
Turbo Tunnel, a good way to design
censorship circumvention protocols

David Fifield

Draft of July 21, 2020

Abstract
This is something of a position paper. In it, I advocate for the
use of an interior session and reliability protocol in circum-
vention protocols. By this, I mean an abstraction that overlays
a session and reliable stream interface atop some possibly
unreliable or transient carrier—something that has sequence
numbers, acknowledgements, and retransmission of lost data.
This inner session layer provides persistent, end-to-end ses-
sion state that is persistent and largely independent of the
outer obfuscation layer by which it is transported.

The suggestion is simple but its consequences are far-
reaching. Decoupling the user’s circumvention session from
any single obfuscated network connection offers advantages
in modularity, blocking resistance, and even performance. We
demonstrate the potential of the idea by implementing it in
circumvention systems: in obfs4, making it resistant to TCP
termination attacks; in meek, permitting full-duplex commu-
nication; in Snowflake, allowing sessions to migrate across
temporary proxies; and in a new kind of DNS tunnel, showing
how a reliable proxy connection can operate over a lossy and
hard-to-use channel.

Turbo Tunnel is my name for this idea of embedding a
session layer in a circumvention protocol, intended to make
the concept easier to talk about. It is a design pattern, not a
specific protocol or library. This paper describes my expe-
rience in implementing Turbo Tunnel designs, how it was
instantiated using specific libraries and protocols, and what
benefits were realized.

1 A common need

The need for a session layer separate from obfuscation has
long been felt, if not consciously stated, in circumvention
systems of all descriptions. In many systems, the obfuscation
layer effectively does double duty, being both an instrument of
evasion and a frame for the user’s session. This unnecessary

user streams e.g. HTTP, chat, Tor, VPN
session/reliability e.g. KCP, QUIC, SCTP

obfuscation e.g. obfs4, meek, FTE, Snowflake
network transport e.g. TCP, HTTP, DNS, WebRTC

Figure 1: A Turbo Tunnel design inserts a session/reliability
layer into the circumvention protocol stack, between the user’s
application-layer streams and the obfuscated network connec-
tion that performs evasion. The session/reliability layer is an
internal layer, never exposed to the censor. Using QUIC, for
example, does not mean that QUIC UDP packets are sent
on the wire; instead, those packets are encapsulated and sent
inside the obfuscated tunnel.

fusion of responsibilities causes a number of practical prob-
lems that are usually either ignored, or dealt with separately
in each system as a special case. One of the contributions of
the present work is to recognize a common pattern and begin
to treat it systematically.

We will start by outlining a few concrete problems with
existing and proposed circumvention systems, and how they
are solved by a Turbo Tunnel design.

Problem: Censors can disrupt obfs4 by terminating long-
lived TCP connections. obfs4, like many circumvention
protocols, relies essentially on an underlying TCP connec-
tion [26 §0]. There is no separate session state; when the TCP
connection ends, all end-to-end state is lost and the session
must be restarted from scratch. This makes the protocol vul-
nerable to attacks on the underlying TCP connection. Just
such an attack—termination [5] or throttling [2 §4.4] of con-
nections after 60 seconds—took place in Iran in 2013, forcing
users to constantly restart their circumvention tunnels, while
leaving protocols that used shorter connections unaffected.

This problem is solved by the introduction of a separate,
“virtual” session that outlives any single TCP connection.
When one TCP connection is terminated or throttled, the
client software may reconnect and resume the session on



a new connection, without interrupting ongoing downloads.
The reliability layer takes care of retransmitting any informa-
tion lost during the transition. A TCP connection ceases to be
the essential backbone of a circumvention session, becoming
merely a transient and replaceable carrier of bytes.

Problem: meek is half-duplex, limiting its performance.
meek [8] creates a bidirectional flow by stringing together
a sequence of HTTP requests and responses. Because each
request–response pair is independent of the others, they must
be kept in order somehow. The Tor deployment of meek main-
tains this order by enforcing that only one request may be
outstanding at a time [8 §5]: the client must wait for a response
before initiating another request. This strategy is effective but
limits performance, as the tunneled connection cannot send
and receive at the same time, and transfer speeds are limited
more by round-trip time than bandwidth.

