
Threat modeling and circumvention of Internet censorship

by

David Fifield

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor J.D. Tygar, Chair
Professor Deirdre Mulligan

Professor Vern Paxson

Fall 2017

1

Abstract

Threat modeling and circumvention of Internet censorship

by

David Fifield

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor J.D. Tygar, Chair

Research on Internet censorship is hampered by a lack of adequate models of censor behavior,
encompassing both censors’ current practice and their likely future evolution. Censor models
guide the development of circumvention systems, so it is important to get them right. A
censor model should be understood not only as a set of capabilities—such as the ability to
monitor network traffic—but also as a set of priorities constrained by resource limitations. A
circumvention system designed under inadequate assumptions runs the risk of being either
easily blocked, or impractical to deploy.

My thesis research will be concerned with developing empirically informed censor models
and practical, effective circumvention systems to counter them. My goal is to move the
field away from seeing the censorship problem as a cat-and-mouse game that affords only
incremental and temporary advancements. We should instead state the hypotheses and
assumptions under which our circumvention designs will work—with the designs being more
or less practical depending on how well the hypotheses and assumptions match the behavior
of real-world censors.

i

Acknowledgements

here be dragonŊ

Contents

1 Introduction 1
1.1 Scope . 1
1.2 My background . 3

2 Principles of circumvention 5
2.1 Collateral damage . 7
2.2 Content obfuscation strategies . 9
2.3 Address blocking resistance strategies . 11
2.4 Spheres of influence and visibility . 14
2.5 Early censorship and circumvention . 15

3 Understanding censors 17
3.1 Censorship measurement studies . 18
3.2 The evaluation of circumvention systems . 23

4 Active probing 24
4.1 History of active probing research . 26
4.2 Types of probes . 28
4.3 Probing infrastructure . 31
4.4 Fingerprinting the probers . 31

5 Time delays in censors’ reactions 33
5.1 The experiment . 35
5.2 Results from China . 37
5.3 Results from Iran . 44
5.4 Results from Kazakhstan . 45

6 Domain fronting 47
6.1 Work related to domain fronting . 49
6.2 A pluggable transport for Tor . 50
6.3 An unvarnished history of meek deployment 51

7 Snowflake 62
7.1 Design . 63
7.2 WebRTC fingerprinting . 65

8 Don’t call it a conclusion 68

Bibliography 69

Index 86

ii

Chapter 1

Introduction

This is a thesis about Internet censorship. Specifically, it is about two threads of research
that have occupied my attention for the past several years: gaining a better understanding of
how censors work, and fielding systems that circumvent their restrictions. These two topics
drive each other: better understanding leads to better circumvention systems that take into
account censors’ strengths and weaknesses; and the deployment of circumvention systems
affords an opportunity to observe how censors react to changing circumstances. The output
of my research takes two forms: models that describe how censors behave today and how
they may evolve in the future, and tools for circumvention that are sound in theory and
effective in practice.

1.1 Scope

Censorship is an enormous topic, and Internet censorship is hardly smaller. In order to deal
with the subject in detail, it is necessary to limit the scope. My research is on an important
special case of censorship, which I call the “border firewall.” It is illustrated in Figure 1.1.

A client resides within a network that is entirely controlled by a censor . Within the
controlled network, the censor may observe, modify, inject, or block any communication along

Figure 1.1: In the border firewall scenario, a client within a censor-controlled network wants to
reach a destination on the outside.

1

CHAPTER 1. INTRODUCTION 2

any link. The client’s computer, however, is trustworthy and not controlled by the censor.
The censor tries to prevent some subset of the client’s communication with the wider Internet,
for instance by blocking those that discuss certain topics, that are destined to certain network
addresses, or that use certain protocols. The client’s goal is to evade the censor’s controls
and communicate with some destination that lies outside the censor’s network; successfully
doing so is called circumvention. Circumvention means somehow safely traversing a hostile
network, eluding detection and blocking. The censor does not control the network outside its
border; it may send messages to the outside world, but it cannot control them after they
have traversed the border.

