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Chapter 1

Introduction

This is a thesis about Internet censorship. In it, I will expand on two threads of research that
have occupied my attention for the past several years: better understanding how censors work,
and fielding systems that circumvent their restrictions. These two threads fuel each other:
better understanding censors enables us to build better circumvention systems that take
into account their strengths and weaknesses; and the deployment of a circumvention system
affords an opportunity to observe how censors themselves react to changing circumstances.
If I am successful, the output of my research is useful models that describe not only how
censors behave today but how they may evolve in the future, and tools for circumvention
that are not only sound in theory but also effective in practice.

1.1 Scope

Censorship is an enormous topic. Even the addition of the “Internet” qualifier hardly reduces
its scope, because almost everything that might be censored touches the Internet in some
way. To deal with the subject in depth, it is necessary to limit the scope. My research is
focused on an important special case of censorship, which I call the “border firewall” case. It
is illustrated in Figure 1.1.

A client resides within a network that is entirely controlled by a censor. Within the
censor’s network, the censor may observe, modify, inject, or block any communication along

Figure 1.1: In the border firewall scenario, a client within a censor-controlled network wants
to reach a destination that lies outside the censor’s control.
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CHAPTER 1. INTRODUCTION 2

any link. The censor, in particular, tries to prevent some subset of communication with the
wider Internet, for instance by blocking certain keywords, network addresses, or protocols.
The client’s computer, however, is trustworthy and not controlled by the censor. The client’s
goal is to communicate with some destination that lies outside the censor’s network, despite
the censor’s blocks: we call this activity circumvention. Circumvention requires somehow
safely traversing a hostile network, eluding detection and blocking by the censor, in order
to reach a destination. The censor does not control network links outside its own border; it
may of course send messages to the outside world, but it cannot control them after they have
traversed the border.

This abstract model is a good starting point, but the situation in practice is never so
clear-cut. For example, the censor may be weaker than assumed: it may observe only the links
at the border, not those wholly inside; it may not be able to fully inspect every packet that
flows on its network; or there may be deficiencies or dysfunctions in its detection capabilities.
Or the censor may be stronger: perhaps it, while not fully controlling outside networks, may
influence their operators to discourage them from assisting in circumvention. The client may
be limited, for technical or social reasons, in the software and hardware they can use. The
destination may knowingly cooperate with the client’s circumvention, or may not. There is
no limit to the possible complications. Adjusting the basic model to reflect real-world actors’
motivations and capabilities is the heart of threat modeling, one of the main topics of this
thesis. Depending on the situation, we will add to the list of assumptions. In particular,
what makes circumvention possible at all is the censor’s motivation to block only some of the
incoming and outgoing traffic, and allow the rest to pass—this assumption will be a major
focus of the next chapter.

It is not hard to see how the border firewall model relates to censorship in practice.
In a common case, the censor is a national government, and the borders of its controlled
network correspond to the borders of a country. A government typically has the power to
enforce laws and control network infrastructure to act within its own borders, but not outside.
However the boundaries of censorship do not always correspond exactly to the border of a
country. Almost since the study of Internet censorship began, it has been recognized that
content restrictions may vary across geographic locations, even within the same country
(Wright et al. [111] identified some possible causes). In some places a better model is not a
single unified censorship regime, but rather many individual Internet service providers, each
controlling its own network and acting as a mini-censor, perhaps coordinating with others
about what to block and perhaps not. Another important case is that of a university or
corporate network, in which the only outside network access is through a single gateway
router, which tries to enforce a policy on what is acceptable and what is not. These smaller
networks often differ from national- or ISP-level networks in interesting ways, for instance
with regard to the amount of overblocking they are willing to tolerate, or the amount of
computation they can afford to spend on each communication.

Here are some examples of forms of censorship that are in scope:

• blocking IP addresses

• blocking specific network protocols

• blocking DNS resolution for certain domains
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• blocking keywords in URLs

• dissecting network layers (“deep packet inspection”)

• statistical and probabilistic traffic classification

• connection speed throttling

• active measures by censors to discover the use of circumvention

Other forms of censorship that are not in scope include:

• domain takedowns (that affect all clients globally)

• server-side blocking (servers refusing to serve certain clients)

• anything that takes place entirely within the censor’s network and does not cross the
border

• forum moderation and deletion of social media posts

• deletion-resistant publishing like the Eternity Service [6] (what Köpsell and Hillig call
“censorship resistant publishing systems”), except insofar as access to such services may
be blocked

Many parts of the abstract model are deliberately left unspecified, to allow for the many
variations that arise in practice. The precise nature of “blocking” can take many forms,
from packet dropping, to injection of false responses, and softer forms of disruption such
as bandwidth throttling. Detection need not be purely passive. The censor is permitted to
do work outside the context of a single connection; for example, it may compute aggregate
statistics over many connections, make lists of suspected IP addresses, and defer some analysis
for offline processing. The client may cooperate with other entities inside and outside the
censor’s network, and indeed almost all circumvention will require the cooperation of a willing
proxy on the outside.

Some have objected to the use of the generic term “Internet censorship” to refer to the
narrow case of the border firewall. I am sensitive to this objection and acknowledge that far
more topics could fit under the umbrella of Internet censorship. Nevertheless, for the purpose
of this thesis, I will continue to use “Internet censorship” without further qualification to
refer to the border firewall case.

1.2 Overview

here be dragonŊ
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1.3 My past work

here be dragonŊ

My blind spots: VPNs, systems without research documentation (FreeGate, Ultrasurf,
Shadowsocks), foreign-language documentation and forums.

1.3.1 Flash proxy

I began working on censorship circumvention with flash proxy in 2011. Flash proxy is targeted
at the difficult problem of proxy address blocking: it is designed against a censor model in
which the censor can block any IP address it chooses, but only on a relatively slow timeline
of several hours.

Flash proxy works by running tiny JavaScript proxies in ordinary users’ web browsers.
The mini-proxies serve as temporary stepping stones to a full-fledged proxy, such as a Tor
relay. The idea is that the flash proxies are too numerous, diverse, and quickly changing to
block effectively. A censored user may use a particular proxy for only seconds or minutes
before switching to another. If the censor manages to block the IP address of one proxy,
there is little harm, because many other temporary proxies are ready to take its place.

The flash proxy system was designed under interesting constraints imposed by being
partly implemented in JavaScript in the browser. The proxies sent and received data using
the WebSocket protocol, which allows for socket-like persistent TCP connections in browsers,
but with a catch: the browser can only make outgoing connections, not receive incoming ones
as a traditional proxy would. The censored client must somehow inform the system of its own
public address, and then the proxy connects back to the client. This architectural constraint
was probably the biggest impediment to the usability of flash proxy, because it required users
to configure their local router to permit incoming connections. (Removing this impediment
is the main reason for the development of Snowflake, described later.) Flash proxy does not
itself try to obfuscate patterns in the underlying traffic; it only provides address diversity.

For the initial “rendezvous” step in which a client advertises its address and a request for
proxy service, flash proxy uses a neat idea: a low-capacity, but highly covert channel bootstraps
the high-capacity, general-purpose WebSocket channel. For example, we implemented an
automated email-based rendezvous, in which the client would send its address in an encrypted
email to a special address. While it is difficult to build a useful low-latency bidirectional
channel on top of email, email is difficult to block and it is only needed once, at the beginning
of a session. We later replaced the email-based rendezvous with one based on domain fronting,
which would later inspire meek, described below.

I was the leader of the flash proxy project and the main developer of its code. Flash
proxy was among the first circumvention systems built for Tor—only obfs2 is older. It was
first deployed in Tor Browser in January 2013, and was later retired in January 2016 after it
ceased to see appreciable use. Its spirit lives on in Snowflake, now under development.

Flash proxy appeared in the 2012 research paper “Evading Censorship with Browser-Based
Proxies” [44], which I coauthored with Nate Hardison, Jonathan Ellithorpe, Emily Stark,
Roger Dingledine, Phil Porras, and Dan Boneh.
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1.3.2 OSS, a circumvention prototype

OSS, for “online scanning service,” is a design for circumvention based on the use of third-
party web services that issue HTTP requests to user-specified destinations, such as an online
translation service. OSS is designed against the model of a censor that is unwilling to block
useful web services that are used for circumvention, because of the useful service they provide.

In OSS, the client sends messages to a censored destination by bouncing them through a
third-party scanning service. The key idea is a deliberate conflation of address and content.
The client asks the scanning service to scan a long URL that is constructed to encode both
the destination host and a data payload. The destination receives the HTTP request and
decodes its payload. The destination sends data downstream by abusing HTTP redirection,
instructing the scanning service to send another HTTP request back to the client, with a
different payload. The resistance to blocking of the OSS system hinges on the abundance of
online scanning services that exist.

OSS was never deployed to users. I judged its overhead and potential to annoy webmasters
to be too great to be practical. The core idea, however, did see use as a rendezvous method
for flash proxy. In this method, a helper program would encode the client’s IP address into a
URL. The user would then copy and paste the URL into any online scanning service, which
would then forward the information to the flash proxy system. In fact, this URL encoding
was used internally by the domain fronting–based rendezvous as well, using a URL as a
convenient vehicle for data transfer.

OSS appeared in the 2013 research paper “OSS: Using Online Scanning Services for
Censorship Circumvention” [49], which I coauthored with Gabi Nakibly and Dan Boneh.



Chapter 2

Principles of circumvention

• Look like something / look like nothing

In order to understand the challenges of circumvention, it helps to put yourself in the
mindset of a censor. A censor has two high-level functions: detection and blocking. Detection
is a classification problem: the censor prefers to permit some communications and deny
others, and so it must have some procedure for deciding which communications fall in which
category. Blocking follows detection. Once the censor detects some prohibited communication,
it must take some action to stop the communication, such as terminating the connection at
a network router. A censor must be able both to detect and to block. (Detection without
blocking would be called surveillance, not censorship.) The flip side of this statement is that
a circumventor succeeds either by eluding detection, or, once detected, somehow resist the
censor’s blocking action.