We can help the situation by having HTTP requests and
responses contain encapsulated packets of a session protocol
with sequence numbers. A client may send a request when-
ever it has outgoing data, without waiting for the response
to its previous request. Both peers buffer and reorder incom-
ing packets before passing their contents to an upper layer.
The stream multiplexing of HTTP/2 means that interleaved
requests do not block each other, even if they happen to use
the same TCP connection.

Problem: Snowflake can use only one temporary proxy,
which may be slow or have poor uptime. Snowflake [21]
is built on temporary browser-based proxies. Each temporary
proxy connection is reliable and in-order while it lasts, but
a proxy may go away at any time, leaving the user with a
broken session. Because proxies are run by volunteers and are
assigned to clients randomly, even a proxy that lasts a long
time may, by chance, be simply too slow to use tolerably.

An independent session layer solves this problem by en-
abling a Snowflake client to keep a session going through a
sequence of of disjoint proxy connections, switching from one
to another as proxies come and go—or even to use many prox-
ies at the same time, dividing traffic between them, as a hedge
against one of them being slow. The session layer is respon-
sible for retransmitting whatever is lost when a proxy goes
down, and reassembling the interleaved packet sequences that
arrive via different proxies.

Problem: DNS is an unreliable channel. DNS over
HTTPS [11] has potential as a circumvention tunnel, since
HTTPS encryption hides the protocol features that otherwise
make DNS tunnels detectable. But it is not trivial to over-
lay a tunnel on DNS, because DNS is an unreliable channel.
DNS over HTTPS, being built on TCP, is reliable up to the
recursive resolver, but the resolver issues its own recursive

queries using ordinary UDP-based DNS, which may result in
reordered or dropped messages.

The basic reliability problem is solved by having DNS
messages contain not just little chunks of data, but encapsu-
lated packets of a session/reliability protocol. Contemporary
DNS tunnels use custom retransmission schemes, of varying
efficiency. The Turbo Tunnel approach is to treat channel
reliability as a separable and solved problem. Instead of in-
venting a tunnel-specific retransmission protocol, we embed
an existing protocol, one that is tested and debugged, and not
necessarily even DNS-aware. Let there be one part of the
code that handles encoding and decoding of DNS messages,
and another part that builds a reliable channel on top of those
messages. Let performance bottlenecks be limited to those
that are inherent in the use of DNS, and not those that are
accidental results of an inefficient reliability scheme.

Problems like those described above are common in cir-
cumvention protocols. None of the problems is fatal—clearly,
circumvention using today’s protocols is possible—but each,
in some way, limits performance, blocking resistance, or, per-
haps most importantly, flexibility. The design of circumven-
tion protocols is a creative activity, requiring the ability to
combine protocols in new and unexpected ways. The conti-
nuity of a separate session and reliability layer expands the
design space and empowers the designer to attempt more am-
bitious ideas. For example, a Turbo Tunnel design makes it
possible to build a meta-protocol that dynamically switches
between different forms of obfuscation, even within the same
session, without requiring extensive coordination by the pro-
grammer.

2 Requirements for the session layer

The essential component of a Turbo Tunnel design is an inter-
nal protocol that takes in a stream and takes care of the details
of segmenting the stream into packets, attaching sequence
numbers, and deciding when to retransmit unacknowledged
data. Whatever the protocol, it must somehow be realized in
code, ideally with a programming interface that is convenient
to use.

The core requirement on a session protocol library is that
it provide an option for abstracting its network operations.
It must not insist on sending its own UDP datagrams, say,
but should provide hooks for the calling application to send
packets produced by the library in whatever way it deems
appropriate. These hooks provide the linkage between the
session and obfuscation layers of Figure 1. The session layer
treats the obfuscation layer as an abstract packet I/O interface,
and the obfuscation layer treats the session layer as an abstract
producer and consumer of packets. It is worth reiterating that
the raw session protocol is never exposed to the censor on the
wire; it is always sent under cover of some form of blocking-
resistant obfuscation.



Besides the core requirement of abstract networking, a nice-
to-have feature in a session protocol is stream multiplexing.
Stream multiplexing allows one end-to-end session to contain
many distinct streams. With this, there can be many logical
streams between the circumvention client and proxy, without
requiring many separate instances of the obfuscation layer.
An additional minor requirement is that the session protocol
library should be well-maintained and written in Go, as Go
is currently the most-used programming language among
circumvention developers.