This abstract model is a good starting point, but it is not the whole story. We will
have to adapt it to fit different situations, sometimes relaxing and sometimes strengthening
assumptions. For example, the censor may be weaker than assumed: it may observe only
the links that cross the border, not those that lie wholly inside; it may not be able to fully
inspect every packet; or there may be deficiencies or dysfunctions in its detection capabilities.
Or the censor may be stronger: while not fully controlling outside networks, it may perhaps
exert outside influence to discourage network operators from assisting in circumvention. The
client may be limited, for technical or social reasons, in the software and hardware they can
use. The destination may knowingly cooperate with the client’s circumvention effort, or may
not. There are many possible complications, reflecting the messiness and diversity of dealing
with real censors. Adjusting the basic model to reflect real-world actors’ motivations and
capabilities is the heart of threat modeling . In particular, what makes circumvention possible
at all is the censor’s motivation to block only some, but not all, of the incoming and outgoing
communications—this assumption will be a major focus of the next chapter.

It is not hard to see how the border firewall model relates to censorship in practice. In
a common case, the censor is the government of a country, and the limits of its controlled
network correspond to the country’s borders. A government typically has the power to enforce
laws and control network infrastructure inside its borders, but not outside. However this is
not the only case: the boundaries of censorship do not always correspond to the border of a
country. Content restrictions may vary across geographic locations, even within the same
country—Wright et al. [203] identified some reasons why this might be. A good model for
some places is not a single unified regime, but rather several autonomous service providers,
each controlling and censoring its own portion of the network, perhaps coordinating with
others about what to block and perhaps not. Another important case is that of a university
or corporate network, in which the only outside network access is through a single gateway
router, which tries to enforce a policy on what is acceptable and what is not. These smaller
networks often differ from national- or ISP-level networks in interesting ways, for instance
with regard to the amount of overblocking they are willing to tolerate, or the amount of
computation they can afford to spend on each communication.

Here are examples of forms of censorship that are in scope:

• blocking IP addresses

• blocking specific network protocols

• blocking DNS resolution for certain domains

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 1. INTRODUCTION 3

• blocking keywords in URLs

• parsing application-layer data (“deep packet inspection”)

• statistical and probabilistic traffic classification

• bandwidth throttling

• active scanning to discover the use of circumvention

Some other censorship-related topics that are not in scope include:

• domain takedowns (affecting all clients globally)

• server-side blocking (servers that refuse to serve certain clients)

• forum moderation and deletion of social media posts

• anything that takes place entirely within the censor’s network and does not cross the
border

• deletion-resistant publishing in the vein of the Eternity Service [9] (what Köpsell and
Hillig call “censorship resistant publishing systems” [119 §1]), except insofar as access
to such services may be blocked

Parts of the abstract model are deliberately left unspecified, to allow for the many
variations that arise in practice. The precise nature of “blocking” can take many forms, from
packet dropping, to injection of false responses, to softer forms of disruption such as bandwidth
throttling. Detection does not have to be purely passive. The censor may to do work outside
the context of a single connection; for example, it may compute aggregate statistics over
many connections, make lists of suspected IP addresses, and defer some analysis for offline
processing. The client may cooperate with other parties inside and outside the censor’s
network, and indeed almost all circumvention will require the assistance of a collaborator on
the outside.

It is a fair criticism that the term “Internet censorship” in the title overreaches, given
that I am talking only about one specific manifestation of censorship, albeit an important
one. I am sympathetic to this view, and I acknowledge that far more topics could fit under
the umbrella of Internet censorship. Nevertheless, for consistency and ease of exposition, in
this document I will continue to use “Internet censorship” without further qualification to
mean the border firewall case.

1.2 My background

This document describes my research experience from the past five years. The next chapter,
“Principles of circumvention,” is the thesis of the thesis, in which I lay out opinionated general
principles of the field of circumvention. The remaining chapters are split between the topics
of modeling and circumvention.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 1. INTRODUCTION 4

One’s point of view is colored by experience. I will therefore briefly describe the background
to my research. I owe much of my experience to collaboration with the Tor Project, producers
of the Tor anonymity network. whose anonymity network has been the vehicle for deployment
of my circumvention systems. Although Tor was not originally intended as a circumvention
system, it has grown into one thanks to pluggable transports, a modularization system for
circumvention implementations. I know a lot about Tor and pluggable transports, but I have
less experience (especially implementation experience) with other systems, particularly those
that are developed in languages other than English. And while I have plenty of operational
experience—deploying and maintaining systems with real users—I have not been in a situation
where I needed to circumvent regularly, as a user.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