A censor is, then, essentially a traffic classifier coupled with a blocking mechanism. Though
the design space is large, and many complications are possible, at its heart it must decide, for
each communication, whether to block or allow, and then effect blocks as appropriate. Like
any classifier, a censor is liable to make mistakes. When the censor fails to block something
that it would have preferred to block, it is an error called a false negative; when the censor
accidentally blocks something that it would have preferred to allow, it is a false positive.
Techniques for avoiding detection are often called network protocol “obfuscation,” and the
term is apt. It reflects not an attitude of security through obscurity; but rather a recognition
that avoiding detection is about making the censor’s classification problem more difficult,
and therefore more costly. Forcing the censor to trade false positives for false negatives is the
core of all circumvention that is based on avoiding detection. The costs of misclassifications
cannot be understood in absolute terms: they only have meaning relative to a given censor
and its specific resources and motivations. Understanding the relative importance the censor
assigns to classification errors—knowing what it prefers to allow and to block—is helpful.
Through good modeling, we can make the tradeoffs less favorable for the censor and more
favorable for the circumventor.

The censor may base its detection decision on whatever criteria it find practical. I like to
divide detection techniques into two classes: detection by content and detection by address.
Detection by content is based on the content or topic of the message: keyword filtering and
protocol identification fall into this class. Detection by address is based on the sender or

6
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recipient of the message: IP address blacklists and DNS response tampering fall into this
class. An “address” may be any kind of identifier: an IP address, a domain name, an email
address. Of these two classes, my experience is that detection by address is harder to defeat.
Of course, there is no clear separation between what is content and what is an address. The
layered nature of network protocols means that an address at one layer is content at another.
Nevertheless, I find it useful to think about detection techniques in these terms.

The censor may block the address of the destination, preventing direct access. Any
communication between the client and the destination must therefore be indirect. The
intermediary between client and destination is called a proxy, and it must do two things:
provide an unblocked address for the client to contact; and somehow mask the contents of
the channel and the eventual destination address. Throughout this thesis, I will use the word
“proxy” with an abstract meaning of “one that acts of behalf of another.” A proxy need not
be what is typically understood by the term “proxy server,” a single host accepting and
forwarding connections. A VPN (virtual private network) is also a kind of proxy, as is the
Tor network, as may be a specially configured router. In Chapter 7 we will see a network of
cloud servers acting as a proxy. In Chapter 8 the proxy will be a pool of temporary instances
of some JavaScript code.

Proxies solve the first-order effects of censorship (detection by content and address), but
they induce a second-order effect: the censor must now seek out and block proxies, in addition
to the contents and addresses that are its primary targets. This is where circumvention
research really begins: not with access to the destination per se, but access to a proxy,
which transitively gives access to the destination. The censor attempts deals with detecting
and blocking communication with proxies using the same tools it would for any other
communication. Just as it may look for forbidden keywords in text, it may look for distinctive
features of proxy protocols; just as it may block politically sensitive web sites, it may block
the addresses of any proxies it can discover. The challenge for the circumventor is to use
proxy addresses and proxy protocols that are difficult for the censor to detect or block.

The way of organizing censorship and circumvention techniques that I have presented is
not the only way. Köpsell and Hillig divide detection into “content” and “circumstances” [68,
§ 4]; their circumstances include addresses and also what I would consider more content-like:
timing, data transfer characteristics, and protocols. Philipp Winter divides circumvention
into three problems: bootstrapping, endpoint blocking, and traffic obfuscation [107, § 1.1].
Endpoint blocking and traffic obfuscation correspond to my detection by address and detec-
tion by content; bootstrapping is the challenge of getting a copy of circumvention software
and discovering initial proxy addresses. I tend to fold bootstrapping in with address-based
detection, though for details on one aspect of the problem, that of discovering bridge addresses,
see Section 2.3. Khattak, Elahi, et al., in their 2016 survey and systematization of circum-
vention systems, break detection into four aspects: destinations, content, flow properties, and
protocol semantics [66, § 2.4]. I think of their “content,” “flow properties,” and “protocol
semantics” as all fitting under the heading of content. Tschantz2016a et al. identify “setup”
and “usage” [100, § V], and Khattak, Elahi et al. identify “communication establishment” and
“conversation” [66, § 3.1], as targets of obfuscation; these mostly correspond to address and
content. What I call “detection” and “blocking,” Khattak, Elahi, et al. call “fingerprinting”
and “direct censorship” [66, § 2.3], and Tschantz et al. call “detection” and “action” [100,
§ II].
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2.1 Collateral damage

What’s to prevent the censor from shutting down all connectivity within its network, trivially
preventing the client from reaching the destination? The answer is that the censor derives
some kind of benefit from allowing network connectivity, other than that which it tries to
censor. Or to put it another way: the censor incurs a cost whenever it commits a false
positive (also called overblocking: inadvertently blocking something it would have preferred
to allow). Because it wants to block some things and allow others, the censor is forced to
run as a classifier. In order to avoid harm to itself, the censor permits some measure of
circumvention traffic.

The cost of false positives is of so central importance to circumvention that researchers
have a special term for it: collateral damage. The term is a bit unfortunate, evoking as it
does negative connotations from other contexts. It helps to focus more on the “collateral”
than the “damage”: collateral damage is any cost experienced by the censor as a result
of incidental blocking done in the course of censorship. It must trade its desire to block
forbidden communications against its desire to avoid harm to itself, balance underblocking
with overblocking. Ideally, we force the censor into a dilemma: unable to distinguish between
circumvention and other traffic, it must choose either to allow circumvention along with
everything else, or else block everything and suffer maximum collateral damage. It is not
necessary to fully reach this ideal before circumvention becomes possible. Better obfuscation
drives up the censor’s error rate and therefore the cost of any blocking. Ideally, the potential
“damage” is never realized, because the censor sees the cost as being too great.

Collateral damage, being an abstract “cost,” can take many forms. It may come in
the form of civil discontent, as people try to access web sites and get annoyed with the
government when unable to do so. It may be reduced productivity, as workers are unable to
access resources they need to to their job. This is the usual explanation for why the Great
Firewall of China has never blocked GitHub for long, despite GitHub’s hosting and distribution when

and
how
long?

when
and
how
long?

of circumvention software: GitHub is so deeply integrated into software development, that
programmers are not able to work when it is blocked.

Collateral damage, as with other aspects of censorship, cannot be understood in isolation,
but only in relation to a particular censor. Suppose that blocking one web site results in
the collateral blocking of a hundred more. Is that a large amount of collateral damage? It
depends. Are those other sites likely to be visited by clients in the censor’s network? Are
they in the local language? Do professionals and officials rely on them to get their job done?
Is someone in the censorship bureau likely to get fired as a result of their blocking? If the
answers to these question is yes, then yes, the collateral damage is likely to be high. But if
not, then the censor could take or leave those hundred sites—it doesn’t matter.

Censors may take actions to reduce collateral damage while still blocking most of what
they intend to. (Another way to think of it is: reducing false positives without reducing false
negatives.) For example, it has been repeatedly documented—by Clayton et al. [15], Winter
and Lindskog [108], and Fifield and Tsai [50], for example—that the Great Firewall prefers to
block individual ports (or a small range of ports), rather than blocking an entire IP address,
probably in a bid to reduce collateral damage. In Chapter 7 we will see a system whose
blocking resistance is based on widely used web services—the argument is that to block the
circumvention system, the censor would have to block the entire web service. However this
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argument requires that the circumvention system’s use of the web service be indistinguishable
from other uses—otherwise the censor may selectively block only the connections used for
circumvention. Local circumstances may serve to reduce collateral damage: for example if a
domestic replacement exists for a foreign service, the censor may block the foreign service
more easily.

The censor’s reluctance to cause collateral damage is what makes circumvention possible
in general. (There are some exceptions, discussed in the next section, where the censor can
detect but is not capable of blocking.) To deploying a circumvention system is to make
a bet: that the censor cannot field a classifier that adequately distinguishes traffic of the
circumvention system from other traffic which, if blocked, would result in collateral damage.
Even steganographic circumvention channels that mimic some other protocol ultimately
derive their blocking resistance from a collateral damage argument: that the censor feels that
to block that other protocol would result in too much damage to be worth it. For example, a
circumvention protocol that imitates HTTP can be blocked by blocking HTTP—the question
then is whether the censor can afford to block HTTP. And that’s in the best case—assuming
the circumvention protocol has no “tell” that enables the censor easily to distinguish it from
the cover protocol it is trying to imitate. Indistinguishability is a necessary but not sufficient
condition for blocking resistance: that which you are trying to be indistinguishable from
must also have sufficient collateral damage. It’s of no use to have a perfect steganographic of
a protocol that the censor doesn’t mind blocking.

In my opinion, collateral damage provides a more productive way to think about the
behavior of censors than do alternatives. Is is able to take into account different censors’
differing resources and motivations, and so is more useful for generic modeling. Moreover, it
gets to the heart of what makes traffic resistant to blocking. There have been many other
attempts at defining resistance to blocking. Pfitzmann and Hansen [88], in a work that aimed
to define various terms in anonymity and censorship resistance, gave the three notions of
“undetectability,” “unobservability,” and “unblockability.”Narain et al. [81] characterized the define

these
define
theseessential component as being “deniability,” meaning that a user could plausibly claim to

have been doing something other than circumventing when confronted with a log of their
network activity. Zhou et al. [116] used the term “entanglement,” which inspired a lot of
my own thinking. What they call entanglement I think of as indistinguishability, and keep
in mind that that which you are trying to be indistinguishable with has to be something
valued by the censor. Collateral damage provides a way to make statements about censorship
resistance quantifiable, at least in a loose sense. Rather than saying, “the censor cannot block
X,” or even, “the censor is unwilling to block X,” it is better to say “in order to block X,
the censor would have to do Y ,” where Y is some action bearing a cost for the censor. A
statement like this makes it clear that some censors may be able to afford the cost of doing Y
and others may not; there is no “unblockable” in absolute terms. Now, actually quantifying
the value of Y is a task in itself, by no means a trivial one. The state of research in this
field is still far from being able to assign actual numbers (e.g. in terms of dollars) to costs
as perceived by censors. If a circumvention system becomes blocked, it may simply mean
that the circumventor overestimated the collateral damage or underestimated the censor’s
capacity to absorb it.