In late 2019 I did a small survey [15 #14] of candidate pro-
tocols. The survey found two protocols that are well suited to
Turbo Tunnel: KCP [20] and QUIC [13], with their implemen-
tations kcp-go [24] and quic-go [4]. The differences between
the two protocols need not concern us here; it is enough to
know that they both provide a reliable stream abstraction over
an unreliable packet-based channel. The libraries provide
roughly equivalent interfaces, and in fact most of the imple-
mentations in Section 3 were done twice, once using kcp-go
and once using quic-go, with only minor changes required.
KCP does not conform to any stable third-party standard,
but is fairly simple internally and battle-tested. KCP itself
only provides a single reliable stream abstraction, but the
smux [25] library can be used to overlay stream multiplexing
onto KCP. Wherever KCP is mentioned in this document, it
should be understood as the combination KCP+smux. QUIC
is in the process of being standardized by the IETF (currently
in Internet-Draft status [12]). QUIC’s greatest claim is that
it—in its default UDP-encapsulated form—is the basis for
HTTP/3 [3], and already accounts for a notable fraction of
web traffic. QUIC has built-in stream multiplexing and man-
dates the use of TLS.

The session protocol is a necessary component of a Turbo
Tunnel design, but it is not the whole story. Also needed is a
way to transmit the packets of the session layer between a cir-
cumvention client and proxy, in a way that the packets will not
get blocked by a censor. That is the purpose of the obfuscation
and network transport layers, the likes of which are already
familiar to circumvention system developers. Generally, the
process will involve encapsulation of the session-layer pack-
ets into some other, obfuscated protocol, which itself may be
stream-oriented or packet-oriented. The details of encapsula-
tion depend on the obfuscation layer, and there are additional
possible complications such as provision for traffic shaping
and padding.

3 Case studies

The need for a session layer decoupled from obfuscation
has been present in my mind for a long time, but only in
the last year did I begin to develop the idea actively. My
process has been to implement Turbo Tunnel features into
some existing circumvention systems, all of which work quite
differently. The process culminated in the creation of a new

DNS tunnel built to take advantage of the possibilities of DNS
over HTTPS, with high performance compared to other DNS
tunnels.

3.1 obfs4
obfs4 [26] is a randomized protocol that works over TCP.
There is a one-to-one relationship between client streams and
obfuscated TCP connections: the obfs4 session ends when
the TCP connection does.

My goal in integrating Turbo Tunnel into obfs4 was to
make it resistant to TCP connection termination attacks. At
the beginning of a new client session, rather than make a
single TCP connection to the obfs4 server, the obfs4 client
starts up an abstract, redialing packet-sending interface that
connects to the obfs4 server repeatedly in a loop, establishing
a new TCP connection whenever one is disconnected for any
reason. The obfs4 client establishes a KCP or QUIC session
atop the redialing packet interface, buffering packets when a
connection is in the process of being established, or sending
them immediately if a connection already exists. This KCP or
QUIC session constitutes the “virtual” session mentioned in
Section 1, independent of any single TCP connection. Session-
layer packets are encapsulated simply by prefixing them by a
16-bit length header and concatenating them into the current
TCP stream.

The obfs4 server runs the typical TCP accept loop as be-
fore, but instead of directly piping incoming connections to an
upstream server, it decapsulates the packets contained within
each TCP connection, and feeds them to a single, global in-
stance of KCP or QUIC. The global KCP or QUIC instance
produces “new session” and “new stream” events, and it is
these virtual events that drive the forwarding to the upstream
server. The obfs4 server makes no distinction between its
many incoming TCP connections; each is just an interchange-
able conduit for exchanging packets. Each incoming packet is
associated with a session identifier, which is a random integer
generated by the obfs4 client. When the obfs4 server has to
send a packet to a certain client, identified by session identi-
fier, it sends the packet using the TCP connection from which
it most recently received a packet tagged with that session
identifier.

A test through a proxy configured to terminate TCP connec-
tions after 20 seconds showed that an obfs4 session was able
to persist over a sequence of TCP connections. The session
layer takes care of retransmitting whatever packets were lost
during each unclean TCP shutdown.

3.2 meek
meek [8], as currently deployed, transmits unstructured
chunks of an underlying stream, which are simply concate-
nated at each end. Because there is no additional framing,
it is important to keep the chunks in order. meek does this

https://github.com/net4people/bbs/issues/14


protocol time

direct QUIC UDP 3.7 s
TCP-encapsulated QUIC 10.6 s
traditional meek 23.3 s
meek with encapsulated QUIC 34.9 s

Table 1: Time for combined upload and download of a 10 MB
file.

by enforcing a “ping-pong” communication pattern, allowing
only one outstanding HTTP request at a time [8 §5].