Chapter 2

Principles of circumvention

In order to understand the challenges of circumvention, it helps to put yourself in the mindset
of a censor. A censor has two high-level functions: detection and blocking. Detection is a
classification problem: the censor prefers to permit some communications and deny others,
and so it must have some procedure for deciding which communications fall in which category.
Blocking follows detection. Once the censor detects some prohibited communication, it must
take some action to stop the communication, such as terminating the connection at a network
router. Censorship requires both detection and blocking. (Detection without blocking would
be called surveillance, not censorship.) The flip side of this statement is that circumvention
has two ways to succeed: by eluding detection, or, once detected, by somehow resisting the
censor’s blocking action.

A censor is, then, essentially a traffic classifier coupled with a blocking mechanism.
Though the design space is large, and many complications are possible, at its heart a censor
must decide, for each communication, whether to block or allow, and then effect blocks
as appropriate. Like any classifier, a censor is liable to make mistakes. When the censor
fails to block something that it would have preferred to block, it is an error called a false
negative; when the censor accidentally blocks something that it would have preferred to allow,
it is a false positive. Techniques to avoiding detection are often called “obfuscation,” and
the term is an appropriate one. It reflects not an attitude of security through obscurity;
but rather a recognition that avoiding detection is about making the censor’s classification
problem more difficult, and therefore more costly. Forcing the censor to trade false positives
for false negatives is the core of all circumvention that is based on avoiding detection. The
costs of misclassifications cannot be understood in absolute terms: they only have meaning
relative to a specific censor and its resources and motivations. Understanding the relative
importance that a censor assigns to classification errors—knowing what it prefers to allow
and to block—is key to knowing what what kind of circumvention will be successful. Through
good modeling, we can make the tradeoffs less favorable for the censor and more favorable
for the circumventor.

The censor may base its classification decision on whatever criteria it finds practical. I
like to divide detection techniques into two classes: detection by content and detection by
address. Detection by content is based on the content or topic of the message: keyword
filtering and protocol identification fall into this class. Detection by address is based on the
sender or recipient of the message: IP address blacklists and DNS response tampering fall

5

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 6

into this class. An “address” may be any kind of identifier: an IP address, a domain name,
an email address. Of these two classes, my experience is that detection by address is harder
to defeat. The distinction is not perfectly clear because there is no clear separation between
what is content and what is an address: the layered nature of network protocols means that
one layer’s address is another layer’s content. Nevertheless, I find it useful to think about
detection techniques in these terms.

The censor may block the address of the destination, preventing direct access. Any
communication between the client and the destination must therefore be indirect. The
indirect link between client and destination is called a proxy , and it must do two things:
provide an unblocked address for the client to contact; and somehow mask the contents of
the channel and the eventual destination address. I will use the word “proxy” expansively to
encompass any kind of intermediary, not only a single host implementing a proxy protocol
such an HTTP proxy or SOCKS proxy. A VPN (virtual private network) is also a kind of
proxy, as is the Tor network, as may be a specially configured network router. A proxy is
anything that acts on a client’s behalf to assist in circumvention.

Proxies solve the first-order effects of censorship (detection by content and address), but
they induce a second-order effect: the censor must now seek out and block proxies, in addition
to the contents and addresses that are its primary targets. This is where circumvention
research really begins: not with access to the destination per se, but with access to a
proxy, which transitively gives access to the destination. The censor attempts to deal with
detecting and blocking communication with proxies using the same tools it would for any
other communication. Just as it may look for forbidden keywords in text, it may look for
distinctive features of proxy protocols; just as it may block politically sensitive web sites, it
may block the addresses of any proxies it can discover. The challenge for the circumventor is
to use proxy addresses and proxy protocols that are difficult for the censor to detect or block.