We have observed that the risk of collateral damage is what prevents the censor from shut-
ting down the network completely—and yet, censors do occasionally do complete shutdowns.
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In fact the practice is increasing; reported of shutdowns in 2016. This does not necessarily someonesomeone

some
num-
ber

some
num-
ber

contradict the theory of collateral damage. Shutdowns are indeed costly—estimated that

someonesomeone

shutdowns cost . It is just that, in some cases, the calculus works out that the harm caused

some
amount
some
amount

by a shutdown does not outweigh (in the censor’s mind) the benefits of blocking access. As
always, the outcome depends on the specific censor: censors that don’t benefit as much from
the Internet don’t have as much to lose by blocking it. The fact that shutdowns or “curfews”
are limited in duration shows that even censors that can afford to do a total shutdown cannot
afford to do it forever.

Complicating everything is the fact that censors are not bound to act rationally. Like any
other large, complex entity, a censor is prone to err, to act impetuously, to make decisions
that cause more harm than good. One might even say that the very decision to censor is
exactly such an irrational decision, at the greater societal level.

2.2 Spheres of influence and visibility

• Deniable Liaisons [81]

It is usual to assume (conservatively) that whatever the censor can detect, it also can
block. That is, to ignore blocking per se and focus only on the detection problem. We know
from experience, however, that there are cases in practice where a censor’s reach exceeds
its grasp: where it is able to detect circumvention but not block it, Sometimes it is useful
to consider this possibility when modeling. Khattak, Elahi, et al. [66] express it nicely by
subdividing the censor’s network into a sphere of influence within which the censor has active
control, and a potentially larger sphere of visibility within which the censor may only observe,
not act.

A landmark example of this kind of thinking is the 2006 research on “Ignoring the
Great Firewall of China” by Clayton et al. [15]. They found that the firewall would block
connections by injecting phony TCP RST packets (which cause the connection to be torn
down) or SYN/ACK packets (which cause the client to become unsynchronized), and that
simply ignoring the anomalous packets rendered blocking ineffective. (Why then, did the
censor choose to inject its own packets, rather than drop the client’s or server’s? The answer
is probably that injection is technically easier to achieve, highlighting a limit on the censor’s
power.) One can think of this ignoring as shrinking the censor’s sphere of influence: it
can still technically act within this sphere, but not in a way that actually effects blocking.
Additionally, intensive measurements revealed many failures to block, and blocking rates
that changed over time, suggesting that even when the firewall intends a general policy of
blocking, it does not always succeed.

Another fascinating example of “look, but don’t touch” communication is the “filecasting”
technique used by Toosheh [83], a file distribution service based on satellite TV broadcasts.
Clients tune their satellite receivers to a certain channel and record the broadcast to a USB
flash drive. Later, they run a program on the recording that decodes the information and
extracts a bundle of files. The system is unidirectional: clients can only receive the files
that the Toosheh operators choose to provide. The censor can easily see that Toosheh is in
use—it’s a broadcast, after all—but cannot identify users, or block the signal in any way
short of continuous radio jamming or tearing down satellite dishes.
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There are parallels between the study of Internet censorship and that of network intrusion
detection. One is that a censor’s detector may be implemented as a network intrusion
detection system or monitor, a device “on the side” of a communication link that receives
a copy of the packets that flow over the link, but that, unlike a router, is not responsible
for forwarding the packets onward. Another parallel is that censors are susceptible to the
same kinds of evasion and obfuscation attacks that affect network monitors more generally.
In 1998, Ptacek and Newsham [90] and Paxson [86, § 5.3] outlined various attacks against
network intrusion detection systems—such as manipulating the IP time-to-live field or sending
overlapping IP fragments—that cause a monitor either to accept what the receiver will reject,
or reject what the receiver will accept. A basic problem is that a monitor’s position in the
middle of the network does not able it to predict exactly how each packet will be interpreted
by the endpoints. Cronin et al. [18] posit that the monitor’s conflicting goals of of sensitivity
(recording all that is relevant) and selectivity (recording only what is relevant) give rise to an
unavoidable “eavesdropper’s dilemma.”

Monitor evasion techniques can be used to reduce a censor’s sphere of visibility—eliminating
certain traffic features from its consideration. Crandall et al. [17] in 2007 suggested using IP
fragmentation to prevent keyword matching (splitting keywords across fragments). In 2008
and 2009, Park and Crandall [85] explicitly characterized the Great Firewall as a network
intrusion detection system and found that a lack of TCP reassembly allowed evading keyword
matching. Winter and Lindskog [108] found that the Great Firewall still did not do TCP
segment reassembly in 2012, in the course of studying the firewall’s proxy-discovery probes.
(Such probes are the subject of Chapter 5.) They released a tool, brdgrd [106], that by
manipulating the TCP window size, prevented the censor’s scanners from receiving a full
response in the first packet, thereby foiling active probing. They reported that the tool
stopped working in 2013. Anderson [5] gave technical information on the implementation of
the Great Firewall as it existed in 2012, and observed that it is implemented as an “on-the-side”
monitor. Khattak et al. [67] applied a wide array of evasion experiments to the Great Firewall
in 2013, identifying classes of working evasions and estimating the cost to counteract them.

2.3 Bridge distribution

here be dragonŊ

Resistance to blocking by address; obfuscated protocol then prevents blocking by content.

• Untrusted Messenger Discovery [30]

• Kaleidoscope [97, 96]

• Mahdian [74]

• Proximax [77]

• rBridge [104]

• Salmon [24]
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• Hyphae [72]

• Enemy at the Gateways [82]

In the usual threat models, though, the censor is assumed to be quite powerful, capable of
dropping, replaying, and forging arbitrary packets, of . . . there is usually a concession to the
censor needing to operate at line rate, or of needing to protect important communications
(which is an argument about collateral damage), which provides the weakness that the
circumvention system in question exploits. we already know that such a strong censor model
is a fiction for national censors, for example the GFW acts like an “on-path” network monitor
that can inject, but not drop, packets. the very strong threat model may be appropriate for
e.g. whitelisting corporate or university censors

The mass censors we know are weak if you are not being specifically targeted Pick a
proxy server used by you and no one else Do any silly thing for obfuscation, it will work,
because who cares There are true challenges in making it scale to large numbers of users
and an adaptive adversary The cat-and-mouse game is not inevitable—don’t think of it as
“circumvention works until it gets popular, then it gets blocked” rather as “you get a free ride
until you get popular, after that your thing has to actually work.”

Generic rendezvous: BridgeDB and others
Traffic transformation look like nothing and look like something Psiphon anecdote about

prepending HTTP to obfssh
depending on physical aspects of networks Denali
infrastructure-based, decoy routing and domain fronting
pluggable transports
Tying questions of ethics to questions about censor behavior, motivation: [111] (also

mentions “organisational requirements, administrative burden”) [61] [16] Censors may come
to conclusions different than what we expect (have a clue or not).

2.4 Early censorship and circumvention

here be dragonŊ

Early censors (around the time of the late 1990s and early 2000s) would be considered
weak by today’s standards. They were mostly easy to circumvent by simple countermeasures,
such as tweaking a protocol or using an alternative DNS server. But as censors become more
capable, our models have to evolve to match. Indeed, my interest in threat modeling might
be described as a sort of meta-modeling, learning about how threat models change over time
and according to circumstances.

[15] [14] Thailand (1996, first?)
[57] [21] first report on DNS hijacking? Freedom House Freedom on the Net
anonymizer, dialectizer sites HTML rewriting proxies (BIFSO article predicting failure of

censorship, leading to CGIProxy?) [79]
changing dns servers
relationship of censorship to network monitoring/NIDS risks of flow blocking (Telex/TapDance [53])
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The early development was an arms race or cat-and-mouse game, but there is no reason
to assume it will always be so.



Chapter 3

Censor capabilities

here be dragonŊ

This section surveys past measurement studies in order to draw specific and general
conclusions about censor models. The objects of this survey are based on those in the
evaluation study done by me and others in 2016 [100, §IV.A].

The main tool we have to build relevant threat models is the natural study of censors.
The study of censors is complicated by difficulty of access: censors are not forthcoming about
their methods. Researchers are obligated to treat censors as a black box, drawing inferences
about their internal workings from their externally visible characteristics. The easiest thing
to learn is the censor’s what—the destinations that are blocked. Somewhat harder is the
investigation into where and how, the specific technical mechanisms used to effect censorship
and where they are deployed in the network. What we are really interested in, and what is
most difficult to infer, is the why, or the motivations and goals that underlie a censorship
apparatus. We posit that censors, far from being unitary entities of focused purpose, are
rather complex organizations of people and machines, with conflicting purposes and economic
rationales, subject to resource limitations. The why gets to the heart of why circumvention is
even possible: a censoring firewall’s duty is not merely to block, but to discriminate between
what is blocked and what is allowed, in support of some other goal. Circumvention systems
confuse this discrimination in order to sneak traffic through the firewall.