The goal of integrating Turbo Tunnel into meek was to per-
mit the client to send whenever it had data available, without
waiting for a response to the most recent HTTP request. As
with obfs4, the key task is building the adapter between the
KCP or QUIC engine and the network. When the client has a
packet to send, it encapsulates the packet into an HTTP body,
along with any other packets that are immediately available.
The encapsulation encoding is more sophisticated than it was
in the obfs4 prototype, permitting arbitrary padding between
packets. Each HTTP request is prefixed with a session identi-
fier, which applies in common to all the packets in the request.
The server, on receiving an HTTP request, decapsulates all
the contained packets and feeds them to a global KCP or
QUIC engine, which as in the obfs4 case takes responsibility
for creating the virtual network events that drive upstream
connections. The meek server is limited in that it cannot send
data to the client whenever it wants; it must wait for an HTTP
request to respond to. The logic for sending downstream data
is simple. The server maintains a queue of outgoing packets,
a separate queue for each known session identifier. When an
HTTP request arrives bearing a certain session identifier, the
server has license to include downstream data from that ses-
sion identifier’s queue in the corresponding HTTP response.

The meek implementation of Turbo Tunnel was a success
as far as permitting the client to send data at any time, but dis-
appointingly decreased performance in a test of bulk upload
and download of 10 MB. See Table 1. As far as I can tell, the
cause may be a bad interaction between QUIC’s congestion
control and the bundling of requests done by meek, but I have
not done enough tests to be sure.

3.3 Snowflake

Snowflake [21] uses a pool of temporary volunteer proxies.
Proxies are not expected to remain stable over time. Until
recently, there was no way to bridge a session across different
proxies. If you were unlucky enough to have your proxy
disappear while you were using it, the session would just die,
and you would have to restart the Snowflake software.

The changes required were not dissimilar from those re-
quired for obfs4. Each temporary proxy connection is reliable
and in order while it lasts, just like a TCP connection. The

Snowflake client runs a loop of requesting a new temporary
proxy from the central Snowflake broker, and sending pack-
ets through it while it lasts, requesting a new proxy if the
current one goes away. The first thing sent on a fresh proxy
connection is the random session identifier, which applies to
all packets sent on that connection. The server works as in
the meek implementation, feeding incoming packets into the
session layer. If there are more than one ongoing proxy con-
nection associated with the same session identifier, all those
outgoing connections pull equally from the same queue of
outgoing packets. This opens the door to supporting multiple
simultaneous proxies per client, though we do not make use
of this capability. One nice feature of the design is that while
the Snowflake client and server have to upgrade in order to
support Turbo Tunnel features, the temporary proxies do not
need to change. They remain simple dumb pipes.

The Snowflake implementation graduated from prototype
status and is now deployed to users of the alpha release of
Tor Browser. I and the Tor anti-censorship team prototyped
Turbo Tunnel in Snowflake using both kcp-go and quic-go.
Although both worked well, we decided to use kcp-gofor
the deployment, because its API had been more stable, it
had fewer dependencies, and it was not coupled to a specific
version of the Go standard library.

3.4 DNS-over-HTTPS tunnel

After modifying existing circumvention systems, it was time
to try something new, DNS tunnels have a long history. The
main idea is that a recursive DNS resolver acts like a proxy: it
receives a packet from one place and forwards it somewhere
else, then returns the response. DNS tunnels are generally dis-
dained for censorship circumvention because they are easily
detectable, for the fact that they tend to generate unusual DNS
messages, and that they must contain the domain name of
the tunnel server in plaintext. But that changes with new, en-
crypted forms of DNS, like DNS over HTTPS [11]. I wrote a
new DNS tunnel called dnstt [7] that is built on Turbo Tunnel
principles and works over DNS over HTTPS.

DNS is a query–response protocol not unlike HTTPS, so
the client and server resemble those of meek. Upstream pack-
ets are creatively encoded as DNS names, and downstream
packets are encoded into TXT responses. Unlike in meek,
the dnstt client does not try to encapsulate more than one
packet into a DNS query, because payload space is tightly
constrained (only about 125 bytes are available per query). Re-
sponses are a little less constrained, allowing about 900 bytes,
so the server tries to bundle multiple packets if possible. In
DNS over HTTPS, each DNS query is serialized to a sequence
of bytes, as if it were going to be sent as a UDP payload, but
the bytes are instead sent in an HTTP POST body. The re-
sponse similarly comes back in an HTTP response body.