The way of organizing censorship and circumvention techniques that I have presented is not
the only one. Köpsell and Hillig [119 §4] divide detection into “content” and “circumstances”;
their “circumstances” include addresses and also features that I consider more content-like:
timing, data transfer characteristics, and protocols. Winter [198 §1.1] divides circumvention
into three problems: bootstrapping, endpoint blocking, and traffic obfuscation. Endpoint
blocking and traffic obfuscation correspond to my detection by address and detection by
content; bootstrapping is the challenge of getting a copy of circumvention software and
discovering initial proxy addresses. I tend to fold bootstrapping in with address-based
detection; see Section 2.3. Khattak, Elahi, et al. break detection into four aspects [115 §2.4]:
destinations, content, flow properties, and protocol semantics. I think of their “content,”
“flow properties,” and “protocol semantics” as all fitting under the heading of content.
My split between address and content mostly corresponds to Tschantz et al.’s “setup”
and “usage” [182 §V] and Khattak, Elahi, et al.’s “communication establishment” and
“conversation” [115 §3.1]. What I call “detection” and “blocking,” Khattak, Elahi, et al. call
“fingerprinting” and “direct censorship” [115 §2.3], and Tschantz et al. call “detection” and
“action” [182 §II].

A major difficulty in developing circumvention systems is that however much you model and
try to predict the reactions of a censor, real-world testing is expensive. If you really want to test
a design against a censor, not only must you write and deploy an implementation, integrate it
with client-facing software like web browser, and work out details of its distribution—you must

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 7

also attract enough users to merit a censor’s attention. Any system, even a fundamentally
broken one, will work to circumvent most censors, as long as it is used only by one or only a
few clients. The true test arises only after the system has begun to scale and the censor to
fight back. This phenomenon may have contributed to the unfortunate characterization of
censorship and circumvention as a cat-and-mouse game: deploying a flawed circumvention
system, watching it become more popular and then get blocked, then starting over again with
another similarly flawed system. In my opinion, the cat-and-mouse game is not inevitable,
but is a consequence of inadequate understanding of censors. It is possible to develop systems
that resist blocking—not absolutely, but quantifiably, in terms of costs to the censor—even
after they have become popular.

2.1 Collateral damage

What prevents the censor from shutting down all connectivity within its network, trivially
preventing the client from reaching any destination? The answer is that the censor derives
benefits from allowing network connectivity, other than the communications which it wants
to censor. Or to put it another way: the censor incurs a cost when it overblocks: accidentally
blocks something it would have preferred to allow. Because it wants to block some things
and allow others, the censor is forced to run as a classifier. In order to avoid harm to itself,
the censor permits some measure of circumvention traffic.

The cost of false positives is of so central importance to circumvention that researchers
have a special term for it: collateral damage. The term is a bit unfortunate, evoking as it
does negative connotations from other contexts. It helps to focus more on the “collateral”
than the “damage”: collateral damage is any cost experienced by the censor as a result
of incidental blocking done in the course of censorship. It must trade its desire to block
forbidden communications against its desire to avoid harm to itself, balance underblocking
with overblocking. Ideally, we force the censor into a dilemma: unable to distinguish between
circumvention and other traffic, it must choose either to allow circumvention along with
everything else, or else block everything and suffer maximum collateral damage. It is not
necessary to reach this ideal fully before circumvention becomes possible. Better obfuscation
drives up the censor’s error rate and therefore the cost of any blocking. Ideally, the potential
“damage” is never realized, because the censor sees the cost as being too great.

Collateral damage, being an abstract “cost,” can take many forms. It may come in
the form of civil discontent, as people try to access web sites and get annoyed with the
government when unable to do so. It may be reduced productivity, as workers are unable
to access resources they need to to their job. This is the usual explanation offered for why
the Great Firewall of China has never blocked GitHub for for more than a few days, despite
GitHub’s being used to host and distribute circumvention software: GitHub is so deeply
integrated into software development, that programmers cannot get work done when it is
blocked.

Collateral damage, as with other aspects of censorship, cannot be understood in isolation,
but only in relation to a particular censor. Suppose that blocking one web site results in
the collateral blocking of a hundred more. Is that a large amount of collateral damage? It
depends. Are those other sites likely to be visited by clients in the censor’s network? Are

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 8

they in the local language? Do professionals and officials rely on them to get their job done?
Is someone in the censorship bureau likely to get fired as a result of their blocking? If the
answers to these question is yes, then yes, the collateral damage is likely to be high. But if
not, then the censor could take or leave those hundred sites—it doesn’t matter. Collateral
damage is not just any harm that results from censorship, it is harm that is felt by the censor.