Past measurement studies have mostly been short-lived, one-off affairs, focusing deeply
on one region of the world for at most a few months. Thus published knowledge about
censors’ capabilities consists mostly of a series of “spot checks” with blank areas between
them. There have been a few designs proposed to do ongoing measurements of censorship,
such as ConceptDoppler [17] in 2007 and CensMon [93] in 2011, but these have not lasted
long in practice, and for the most part there is an unfortunate lack of longitudinal and
cross-country measurements. Just as in circumvention, in censorship measurement a host
of difficulties arise when running a scalable system for a long time, that do not arise when
doing a one-time operation. The situation is thankfully becoming better, with the increasing
data collection capabilities of measurement systems like OONI [52].

From the survey of measurement studies we may draw some general conclusions. Censors
change over time, sometimes for unknown reasons, and not always in the direction of greater

14
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restrictions. Censorship conditions differ greatly across countries, not only in subject but in
mechanism and motivation. The “Great Firewall” of China has long been the world’s most
sophisticated censor, but it is in many ways an outlier, and not representative of censors
elsewhere. Most censors are capable of manipulating DNS responses, IP address blocking,
and keyword filtering at some level.

A reasonable set of capabilities, therefore, that a contemporary censor may be assumed
to have is:

• blocking of specific IP addresses and ports,

• control of default DNS servers,

• injection of false DNS responses,

• injection of TCP RSTs,

• throttling of connection,

• keyword filtering

• protocol identification, and

• temporary total shutdown of Internet connections

Not all censors will be able to do all of these. As the amount of traffic to be handled increases,
in-path attacks such as throttling become relatively more expensive. Whether a particular
censoring act even makes sense will depend on a local cost–benefit analysis. Some censors
may be able to tolerate a brief total shutdown, while for others the importance of the Internet
is too great for such a crude measure.

Past measurement studies have done a good job at determining the technical aspects of
censorship, for example where in the network censorship routers are located. There is not so
much known about the inner workings of censors. The anonymous paper on China’s DNS
censorship [7] probably comes closest to the kind of insight I am talking about, with its clever
use of side channels to infer operational characteristics of censor boxes. For example, their
research found that each DNS injection node runs a few hundred independent processes. This
is indirect information, to be sure, but it hints at the level of resources the censor is able to
bring to bear. I am interested in even deeper information, for example how censors make the
decision on what to block, and what bureaucratic and other considerations might cause them
to work less than optimally.

One of the earliest technical studies of censorship occurred not in some illiberal place,
but in the German state of North Rhein-Westphalia. In 2003, Dornseif [22] tested ISPs’
implementation of a controversial legal order to block two Nazi web sites. While there were
many possible ways to implement the block, none were trivial to implement, nor free of
overblocking side effects. The most popular implementation used DNS tampering, simply
returning (or injecting) false responses to DNS requests for the domain names of the blocked
sites. An in-depth survey of DNS tampering found a variety of implementations, some
blocking more and some blocking less than required by the order.
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Clayton [14] in 2006 studied a “hybrid” blocking system, called “CleanFeed” by the British
ISP BT, that aimed for a better balance of costs and benefits: a “fast path” IP address and
port matcher acted as a prefilter for the “slow path,” a full HTTP proxy. The system, in use
since 2004, was designed to block access to any of a secret list of pedophile web sites compiled
by a third party. The author identifies ways to circumvent or attack such a system: use a
proxy, use source routing to evade the blocking router, obfuscate requested URLs, use an
alternate IP address or port, return false DNS results to put third parties on the “bad” list.
They demonstrate that the two-level nature of the blocking system unintentionally makes it
an oracle that can reveal the IP addresses of sites in the secret blocking list.

[20]
For a decade, the OpenNet Initiative produced reports on Internet filtering and surveillance

in dozens of countries, until it ceased operation in 2014. For example, their 2005 report
on Internet filtering in China [84] studied the problem from many perspectives, political,
technical, and legal. They translated and interpreted Chinese laws relating to the Internet,
which provide strong legal justifications for filtering. The laws regulate both Internet users
and service providers, including cybercafes. They prohibit the transfer of information that is
indecent, subversive, false, criminal, or that reveals state secrets. The OpenNet Initiative
tested the extent of filtering of web sites, search engines, blogs, and email. They found
a number of blocked web sites, some related to news and politics, and some on sensitive
subjects such as Tibet and Taiwan. In some cases, entire sites (domains) were blocked; in
others, only specific pages within a larger site were blocked. In a small number of cases, sites
were accessible by IP address but not by domain name. There were cases of overblocking:
apparently inadvertently blocked sites that simply shared an IP address or URL keyword
with an intentionally blocked site. On seeing a prohibited keyword, the firewall blocked
connections by injecting a TCP RST packet to tear down the connection, then injecting a
zero-sized TCP window, which would prevent any communication with the same server for a
short time. Using technical tricks, the authors inferred that Chinese search engines index
blocked sites (perhaps having a special exemption from the general firewall policy), but do
not return them in search results. The firewall blocks access searches for certain keywords on
Google as well as the Google Cache—but the latter could be worked around by tweaking the
format of the URL. Censorship of blogs comprised keyword blocking by domestic blogging
services, and blocking of external domains such as blogspot.com. Email filtering is done by
the email providers themselves, not by an independent network firewall. Email providers seem
to implement their filtering rules independently and inconsistently: messages were blocked by
some providers and not others.

In 2006, Clayton, Murdoch, and Watson [15] further studied the technical aspects of the
Great Firewall of China. They relied on an observation that the firewall was symmetric,
treating incoming and outgoing traffic equally. By sending web requests from outside the
firewall to a web server inside, they could provoke the same blocking behavior that someone on
the inside would see. They sent HTTP requests containing forbidden keywords (e.g., “falun”)
caused the firewall to inject RST packets towards both the client and server. Simply ignoring
RST packets (on both ends) rendered the blocking mostly ineffective. The injected packets
had inconsistent TTLs and other anomalies that enabled their identification. Rudimentary
countermeasures such as splitting keywords across packets were also effective in avoiding
blocking. The authors of this paper bring up an important point that would become a major
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theme of future censorship modeling: censors are forced to trade blocking effectiveness against
performance. In order to cope with high load at a reasonable costs, censors may choose
the architecture of a network monitor or intrusion detection system, one that can passively
monitor and inject packets, but cannot delay or drop them.

A nearly contemporary study by Wolfgarten [109] reproduced many of the results of
Clayton, Murdoch, and Watson. Using a rented server in China, the author found cases
of DNS tampering, search engine filtering, and RST injection caused by keyword sniffing.
Not much later, in 2007, Lowe, Winters, and Marcus [73] did detailed experiments on DNS
tampering in China. They tested about 1,600 recursive DNS servers in China against a list
of about 950 likely-censored domains. For about 400 domains, responses came back with
bogus IP addresses, chosen from a set of about 20 distinct IP addresses. Eight of the bogus
addresses were used more than the others: a whois lookup placed them in Australia, Canada,
China, Hong Kong, and the U.S. By manipulating TTLs, the authors found that the false
responses were injected by an intermediate router: the authentic response would be received
as well, only later. A more comprehensive survey [7] of DNS tampering and injection occurred
in 2014, giving remarkable insight into the internal structure of the censorship machines.
DNS injection happens only at border routers. IP ID and TTL analysis show that each node
is a cluster of several hundred processes that collectively inject censored responses. They
found 174 bogus IP addresses, more than previously documented. They extracted a blacklist
of about 15,000 keywords.

[110]
The Great Firewall, because of its unusual sophistication, has been an enduring object

of study. Part of what makes it interesting is its many blocking modalities, both active
and passive, proactive and reactive. The ConceptDoppler project of Crandall et al. [17]
measured keyword filtering by the Great Firewall and showed how to discover new keywords
automatically by latent semantic analysis, using the Chinese-language Wikipedia as a corpus.
They found limited statefulness in the firewall: sending a naked HTTP request without a
preceding SYN resulted in no blocking. In 2008 and 2009, Park and Crandall [85] further
tested keyword filtering of HTTP responses. Injecting RST packets into responses is more
difficult than doing the same to requests, because of the greater uncertainty in predicting
TCP sequence numbers once a session is well underway. In fact, RST injection into responses
was hit or miss, succeeding only 51% of the time, with some, apparently diurnal, variation.
They also found inconsistencies in the statefulness of the firewall. Two of ten injection
servers would react to a naked HTTP request; that it, one sent outside of an established
TCP connection. The remaining eight of ten required an established TCP connection. Xu
et al. [113] continued the theme of keyword filtering in 2011, with the goal of discovering
where filters are located at the IP and AS levels. Most filtering is done at border networks
(autonomous systems with at least one non-Chinese peer). In their measurements, the firewall
was fully stateful: blocking was never triggered by an HTTP request outside an established
TCP connection. Much filtering occurs at smaller regional providers, rather than on the
network backbone.

Winter and Lindskog [108] did a formal investigation into active probing, a reported
capability of the Great Firewall since around October 2011. They focused on the firewall’s
probing of Tor relays. Using private Tor relays in Singapore, Sweden, and Russia, they
provoked active probes by simulating Tor connections, collecting 3295 firewall scans over 17
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days. Over half the scan came from a single IP address in China; the remainder seemingly
came from ISP pools. Active probing is initiated every 15 minutes and each burst lasts for
about 10 minutes.

Sfakianakis et al. [93] built CensMon, a system for testing web censorship using PlanetLab
nodes as distributed measurement points. They ran the system for for 14 days in 2011 across
33 countries, testing about 5,000 unique URLs. They found 193 blocked domain–country
pairs, 176 of them in China. CensMon reports the mechanism of blocking. Across all nodes,
it was 18.2% DNS tampering, 33.3% IP address blocking, and 48.5% HTTP keyword filtering.
The system was not run on a continuing basis. Verkamp and Gupta [102] did a separate study
in 11 countries, using a combination of PlanetLab nodes and the computers of volunteers.
Censorship techniques vary across countries; for example, some show overt block pages and
others do not. China was the only stateful censor of the 11.