Some sort of reliability layer is necessary in any DNS tun-
nel. Even DNS over HTTPS is only reliable TLS up to the



resolver tunnel transport download rate

none dnstt UDP 187.1 KB/s
Cloudflare dnstt UDP 156.4 KB/s
Google dnstt HTTPS 135.1 KB/s
Cloudflare dnstt HTTPS 133.5 KB/s
Comcast dnstt HTTPS 66.3 KB/s
Quad9 dnstt UDP 58.9 KB/s
Google dnstt UDP 43.1 KB/s
PowerDNS dnstt HTTPS 38.0 KB/s
Quad9 dnstt HTTPS 30.9 KB/s
none iodine UDP 14.6 KB/s
Google iodine UDP 1.8 KB/s
Cloudflare iodine UDP 1.4 KB/s
Quad9 iodine UDP 0.3 KB/s

Table 2: Rate of downloading a 10 MB file through DNS
tunnels. “none” for a resolver means queries are sent directly
to the tunnel server, with no intermediate recursive resolver.

recursive resolver; the recursively forwarded queries still go
out over plain old unreliable UDP. Neither the ordering nor
the delivery of DNS messages is guaranteed, in either direc-
tion. DNS tunnels have historically used a variety of ad hoc
reliability schemes [6]. Delegating that responsibility to a ded-
icated session protocol not only simplifies the overall design,
it permits higher performance. Table 2 shows the download
performance of dnstt (over DNS over HTTPS, plus plain UDP
for comparison) and iodine, the best-known classical DNS
tunnel. Performance depends highly on what resolver is used,
but DNS over HTTPS can outperform UDP-based DNS even
on the same resolver, and dnstt is faster than iodine in every
case.

4 Considerations for encapsulation

A Turbo Tunnel design, if naively applied, has the potential
to make covert channels more susceptible to detection by
analysis of packet sizes and timing, because the headers of
the session layer impose some additional structure on the tun-
nelled data. While there have not been reports of this style
of detection used by censors on a large scale, it is important
to leave enough leeway in the design of a circumvention sys-
tem to permit manipulating traffic features if necessary. That
means that your scheme for encapsulating packets should
allow for arbitrary padding. It also means you may have to
complicate your code by, for example, not sending an encap-
sulated packet as soon, entire, as it is available, but perhaps
delaying or splitting the send, so that the packet boundaries
on the wire do not reflect the boundaries of the encapsulated
packets. With stream-oriented carriers, it is always possible
to delay sends, add padding, and split encapsulated packets.
Packet-oriented carriers may not be able to split encapsulated
packets, but they can delay large packets, bundle multiple

packets into one, and send packets consisting of nothing but
padding.

5 Toward a reusable library?

From the beginning, I have resisted positioning Turbo Tun-
nel as a ready-to-use importable library, instead proposing
it as a general design pattern, a way to think about the con-
struction of circumvention protocols. Partly this was to avoid
premature generalization, of codifying a programming inter-
face before understanding all the requirements. Indeed, many
of the considerations in Section 4 became apparent only af-
ter the exercise of implementing the design separately for
obfuscation protocols that differ widely in nature.

Accordingly, the integrations of Section 3 are all tailored
to the needs of the underlying protocol, sometimes borrowing
code from each other but not sharing a single external Turbo
Tunnel module. I am skeptical of whether there can be a
truly pluggable “libturbotunnel,” particularly in a field like
censorship circumvention that often demands access to low-
level protocol details and breaking abstractions. There are
details, like the encoding of session identifiers into protocol
messages, that defy easy factorization into a library.

