website access time
	4.3 File download time
	4.4 Time to first byte (TTFB)
	4.5 Impact of location
	4.6 Reliability
	4.7 Effect of transmission medium

	5 Discussion
	5.1 Ethical Considerations
	5.2 Evaluation of PTs without Tor
	5.3 Increased user load on snowflake
	5.4 Performance evaluation using speed index
	5.5 Limitations

	6 Conclusion
	References
	A Appendix
	A.1 Pluggable Transports at a glance (a comparative analysis)
	A.2 Snowflake post-September monitoring
	A.3 Implementation Details
	A.4 Future Directions
	A.5 On using Ting to identify the bottleneck in Tor circuit