PlanetLab is a system that was not originally designed for censorship measurement,
that was later adapted for that purpose. Another recent example is RIPE Atlas, a globally
distributed Internet measurement network consisting of physical probes hosted by volunteers,
Atlas allows 4 types of measurements: ping, traceroute, DNS resolution, and X.509 certificate
fetching. Anderson et al. [4] used Atlas to examine two case studies of censorship: Turkey’s
ban on social media sites in March 2014 and Russia’s blocking of certain LiveJournal blogs
in March 2014. In Turkey, they found at least six shifts in policy during two weeks of site
blocking. They observed an escalation in blocking in Turkey: the authorities first poisoned
DNS for twitter.com, then blocked the IP addresses of the Google public DNS servers, then
finally blocked Twitter’s IP addresses directly. In Russia, they found ten unique bogus IP
addresses used to poison DNS.

Most research on censors has focused on the blocking of specific web sites and HTTP
keywords. A few studies have looked at less discriminating forms of censorship: outright
shutdowns and throttling without fully blocking. Dainotti et al. [19] reported on the total
Internet shutdowns that took place in Egypt and Libya in the early months of 2011. They used
multiple measurements to document the outages as they occurred: BGP data, a large network
telescope, and active traceroutes. During outages, there was a drop in scanning traffic (mainly
from the Conficker botnet) to their telescope. By comparing these different measurements,
they showed that the shutdown in Libya was accomplished in more that one way, both by
altering network routes and by firewalls dropping packets. Anderson [3] documented network
throttling in Iran, which occurred over two major periods between 2011 and 2012. Throttling
degrades network access without totally blocking it, and is harder to detect than blocking.
The author argues that a hallmark of throttling is a decrease in network throughput without
an accompanying increase in latency and packet loss, distinguishing throttling from ordinary
network congestion. Academic institutions were affected by throttling, but less so than
other networks. Aryan et al. [8] tested censorship in Iran during the two months before
the June 2013 presidential election. They found multiple blocking methods: HTTP request
keyword filtering, DNS tampering, and throttling. The most usual method was HTTP request
filtering. DNS tampering (directing to a blackhole IP address) affected only three domains:
facebook.com, youtube.com, and plus.google.com. SSH connections were throttled down to
about 15% of the link capacity, while randomized protocols were throttled almost down to
zero 60 seconds into a connection’s lifetime. Throttling seemed to be achieved by dropping
packets, thereby forcing TCP’s usual recovery.
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Khattak et al. [67] evaluated the Great Firewall from the perspective that it works like
an intrusion detection system or network monitor, and applied existing technique for evading
a monitor the the problem of circumvention. They looked particularly for ways to evade
detection that are expensive for the censor to remedy. They found that the firewall is stateful,
but only in the client-to-server direction. The firewall is vulnerable to a variety of TCP- and
HTTP-based evasion techniques, such as overlapping fragments, TTL-limited packets, and
URL encodings.

Nabi [80] investigated web censorship in Pakistan in 2013, using a publicly known list of
banned web sites. They tested on 5 different networks in Pakistan. Over half of the sites on
the list were blocked by DNS tampering; less than 2% were additionally blocked by HTTP
filtering (an injected redirection before April 2013, or a static block page after that). They
conducted a small survey to find the most commonly used circumvention methods in Pakistan.
The most used method was public VPNs, at 45% of respondents.

Ensafi et al. [29] employed an intriguing technique to measure censorship from many
locations in China—a “hybrid idle scan.” The hybrid idle scan allows one to test TCP
connectivity between two Internet hosts, without needing to control either one. They
selected roughly uniformly geographically distributed sites in China from which to measure
connectivity to Tor relays, Tor directory authorities, and the web servers of popular Chinese
web sites. There were frequent failures of the firewall resulting in temporary connectivity,
typically lasting in bursts of hours.

In 2015, Marczak et al. [75] investigated an innovation in the capabilities of the border
routers of China, an attack tool dubbed the “Great Cannon.” The cannon was responsible
for denial-of-service attacks on Amazon CloudFront and GitHub. The unwitting participants
in the attack were web browsers located outside of China, who began their attack when the
cannon injected malicious JavaScript into certain HTTP responses originating in China. The
new attack tool is noteworthy because it demonstrated previously unseen in-path behavior,
such as packet dropping.

Not every censor is China, with its sophisticated homegrown firewall. A major aspect
of censor modeling is that many censors use commercial firewall hardware. A case in point
is the analysis by Chaabane et al. [12] of 600 GB of leaked logs from Blue Coat proxies
used for censorship in Syria. The logs cover 9 days in July and August 2011, and contain
an entry for every HTTP request. The authors of the study found evidence of IP address
blocking, domain name blocking, and HTTP request keyword blocking, and also of users
circumventing censorship by downloading circumvention software or using the Google cache.
All subdomains of .il, the top-level domain for Israel, were blocked, as were many IP address
ranges in Israel. Blocked URL keywords included “proxy”, “hotspotshield”, “israel”, and
“ultrasurf” (resulting in collateral damage to the Google Toolbar and Facebook Like button
because they have “proxy” in HTTP requests). Tor was only lightly censored—only one of
several proxies blocked it, and only sporadically.

[56] and other OONI.
Analyzing Internet Censorship in Pakistan[1]
informing our threat models
censors’ capabilities—presumed and actual e.g. ip blocking (reaction time?) active probing
Internet curfews (Gabon), limited time of shutdowns shows sensitivity to collateral damage.
commercial firewalls (Citizen Lab) and bespoke systems
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3.1 Open problems in censor modeling

here be dragonŊ

Ongoing, longitudinal measurement of censorship remains a challenge. Studies tend to be
limited to one geographical region and one period of time. Dedicated measurement platforms
such as OONI [52] and ICLab [60] are starting to make a dent in this problem, by providing
regular measurements from many locations worldwide. Even with these, there are challenges
around getting probes into challenging locations and keeping them running.

Apart from a few reports of, for example, per annum spending on filtering hardware, not
much is known about how much censorship costs to implement. In general, contemporary
threat models tend to ignore resource limitations on the part of the censor.
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Circumvention systems

here be dragonŊ

Evaluating the quality of circumvention systems is tricky, whether they are only proposed
or actually deployed. The problem of evaluation is directly tied to threat modeling. Cir-
cumvention is judged according to how well it works under a given model; the evaluation is
therefore meaningful only as far as the threat model reflects reality. Without grounding in
reality, researchers risk running an imaginary arms race that evolves independently of the
real one.

This kind of work is rather different than the direct evaluations of circumvention tools
that have happened before, for example those done by the Berkman Center [91] and Freedom
House [11] in 2011. Rather than testing tools against censors, we evaluated how closely
calibrated designers’ own models were to models derived from actual observations of censors.

This research was partly born out of frustration with some typical assumptions made in
academic research on circumvention, which we felt placed undue emphasis on steganography
and obfuscation of traffic streams, while not paying enough attention to the perhaps more
important problems of bridge distribution and rendezvous. Indeed, in our survey of over 50
circumvention tools, we found that academic designs tended to be concerned with detection
in the steady state after a connection is established, while actually deployed systems cared
more about how the connection is established initially. We wanted to help bridge the gap by
laying out a research agenda to align the incentives of researchers with those of circumventors.
This work was built on extensive surveys of circumvention tools, measurement studies, and
known censorship events against Tor.

This work on evaluation appeared in the 2016 research paper “Towards Grounding
Censorship Circumvention in Empiricism” [100], which I coauthored with Michael Carl
Tschantz, Sadia Afroz, and Vern Paxson.

Do they check the right things?
what’s used and what’s not used
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4.1 Summary of circumvention systems

here be dragonŊ

Many circumvention systems have been proposed or deployed. My survey with Tschantz,
Afroz, and Paxson [100] covered 54 systems; a later one by Khattak, Elahi, et al. [66]
covered 73. The systems mentioned in this section are not exhaustive but are chosen to be
representative.

Against content blocking, circumvention systems generally take one of two strategies. The
first is steganography, trying to blend in with some other protocol that the censor does not
already block. The second is polymorphism, trying to look unlike anything the censor already
blocks. Which one is more appropriate depends on the censor model. Against a censor
that whitelists a small number of protocols and prohibits everything else, steganography
is appropriate. Against a censor that blacklists a small number of protocols or keywords,
polymorphism is appropriate. (The common understanding is that real-world censors tend to
be of the blacklisting type, because whitelisting causes too much inherent collateral damage—
it is too hard to enumerate all the protocols users might want to use. The exception is in
exceptionally constrained networks such as that of Cuba, that do not derive as much benefit
from Internet connectivity anyway, and so can afford the collateral damage.)

FTE [27] (for “format-transforming encryption”) is a quintessential example of a stegano-
graphic protocol. Given a specification of a regular expression, FTE transforms traffic
to match it. The purpose is to force false-negative misclassification by firewalls. Stego-
Torus [105] uses custom encoders to make traffic resemble common HTTP file types, such as
PDF, JavaScript, and Flash. FreeWave [59] modulates a data stream into an acoustic signal
and transmits it over VoIP.

The history of the polymorphic, randomized protocols known as obfs2 [63], obfs3 [64],
and obfs4 [115] is interesting because it tells a story of circumventors changing behavior
in the face of changing censor models. All of these protocols aim to encode traffic as a
uniformly random sequence of bytes, leaving no plaintext features for a censor to detect. The
obfs2 protocol used a fairly naive handshake protocol that appeared random only to a first
approximation. It would have bypassed the keyword- or pattern-based censors of its era, but
it was detectable passively, using a custom detector. obfs3 improved on obfs2 by adding a
clever Diffie–Hellman key exchange, specially modified to also appear random to a censor.
obfs3 was not trivially detectable passively, but could be attacked by an active man in the
middle, and was vulnerable to active probing. obfs4 added an out-of-band secret that foils
both man-in-the-middle and active probing attacks.