Nevertheless, in the experience of repeated implementa-
tion, certain common patterns have emerged that are amenable
to modularization and may form the basis of a reusable li-
brary. The two main abstractions are QueuePacketConn and
RemoteMap, which have proved to be useful in every inte-
gration with only minor changes. QueuePacketConn is an
adapter transforms the “push” interface provided by kcp-go
and quic-go into a “pull” interface. The WriteTo method
stores outgoing packets in a queue, from which another part
of the code may process them at its own pace. (On the client,
perhaps batching several packets into one network operation;
on the server, perhaps waiting for an incoming HTTP request
or DNS query to respond to.) The ReadFrom method does
not touch the network, but only draws from a queue of incom-
ing packets, which is filled by a network-aware part of the
code as it received encapsulated packets. QueuePacketConn
depends on RemoteMap, which manages a mapping of re-
mote addresses (i.e., session identifiers) to outgoing queues.
When a peer needs to send packets to a certain session identi-
fier (for example, when an HTTP request arrives bearing that
session identifier and the server needs to fill a response body),
it pulls packets belonging to that session by looking up the
queue in the map. RemoteMap is the abstraction that enables
connection migration and separate simultaneous channels.

kcp-go and quic-go are fully adequate for implementing a
Turbo Tunnel design, though, not being originally intended for
this purpose, they impose a little bit of added implementation
friction. If I were to invent a new protocol for the specific
purpose of being an encapsulated session layer, I would design
the interface somewhat differently. Here is a rough list of
desired features:



• A “pull” interface, not a “push” interface. Rather than
calling a WriteTo callback whenever it wants to send a
packet, the session library should buffer the stream of
outgoing data and only segment it into packets on de-
mand, when calling code requests a packet. The session
library would still be responsible for deciding what actu-
ally goes in the packet (a data-carrying packet, an empty
acknowledgement, or a keepalive, say), and it would be
the caller’s responsibility to poll the session library fre-
quently enough to ensure that packets hit the network in
a somewhat timely manner. This kind of interface would
remove the need for the QueuePacketConn adapter.

If the session library does anything like round-trip
time estimation, the send time should be based on
the time when the packet is produced for the caller.
QueuePacketConn may falsely inflate the round-trip
times seen by kcp-go and quic-go, because it buffers
packets locally for a time before sending them.

• Variable maximum packet size per pull. kcp-go permits
setting a global MTU, a maximum length which no
packet will exceed. However, it would be more conve-
nient if the maximum packet size were not a static global
parameter, but could be set per pull. A good interface
would be “give me a packet of length at most n bytes,
or, if none is available, return immediately with nothing.”
An example of where this would be useful is in the DNS
tunnel server. Each DNS query may support a different
maximum response size. The maximum response size
is conveyed with the query, depends on the recursive
resolver, and cannot be known in advance. Because the
kcp-go MTU is a global setting, the best one can do is
set a conservative limit that is likely to be within the
maximum size of every resolver. A per-packet size limit
would allow adapting downstream packet sizes to each
query and making better use of the available space.

Related to this point, the minimum required packet size
should be on the small size, at most 100 bytes, say. QUIC
requires the client to send a single packet of at least
1200 bytes during the handshake, as a defense against
traffic amplification [12 §8.1]. 1200 bytes is too much
to fit in a single DNS request, for example, which would
require some form of fragmentation beyond QUIC’s own
reassembly if QUIC were used for that purpose; and in a
Turbo Tunnel design, traffic amplification attacks may
not apply, as QUIC packets are likely to be encapsulated
in some protocol other than UDP.

• No built-in cryptography. Coupling the session layer
with a mandatory layer of end-to-end encryption and
authentication is not inherently a bad idea: it means that
it is safe to transmit even plaintext protocols through the
circumvention system while trusting any intermediaries
only with covertness, not with data security. But the cryp-

tographic facilities of KCP and QUIC are either unsuited
to the task, or awkward to work with. kcp-go supports an
optional layer of symmetric-key encryption, which is not
useful in the common circumvention setting of a single
proxy server shared by mutually untrusting clients: they
all know each other’s key. QUIC mandates the use of
TLS for every connection, which overall is a good thing,
but in the circumvention context it can be burdensome
to set up. There’s no Let’s Encrypt for exotic obfuscated
circumvention protocols, so one must manually generate
keys and certificates, and specially configure the client
to pin a server public key, for example. In dnstt, I used
kcp-go with its encryption layer disabled. In its place
I substituted a Noise protocol [16], which is more se-
cure than what kcp-go provides, and easier to set up than
QUIC TLS.

• Few dependencies. Every added dependency is a burden
on maintenance. Tor Browser uses a reproducible build
system that requires enumerating every dependency of
every sub-project and writing a build script for it. The de-
ployment of Snowflake in Turbo Tunnel actually patches
out unused cryptographic and error-correction code from
kcp-go, solely to eliminate dependencies and ease main-
tenance.