Censors may take actions to reduce collateral damage while still blocking most of what
they intend to. (Another way to think of it is: reducing false positives without increasing
false negatives.) For example, it has been repeatedly documented—by Clayton et al. [30],
Winter and Lindskog [199], and Fifield, Tsai, and Zhong (Chapter 5), for example—that the
Great Firewall prefers to block individual ports rather than blocking an entire IP address,
probably in a bid to reduce collateral damage. In Chapter 6 we will see a system whose
blocking resistance is based on widely used web services—the argument is that to block the
circumvention system, the censor would have to block the entire web service. However this
argument requires that the circumvention system’s use of the web service be indistinguishable
from other uses—otherwise the censor may selectively block only the connections used for
circumvention. Local circumstances may serve to reduce collateral damage: for example if a
domestic replacement exists for a foreign service, the censor may block the foreign service
more easily.

The censor’s reluctance to cause collateral damage is what makes circumvention possible
in general. (There are some exceptions, discussed in the next section, where the censor can
detect but for some reason cannot block.) To deploy a circumvention system is to make a
bet: that the censor cannot field a classifier that adequately distinguishes the traffic of the
circumvention system from other traffic which, if blocked, would result in collateral damage.
Even steganographic circumvention channels that mimic some other protocol ultimately derive
their blocking resistance from the potential of collateral damage. For example, a protocol that
imitates HTTP can be blocked by blocking HTTP—the question then is whether the censor
can afford to block HTTP. And that’s in the best case, assuming that the circumvention
protocol has no “tell” that enables the censor to distinguish it from the cover protocol it is
trying to imitate. Indistinguishability is a necessary but not sufficient condition for blocking
resistance: that which you are trying to be indistinguishable from must also have sufficient
collateral damage. It’s no use to have a perfect steganographic imitation of a protocol that
the censor doesn’t mind blocking.

In my opinion, collateral damage provides a more productive way to think about the
behavior of censors than do alternatives. It takes into account different censors’ differing
resources and motivations, and so is more useful for generic modeling. Moreover, it gets to
the heart of what makes traffic resistant to blocking. There are other ways of characterizing
censorship resistance. Many authors—Burnett et al. [24], and Jones et al. Jones2014a, for
instance—call the essential element “deniability,” meaning that a client can plausibly claim
to have been doing something other than circumventing when confronted with a log of
their network activity. Khattak, Elahi, et al. [115 §4] consider “deniability” separately from
“unblockability.” Houmansadr et al. [105, 106, 107] used the term “unobservability,” which I
feel fails to capture the censor’s essential function of distinguishing, not only observation.
Brubaker et al. [22] used the term “entanglement,” which I found enlightening. What they
call entanglement I think of as indistinguishability—keeping in mind that that which you are
trying to be indistinguishable from must be valued by the censor. Collateral damage provides

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 9

a way to make statements about censorship resistance quantifiable, at least in a loose sense.
Rather than saying, “the censor cannot block X,” or even, “the censor is unwilling to block
X,” it is better to say “in order to block X, the censor would have to do Y ,” where Y is some
action bearing a cost for the censor. A statement like this makes it clear that some censors
may be able to afford the cost of blocking and others may not; there is no “unblockability”
in absolute terms. Now, actually quantifying the value of Y is a task in itself, by no means
a trivial one. A challenge for future work in this field is to assign actual numbers (e.g., in
dollars) to the costs borne by censors. If a circumvention system becomes blocked, it may
simply mean that the circumventor overestimated the collateral damage or underestimated
the censor’s capacity to absorb it.

We have observed that the risk of collateral damage is what prevents the censor from
shutting down the network completely—and yet, censors do occasionally enact shutdowns or
daily “curfews.” Shutdowns are costly—West [191] looked at 81 shutdowns in 19 countries
in 2015 and 2016, and estimated that they collectively cost $2.4 billion in losses to gross
domestic product. Deloitte [40] estimated that shutdowns cost millions of dollars per day per
10 million population, the amount depending on a country’s level of connectivity. This does
not necessarily contradict the theory of collateral damage. It is just that, in some cases, a
censor reckons that the benefits of a shutdown outweigh the costs. As always, the outcome
depends on the specific censor: censors that don’t benefit as much from the Internet don’t
have as much to lose by blocking it. The fact that shutdowns are limited in duration shows
that even censors that can afford to a shutdown cannot afford to keep it up forever.