“Decoy routing” systems put proxies at the middle of network paths. A special cooperating
router lies between the client and the apparent destination of a TCP stream. The router
looks for a special cryptographic “tag” that is undetectable to the censor. On finding a
tag, the router begins to redirect the client’s traffic away from its declared destination and
towards a censored destination instead. There are several decoy routing proposals, each with
advantages and disadvantages; those that began the line of research are called Curveball [65],
Telex [112], and Cirripede [58].
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Active probing
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In 2015 I helped study the phenomenon of “active probing” by the Great Firewall to
discover hidden proxy servers. In active probing, the censor pretends to be a legitimate
client of the proxy server: it connects to suspected servers to check whether they speak a
proxy protocol. If they do, then they are blocked. Active probing makes good sense for the
censor: it has high precision (low risk of collateral damage), and is efficient because it can
be run as a batch job apart from a firewall’s real-time responsibilities. The Great Firewall
can dynamically active-probe and block the servers of a number of common circumvention
protocols, such as Tor, obfs2, and obfs3, within only seconds or minutes of a connection
by a legitimate client. The need to resist active probing has informed the design of recent
circumvention systems, including meek.

My primary contribution to the active probing project was the analysis of server logs to
uncover the history of about two and a half years of active probing. My work revealed the
wide distribution of active probing source addresses (there were over 14,000 of them). It also
discovered previously undocumented types of probes, for the protocol used by VPN Gate
and for a simple form of domain-fronted proxy. I helped analyze the network “fingerprints”
of active probes and how they might be distinguished from connections by legitimate clients.

The work on active probing appeared in the 2015 research paper “Examining How the
Great Firewall Discovers Hidden Circumvention Servers” [28], which I coauthored with Roya
Ensafi, Philipp Winter, Nick Feamster, Nicholas Weaver, Vern Paxson.
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Time delays in censors’ reactions
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I am interested in understanding censors at a deeper level. To that end, I am working
on a project to measure how long censors take to react to sudden changes in circumvention.
So far, our technique has been to monitor the reachability of newly added Tor Browser
bridges, to see how long after they are introduced they get blocked. Portions of this work
have already appeared in the 2016 research paper “Censors’ Delay in Blocking Circumvention
Proxies” [51], which I coauthored with Lynn Tsai. We discovered some interesting, previously
undocumented behaviors of the Great Firewall of China. While the firewall, through active
probing, is able to detect some bridges dynamically within seconds or minutes, it lags in
detecting Tor Browser’s newly added bridges, taking days or weeks to block them. It seems
that bridges are first blocked only at certain times of day, perhaps reflecting an automated
batch operation.

I am now continuing to work on this project along with Lynn Tsai and Qi Zhong. We
plan to run targeted experiments to find out more about how censors extract bridge addresses
from public information, for example, by adding bridges with different attributes and seeing
whether they are blocked differently. Our first experiment used measurement sites only
in China and Iran, but we hope to expand to many more countries by collaborating with
measurement platforms such as OONI [52] and ICLab [60]. We hope to solicit other kinds of
censor delays from other circumvention projects, in order to build a more all-encompassing
picture of censors’ priorities with respect to circumvention.
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Domain fronting
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My most influential contribution to the world of circumvention is my research on domain
fronting. While the basic idea is not mine, the research I led and the code I wrote helped
domain fronting become the ubiquitous tool it is today.

Domain fronting assumes a rather strong censor model, essentially equivalent to the state
of the art of national censors at the time of its popularization. That is, a censor that can block
IP addresses and domain names, that can filter plaintext HTTP, can fingerprint protocol
implementations. The main censor capabilities not provided for are probabilistic classification
by traffic flow characteristics, and high-collateral-damage blocking of HTTPS on important
web servers. What I find most intellectually compelling about domain fronting research is
that is finally begins to transcend the “cat-and-mouse” paradigm that has plagued thinking
around circumvention, and to put blocking resistance on a scientific basis. By this I mean
that one can state assumptions, and consequences that hold as long as the assumptions are
true. For example, we do not make claims such as “domain fronting is unblockable”; rather,
we may state hypotheses and consequents: “if fronting through a domain with sufficient
collateral damage, such that the censor is unwilling to block it, and if the censor does not find
some side channel that distinguishes fronted from non-fronted traffic, then the communication
will be unblocked.” This kind of thinking, that of weighing censors’ costs and capabilities,
underlies my thinking about threat modeling.

Like flash proxy, domain fronting is primarily targeted at the problem of address blocking
(though it is effective against content blocking and active probing as well). The core idea

Figure 7.1: Domain fronting uses different names at different network layers.
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Figure 7.2: Estimated mean number of concurrent users of the meek pluggable transport,
with selected events.

is the use of different domain names at different layers of communication. The “outside”
layers, those visible to the censor, contain an innocuous “front” domain name, ideally one
that is hard to block because of the value of the services behind it. The “inside” layer,
invisible to the censor under encryption, contains the true, presumably censored, destination.
An intermediate server, whose name is the front domain name, removes the outer layer of
encryption and forwards the information to the covert destination. There are a number of
important services that support domain fronting, mainly cloud providers and content delivery
networks. On top of this basic machinery, it is relatively easy to build a general-purpose
covert bidirectional communications channel, one that can even be made reasonably efficient.

I wrote and continue to maintain the code of meek, a circumvention transport for Tor
based on domain fronting. It first appeared in Tor Browser in October 2014, and continues
operation to the present. My code has been forked and incorporated by other circumvention
projects, notably including Psiphon and Lantern, with whom I continue to collaborate. Today,
meek is Tor’s second-most-used transport, carrying around 10 terabytes of user traffic each
month.

Domain fronting appeared in the 2015 research paper “Blocking-resistant communication
through domain fronting” [48], which I coauthored with Chang Lan, Rod Hynes, Percy
Wegmann, and Vern Paxson.

7.1 An unvarnished history of meek deployment

• First release of Orbot that had meek?

• Funding/grant timespans

• cost table

• “Seeing Through Network-Protocol Obfuscation” [103] October 2015

• “Towards Measuring Unobservability in Anonymous Communication Systems” [98]
October 2015

Fielding a circumvention and keeping it running is full of unexpected challenges. At the
time of the publication of the domain fronting paper [48] in 2015, meek had been deployed
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only a year and a half. Here I will recount the entire history of the deployment project, from
inception to the present, a period of over three years. I have been the main developer and
project leader of meek over its entire existence. I hope to share the benefit of my experience by
commentating the history with surprises and lessons learned. Figure 7.2 shows the estimated
concurrent number of users of meek over its entire existence. The counts come from Tor
Metrics [71].

2013: Precursors; prototypes

The prehistory of meek begins in 2013 with flash proxy. Flash proxy clients need a secure
way to register their address to a central facilitator, in order that flash proxies can connect
back to them. Initially we had only two means of registration: flashproxy-reg-http, sending
client registrations directly over HTTP; and flashproxy-reg-email, sending client registrations
to a special email address. We knew that flashproxy-reg-http was easily blockable; flashproxy-
reg-email had good blocking resistance but was somewhat slow and complicated, requiring a
server to poll for new messages. At some point, Jacob Appelbaum showed me an example
of using domain fronting—though we didn’t have a name for it then—to access a simple
HTTP-rewriting proxy on App Engine. I eventually realized that the same trick would work
for flash proxy rendezvous. I proposed a design [9] in May 2013 and within a month Arlo
Breault had written flashproxy-reg-appspot, which worked just like flashproxy-reg-http, but
fronted through www.google.com rather than contacting the registration server directly. The
fronting-based registration became flash proxy’s preferred method, being faster and simpler
than the email-based one.

The development into a full-fledged bidirectional transport seems slow, in retrospect. All
the pieces were there; it was only a matter of putting them together. I did not appreciate the
potential of domain fronting when I saw it for the first time. Even after the introduction
of flashproxy-reg-appspot, months passed before the beginning of meek. The whole idea
behind flash proxy registration was that the registration channel could be of low quality—
unidirectional, low-bandwidth, and high-latency—because it was only used to bootstrap
into a more capable channel (WebSocket). Email fits well into this model: not good for
a general-purpose channel, just good enough for rendezvous. The fronting-based HTTP
channel, however, was much more capable, bidirectional with reasonably high performance.
Rather than handing off the client to a flash proxy, it should be possible to carry all the
client’s traffic through the same domain-fronted channel. It was during this time that I first
became aware of GoAgent through the “Collateral Freedom” report of Robinson et al. [92].
According to the report, GoAgent, which used a less secure form of domain fronting than
what meek would have, was the most used circumvention tool among a group of users in
China. I read the source code of GoAgent in October 2013 and wrote ideas about writing a
similar pluggable transport [35] which would become meek.

I lost time in premature optimization of meek’s network performance. I was thinking about
the request–response nature of HTTP, and how requests and responses could conceivably
arrive out of order (even if reordering was unlikely to occur in practice, because of the keepalive
connections and HTTP pipelining). I made several attempts at a TCP-like reliability and
sequencing layer, none of which were satisfactory. I wrote a simplified experimental prototype
called “meeker,” which simply prepended an HTTP header before the client and server streams,
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but meeker only worked for direct connections, not through an HTTP-aware intermediary like
App Engine. When I explained these difficulties to George Kadianakis in December 2013, he
advised me to forget the complexity and implement the simplest thing that could work, which
was good advice. I started working on a version that strictly serialized request–response pairs,
which architecture meek still uses today.