6 Related work

Session-like layers have appeared many times in circumven-
tion systems, usually out of necessity in systems that are not
built on a reliable channel like TCP. We will cite a few exam-
ples to highlight the common elements, notably session identi-
fiers and sequence numbers, that inform the Turbo Tunnel idea.
Code Talker Tunnel builds a reliable channel atop UDP by
attaching sequence and acknowledgement numbers [14 §6.2].
OSS similarly embeds sequence and acknowledgement num-
bers into HTTP URLs [9 §4], in order to support retransmis-
sion of lost data when an HTTP request fails. The StegoTorus
chopper breaks a stream into sequence number–tagged pack-
ets, which may be sent over disparate steganographic channels
and arrive out of order [23 §3]; however each channel must
itself be reliable, as StegoTorus does not do retransmission.
Conflux proposes to improve the performance of Tor by split-
ting traffic across multiple simultaneous circuits; to permit
reassembly it introduces a new cell type tagged with a ses-
sion identifier and sequence number [1 §3]. meek includes
a session identifier with each HTTP request to allow disam-
biguating multiple clients in the absence of metadata like the
remote IP address, but punts on the issue of sequencing by
strictly serializing HTTP requests and responses [8 §5]. The
Camouflage system splits traffic across multiple cover chan-
nels: different TCP streams may be assigned to different cover
channels, but each stream can use only one cover channel at a
time [27 §3]. The recent deployment of TapDance prepended



each covert flow with a session identifier [22 §3.2], to enable
the central proxy to concatenate a sequence of short-lived
flows into a long-lived session.

Some circumvention systems currently support tunneling
through QUIC, optionally obfuscated, with UDP as the net-
work transport. Psiphon can run each QUIC packet through
a stream cipher before sending [18]. V2Ray can transform
each QUIC packet to resemble some other UDP-based pro-
tocol, such as SRTP, DTLS, or WeChat video [17]. These
uses of QUIC for circumvention may be viewed as some-
what restricted implementation of Turbo Tunnel, with QUIC
serving as the session and reliability layer, and lightweight
packet-by-packet obfuscation on top.

MASQUE [19] is a proposal to colocate covert proxy
servers with existing web servers, over HTTP/2 (TLS/TCP) or
HTTP/3 (QUIC/UDP). Despite the use of QUIC, MASQUE
is not really an example of the Turbo Tunnel idea. The key
difference is that MASQUE puts QUIC on the outside of the
protocol stack, not the inside, and makes QUIC itself act as
the obfuscation layer, with the goal of blending in with nor-
mal web traffic. Alternatively, MASQUE could be regarded
as an optimization in which the same protocol (QUIC) works
across three layers: session/reliability, obfuscation, and net-
work transport (refer to Figure 1). The observation is that not
only is QUIC a convention session protocol, it also makes
a good cover protocol, because of its encrypted-by-default
nature and its increasing use on the Internet. Collapsing three
layers into one avoids the overhead of encapsulating QUIC
packets into some other protocol. The efficiency comes at the
loss of some flexibility: the obfuscation of MASQUE is not
“pluggable”; the only option for obfuscation is as web traffic.

History and availability

The Turbo Tunnel idea was developed in a series of posts to
the Net4People BBS circumvention discussion forum [15]:

#9 Aug. 2019 Manifesto.
#14 Oct. 2019 Protocol evaluation and obfs4.
#21 Dec. 2019 meek.
#30 Apr. 2020 DNS tunnel.
#35 May 2020 Snowflake.

obfs4 The changes to obfs4 remain in private branches.
https://gitlab.torproject.org/dcf/obfs4/tree/reconnecting-kcp
https://gitlab.torproject.org/dcf/obfs4/tree/reconnecting-quic

meek The changes to meek remain in a private branch.
https://gitweb.torproject.org/pluggable-transports/meek.git/
log/?h=turbotunnel

dnstt The home page has downloads and documentation.
https://www.bamsoftware.com/software/dnstt/

Snowflake Turbo Tunnel–enabled Snowflake is part of the
alpha release of Tor Browser since version 9.5a13 for desktop
and 10.0a1 for Android. The Turbo Tunnel code has been
merged into the main development branch.
https://www.torproject.org/download/alpha/
https://gitweb.torproject.org/pluggable-transports/snowflake.
git/
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