2014: Development; collaboration; deployment

According to the Git revision history, I started working on the source code of meek proper
on January 26, 2014. I made the first public announcement on January 31, 2014, in a post
to the tor-dev mailing list titled “A simple HTTP transport and big ideas” [31]. (If the
development time seems short, it’s only because months of prototypes and false starts.) In
the post, I linked to the source code, described the protocol, and explained how to try it,
using an App Engine instance I had set up shortly before. At this time there was no web
browser TLS camouflage, and only App Engine was supported. I was not yet using the term
“domain fronting.” The “big ideas” of the title were as follows: we could run one big public
bridge rather than relying on multiple smaller bridges as other transports did; a web server
with a PHP “reflector” script could do the same forwarding as a CDN, providing a diversity
of access points even without domain fronting; we could combine meek with authentication
and serve a 404 to unauthenticated users; and Cloudflare and other CDNs are alternatives
to App Engine. We did end up running a public bridge for public benefit (and worrying
over how to pay for it), and deploying on platforms other than App Engine (with Tor we
never used Cloudflare specifically, but did others). Arlo Breault would write a PHP reflector,
though there was never a repository of public meek reflectors as there were for other types of
Tor bridge. Combining meek with authentication never happened; it was never needed for
our public domain-fronted instances because active probing doesn’t help the censor in those
cases anyway.

During the spring 2014 semester (January–May) I was enrolled in Vern Paxson’s Inter-
net/Network Security course along with fellow student Chang Lan. We made the development
and security evaluation of meek our course project. During this time we built browser TLS
camouflage extensions, tested and polished the code, and ran performance tests. Our final
report, “Blocking-resistant communication through high-value web services,” was the kernel
of our later paper on domain fronting.

In March 2014, I met some developers of Lantern at a one-day hackathon sponsored
by OpenITP [10]. Lantern developer Percy Wegmann and I realized that the meek code I
had been working on could act as a glue layer between Tor and the HTTP proxy exposed
by Lantern, in effect allowing you to use Lantern as a pluggable transport for Tor. We
worked out a prototype and wrote a summary of the process [37]. Even though our specific
application that day did not use domain fronting, the early contact with other circumvention
developers was valuable.

June 2014 brought a surprise: the Great Firewall of China blocked all Google services [54,
2]. It would be hubris to think that it was in response to the nascent deployment of meek
on App Engine; a more likely cause was Google’s decision to start using HTTPS for web
searches, which would foil URL keyword filtering. Nevertheless, the blocking cast doubt
on the feasibility of domain fronting: I had believed that blocking all of Google would be
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too costly in terms of collateral damage to be sustained for long by any censor, even the
Great Firewall, and that belief was wrong. At least, we now needed fronts other than Google
in order to have any claim of effective circumvention in China. For that reason, I set up
additional backends: Amazon CloudFront and Microsoft Azure. When meek made its debut
in Tor Browser, it would offer three modes: meek-google, meek-amazon, and meek azure.

Google sponsored a summit of circumvention researchers in June 2014. I presented domain
fronting there. (By this time I had started using the term “domain fronting,” realizing that
what I had been working on needed a specific name. I tried to separate the idea “domain
fronting” from the implementation “meek,” but the terms have sometimes gotten confused in
discourse.) Developers from Lantern and Psiphon where there—I was pleased to learn that
Psiphon had already implemented and deployed domain fronting, after reading my mailing
list posts. The meeting started a fruitful collaboration: Percy Wegmann from Lantern and
Rod Hynes from Psiphon would later be among my coauthors on the paper on domain
fronting [48].

Chang, Vern, and I submitted a paper on domain fronting to the Network and Distributed
System Security Symposium (NDSS) in August 2014, whence it was rejected.

The first public release of Tor Browser that had a built-in easy-to-use meek client was
version 4.0-alpha-1 on August 12, 2014 [13]. This was an alpha release, used by fewer users
than the stable release. I made a blog post explaining how to use it a few days later [36].
The release and blog post had a positive effect on the number of users, however the absolute
numbers are uncertain, because of a configuration error I had made on the meek bridge. I
was running the meek bridge and the flash proxy bridge on the same instance of Tor; and
because of how Tor’s statistics are aggregated, the counts were spuriously correlated [40]. I
switched the meek bridge to a separate instance of Tor on September 15; numbers after that
date are more trustworthy. In any case, the usage before this first release was tiny: the App
Engine bill ($0.12/GB, with one GB free each day) was less than $1.00 per month for the
first seven months of 2014 [78, § Costs]. In August, the cost started to be nonzero every day,
and would continue to rise from there.

Tor Browser 4.0 [87] was released on October 15, 2014. It was the first stable (not alpha)
release to have meek, and it had an immediate effect on the number of users: the estimate
jumped from 50 to 500 within a week. (The increase was partially conflated with a failure of
the meek-amazon bridge to publish statistics before that date, but the other bridge, servicing
meek-google and meek-azure, individually showed the same increase.) It was a lesson in user
behavior: although there had been a working implementation in the alpha release for two
months already, evidently a large number of users did not know of it or chose not to try it.
At that time, the other transports available were obfs3, FTE, ScrambleSuit, and flash proxy.

2015: Growth; restraints; outages

Through the first part of 2015, the estimated number of simultaneous users continued to
grow, reaching about 2,000, as we fixed bugs and Tor Browser had further releases.

We submitted a revised version of the domain fronting [48], now with contributions from
Psiphon and Lantern, to the Privacy Enhancing Technologies Symposium, where it was
accepted and appeared on June 30 at the symposium.

The increasing use of domain fronting by various circumvention tools begain to attract
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more attention. A March 2015 article by Eva Dou and Alistair Barr in the Wall Street
Journal [23] described domain fronting and “collateral freedom” in general, depicting cloud
service providers as being caught in the crossfire between censors and circumventors. The
journalists had contacted me but I declined to be interviewed. The CEO of CloudFlare,
through whose service Lantern had been fronting, said that recently they had altered their
systems to prevent domain fronting by enforcing a match between SNI and Host header [89].
GreatFire, an anticensorship organization that had also been mentioned, shortly thereafter
experienced a new type of denial-of-service attack [94], caused by a Chinese network attack
system later called the “Great Cannon” [76]. They blamed the attack on the attention
brought by the news article.

Since initial deployment, the Azure backend had been slower, with fewer users, than the
other two options, App Engine and CloudFront. For months I had chalked it up to limitations
of the platform. In April 2015, though, I found the real source of the problem: the code
I had written to run on Azure, the code that receives domain-fronted HTTP requests and
forwards them to the meek bridge, was not reusing TCP connections. For every outgoing
request, the Azure code was doing a fresh TCP and TLS handshake—causing a bottleneck
at the CPU of the bridge, coping with all the incoming TLS. When I fixed the Azure code
to reuse connections [32], the number of users (overall, not only for Azure) had a sudden
jump, reaching 6,000 in less than a week. Evidently, we had been leaving users on the table
by having one of the backends not run as fast as possible.

The deployment of domain fronting was being partly supported by a $500/month grant
from Google. Already the February 2015, the monthly cost for App Engine alone began to
exceed that amount [78, § Costs]. In an effort to control costs, in May 2015 we began to
rate-limit the App Engine and CloudFront bridges, deliberately slowing the service so that
fewer would use it. Until October 2015, the Azure bridge was on a research grant provided
by Microsoft, so we allowed it to run as fast as possible, but when the grant expired, we
rate-limited the Azure bridge as well. The rate-limiting explains the relative flatness of the
user graph from May to the end of 2015.

Google changed the terms of service governing App Engine in 2015, adding a paragraph
that seemed to prohibit running a proxy service [55]:

Networking. Customer will not, and will not allow third parties under its control
to: (i) use the Services to provide a service, Application, or functionality of
network transport or transmission (including, but not limited to, IP transit,
virtual private networks, or content delivery networks); or (ii) sell bandwidth
from the Services.

This was an uncomfortable time: we seemed to have the support of Google, but the terms
of service said otherwise. I contacted Google and asked for clarification or guidance, in the
meantime leaving meek-google running; however I never got an answer to my questions. The
point became moot a year later, when Google shut down our App Engine project, for another
reason altogether.

By this time we had not received any reports of any type of blocking of domain fronting.
We did, however, suffer a few accidental outages (which look just like blocking, from a user’s
point of view). Between July 20 and August 14, an account transition error left the Azure
configuration broken [39]. I set up another configuration on Azure and published instructions
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on how to use it, but it would not be available to the majority of users until the next release
of Tor Browser, which happened on August 11. Between September 30 and October 9, the
CloudFront-fronted bridge was effectively down because of an expired TLS certificate. When
it rebooted on October 9, an adminstrative oversight caused its Tor relay identity fingerprint
changed—meaning that clients expecting the former fingerprint would refuse to connect to
it [46]. The situation was not fully resolved until November 4 with the next release of Tor
Browser: cascading failured led to over a month of downtime.

One of the benefits of building a circumvention system for Tor is the easy integration with
Tor Metrics—the source of the user number estimates in this section. Since the beginning
of meek’s deployment, we had known about a problem with the way it integrates with
Tor Metrics’ data collection. Tor pluggable transports geolocate the client’s IP address in
order to aggregate statistics by country. But when a meek bridge receives a connection, the
“client IP address” it sees is not that of the true client, but rather is some cloud server, the
intermediary through which the domain-fronted traffic passes. So the total counts were fine,
but the per-country counts were meaningless. For example, because App Engine’s servers
were located in the U.S., every meek-google connection was being counted in the U.S. bucket.
By the end of 2015, meek users were a large enough fraction (about 20%) of all bridge users,
that they were really starting to skew the overall per-country counts. I wrote a patch to have
the client’s true IP address forwarded through the network intermediary in a special HTTP
header, which fixed the per-country counts from then on.

2016: Taking off the reins; misuse; blocking efforts

In mid-January 2016 the Tor Project asked me to raise the rate limits on the meek bridges,
in anticipation of rumored attempts to block Tor in Egypt. (The blocking attempts were in
turn rumored to be caused by Facebook’s integration of Tor into their mobile application.) I
had the bridge operators raise the rate limits from approximately 1 MB/s to 3 MB/s. The
effect of the relaxed rate limits was immediate: the count shot up as high 15,000 simultaneous
users, briefly becoming Tor’s most-used pluggable transport, before settling in around 10,000.

The first action that may have been a deliberate attempt to block domain fronting came
on January 29, 2016, when the Great Firewall of China blocked one of the edge servers of the
Azure CDN. The blocking was by IP address, a severe method: not only the domain name we
were using for domain fronting, but also thousands of other names, became inaccessible. The
block lasted about four days. On February 2, the server changed its IP address, incrementing
the final octet from .200 to .201, causing it to become unblocked. I am aware of no similar
incidents before or since.

The next surprise was on May 13, 2016. meek’s App Engine backend stopped working
and I got a notice:

We’ve recently detected some activity on your Google Cloud Platform/API Project
ID meek-reflect that appears to violate our Terms of Service. Please take a moment
to review the Google Cloud Platform Terms of Service or the applicable Terms of
Service for the specific Google API you are using.

Your project is being suspended for committing a general terms of service violation.



CHAPTER 7. DOMAIN FRONTING 32

We will delete your project unless you correct the violation by filling in the appeals
form available on the project page of Developers Console to get in touch with our
team so that we can provide you with more details.

My first thought was that it had to do with the changes to the terms of service that had
happened the previous year—but the true cause was unexpected. I tried repeatedly to contact
Google and learn the nature of the “general” violation, but was stonewalled. None of my
inquiries received so much as an acknowlegement. It as not until June 18 that I got some
insight as to what happened, through an unofficial channel. Some botnet had apparently been
misusing meek for command and control purposes; and its operators hadn’t even bothered to
set up their own App Engine project. They were using the service that we had been operating
for the public. Although we may have been able to reinstate the meek-google service, seeing
as the suspension was the result of someone else’s botnet, with the already uncertain standing
with regard to the terms of service I didn’t have the heart to pursue it. meek-google remained
off and users migrated to meek-amazon or meek-azure. It turned out, later, that it had been
no common botnet misusing meek-google, but an organized political hacker group, known as
Cozy Bear or APT29. Matthew Dunwoody presented observations to that effect in a FireEye
blog post [25] in March 2017. He and Nick Carr had presented those findings at DerbyCon in
September 2016 [26], but I was not aware of them until the blog post. Malware would install
a backdoor that operated over a Tor onion service, and used meek for camouflage.

The year 2016 brought the first reports of efforts to block meek. These efforts all had
in common that they used TLS fingerprinting in conjunction with SNI inspection. In
May, a Tor user reported that Cyberoam, a firewall company, had released an update
that enabled detection and blocking of meek, among other Tor pluggable transports [62].
Through experiments we determined that the firewall was detecting meek whenever it saw a
combination of two features: a specific client TLS fingerprint, and an SNI containing any of
our three front domains: www.google.com, a0.awsstatic.com, or ajax.aspnetcdn.com [33]. We
verified that changing either the TLS fingerprint or the front domain was sufficient to escape
detection. Requiring both features to be present was a clever move by the firewall to limit
collateral damage: it did not block those domains for all clients, but only the subset having a
particular TLS fingerprint. I admit that I had not considered the possibility of using TLS
and SNI together to make a more precise classifier. We had known since the beginning of the
possibility of TLS fingerprinting, which is why we spent the time to implement browser-based
TLS camouflage. And there was no error in the camouflage: even an ordinary Firefox 38 (the
base for Tor Browser, and what meek camouflaged itself as) was blocked by the firewall when
accessing one of the three front domains. However, Firefox 38 was by that time a year old. I
found a source saying that it made up only 0.38% of desktop browsers, compared to 10.69%
for the then-latest Firefox 45 [33]. My guess is that the firewall makers considered the small
amount of collateral blocking of Firefox 38 users to be acceptable.

In July I received a report of similar behavior by a FortiGuard firewall [34] from Tor
user Kanwaljeet Singh Channey. The situation was virtually the same: the firewall would
block connections having a specific TLS fingerprint and a specific SNI. This time, the TLS
fingerprint was that of Firefox 45 (which by then Tor Browser had upgraded to); and the
specific SNIs were only two, omitting www.google.com. (This meant that meek-google would
have worked, had it not been deactivated back in May.) As in the Cyberoam case, changing
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either the TLS fingerprint or the front domain was sufficient to get through the firewall.
For reasons not directly related to domain fronting or meek, I had been interested in the

blocking situation in Kazakhstan, ever since Tor Metrics reported a sudden drop of Tor users
in that country in June 2016 [47]. I worked with an anonymous collaborator, who reported
that meek was blocked in the country since October 2016 or earlier. According to them,
changing the front domain would evade the block, but changing the TLS fingerprint didn’t
help. I did not independently confirm these reports. Kazakhstan remains the only case of
country-level meek blocking that I am aware of.

Starting in July 2016, there was a months-long increase in the number of meek users
reported from Brazil [99]. The estimated count went from around 100 to almost 5,000, peaking
in September 2016 before declining again. During parts of this time, over half of all reported
meek users were from Brazil. We never got to the bottom of why there should be so many
users reported from Brazil in particular. The explanation may be some kind of anomaly; for
instance some third-party software that happened to use meek, or a malware infection like
the one that caused the shutdown of meek-google. The count dropped suddenly, from 1,500
almost to zero, on March 3, 2017, which happened also to be the day that meek-azure was
shut down pending a migration to new infrastructure. The count would remain low until
rising again in June 2017.

In September 2016, I began mentoring Katherine Li in making her program GAEu-
ploader [70], which aims to simplify and automate the process of setting up domain fronting.
The program automatically uploads the necessary code to Google App Engine, then outputs
a bridge line ready to be pasted into Tor Browser or Orbot. We hoped also that the code
would be useful to other projects, like XX-Net [114], that provide documentation on the
complicated process of uploading code to App Engine. GAEuploader had a beta release in
January 2017 [69]; however the effect on the number of users was not substantial.

Between October 19 and November 10, 2016, the number of meek users decreased globally
by about a third [45]. Initially I suspected a censorship event, but the other details didn’t add
up: the numbers were depressed and later recovered simultaneously across many countries,
including ones not known for censorship. Discussion with other developers revealed the likely
cause: a botched release of Orbot that left some users unable to use the program [42]. Once a
fixed release was available, user numbers recovered. An unanticipated effect of this occurrence
was that we learned that a majority of meek users were using Orbot rather than Tor Browser.

2017: Long-term support

In January 2017, the grant I had been using to pay meek-azure’s bandwidth bills ran out.
Lacking the means to keep it running, I announced my intention to shut it down [38]. Shortly
thereafter, Team Cymru offered to stand up their own instances and pay the CDN fees, and
so we made plans to migrate meek-azure to the new setup in the next releases. For cost
reasons, though, I still had to shut down the old configuration before the new release of
Tor Browser was ready. I shut down my configuration on March 3. The next release of Tor
Browser was on March 7, and the next release of Orbot was on March 22: so there was a
period of days or weeks during which meek-azure was completely non-functional for users. It
would have been better to allow the two configurations to run concurrently for a time, so
that users of the old would be able to transparently upgrade to the new—but in this case it
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wasn’t possible. Perhaps not coincidentally, the surge of users from Brazil, which had started
in July 2016, ceased on March 3, the same day I shut down meek-azure before its migration.
Handing over control of the infrastructure was a relief to me. I had managed to make sure
the monthly bills got paid, but it took more care and attention than I liked. A negative side
effect of the migration was that I stopped writing monthly summaries of costs, because I was
no longer receiving bills.

Also in January 2017, I became aware of the firewall company Allot Communications,
thanks to my anonymous collaborator in the Kazakhstan work. Allot’s marketing materials
advertised support for detection of a wide variety of circumvention protocols, including Tor
pluggable transports, Psiphon, and various VPN services [43]. They claimed support for
“Psiphon CDN (Meek mode)” going back to January 2015, and for “TOR (CDN meek)” going
back to April 2015. We did not have any Allot devices to experiment with, and I do not
know how (or how well) their detectors worked.

In June 2017, the estimated user count from Brazil began to increase again, similarly to
how it had between July 2016 and March 2017. Just as before, we did not find an explanation
for the increase.

Between July 29 and August 17, meek-amazon had another outage due to an expired
TLS certificate.
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Snowflake

here be dragonŊ

Flash proxy revisited
WebRTC fingerprinting
Engineering challenges
I am working on a new circumvention system, a transport for Tor called Snowflake.

Snowflake is the successor to flash proxy. It keeps the basic idea of in-browser proxies
while fixing the usability problems that hampered the adoption of flash proxy. My main
collaborators in this project are Serene Han and Arlo Breault.

The key difference between flash proxy and Snowflake is the basic communications protocol
between client and browser proxy. Flash proxy used the TCP-based WebSocket protocol,
which required users to configure their personal firewall to allow incoming connections.
Snowflake instead uses WebRTC, a UDP-based protocol that enables peer-to-peer connections
without manual configuration. The most similar existing system is uProxy [101], which in
one of its operating modes uses WebRTC to connect through a friend’s computer. Snowflake
differs because it does not require prior coordination with a friend before connecting. Instead,

Figure 8.1: Diagram of Snowflake.
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it pulls its proxies from a pool of web users who are running the Snowflake code. Beyond the
changed protocol, we hope to build in performance and efficiency improvements.

Snowflake will afford interesting research opportunities. One, of course, is the design of
the system itself—no circumvention system of its nature has previously been deployed at a
large scale. Another opportunity is observing how censors react to a new challenge.

Most of the available documentation on Snowflake is linked from the project’s wiki page [95].
Mia Gil Epner and I wrote a preprint on the fingerprinting hazards of WebRTC [41].
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