Complicating everything is the fact that censors are not bound to act rationally. Like any
other large, complex entity, a censor is prone to err, to act impetuously, to make decisions
that cause more harm than good. The imposition of censorship in the first place, I suggest,
is exactly such an irrational action, retarding progress at the greater societal level.

2.2 Content obfuscation strategies

There are two general strategies to counter content-based detection. The first is to mimic
some content that the censor allows, like HTTP or email. The second is to randomize the
content, making it dissimilar to anything that the censor specifically blocks.

Tschantz et al. [182] call these two strategies “steganography” and “polymorphism”
respectively. It is not a strict classification—any real system will incorporate a bit of both.
The two strategies reflect they reflect differing conceptions of censors. Steganography works
against a “whitelisting” or “default-deny” censor, one that permits only a set of specifically
enumerated protocols and blocks all others. Polymorphism, on the other hand, fails against a
whitelisting censor, but works against a “blacklisting” or “default-allow” censor, one that
blocks a set of specifically enumerated protocols and allows all others.

This is not to say that steganography is strictly superior to polymorphism—there are
tradeoffs in both directions. Effective mimicry can be difficult to achieve, and in any
case its effectiveness can only be judged against a censor’s sensitivity to collateral damage.
Whitelisting, by its nature, tends to cause more collateral damage than blacklisting. And just
as obfuscation protocols are not purely steganographic or polymorphic, real censors are not
purely whitelisting or blacklisting. Houmansadr et al. [105] exhibited weaknesses in “parrot”

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 10

circumvention systems that imperfectly mimic a cover protocol. Mimicking a protocol in
every detail, down to its error behavior, is difficult, and any inconsistency is a potential
feature that a censor may exploit. Wang et al. [186] found that some of the proposed attacks
against parrot systems would be impractical due to high false-positive rates, but offered other
attacks designed for efficiency and low false positives. Geddes et al. [96] showed that even
perfect imitation may leave vulnerabilities due to mismatches between the cover protocol and
the carried protocol. For instance, randomly dropping packets may disrupt circumvention
more than normal use of the cover protocol. It’s worth noting, though, that apart from
active probing and perhaps entropy measurement, most of the attacks proposed in academic
research have not been used by censors in practice.

Some systematizations (for example those of Brubaker et al. [22 §6]; Wang et al. [186 §2];
and Khattak, Elahi, et al. [115 §6.1]) further subdivide steganographic systems into those
based on mimicry (attempting to replicate the behavior of a cover protocol) and tunneling
(sending through a genuine implementation of the cover protocol). I do not find the distinction
very useful, except when discussing concrete implementation choices. To me, there is no clear
division: there are various degrees of fidelity in imitation, and tunneling only tends to offer
higher fidelity than does mimicry.

I will list some circumvention systems that represent the steganographic strategy. In-
franet [62], way back in 2002, built a covert channel within HTTP, encoding upstream data as
crafted requests and downstream data as steganographic images. StegoTorus [190] (2012) uses
custom encoders to make traffic resemble common HTTP file types, such as PDF, JavaScript,
and Flash. SkypeMorph [142] (2012) mimics a Skype video call. FreeWave [107] (2013) mod-
ulates a data stream into an acoustic signal and transmits it over VoIP. Format-transforming
encryption, or FTE [58] (2013), force traffic to conform to a user-specified syntax: if you can
describe it, you can imitate it. Despite receiving much research attention, steganographic
systems have not been as used in practice as polymorphic ones. Of the listed systems, only
FTE has seen substantial deployment.

There are many examples of the randomized, polymorphic strategy. An important subclass
of these comprises the so-called look-like-nothing systems that encrypt a stream without
any plaintext header or framing information, so that it appears to be a uniformly random
byte sequence. A pioneering design was the obfuscated-openssh of Bruce Leidl [121], which
aimed to hide the plaintext packet metadata in the SSH protocol. obfuscated-openssh worked,
in essence, by first sending an encryption key, and then sending ciphertext encrypted with
that key. The encryption of the obfuscation layer was an additional layer, independent of
SSH’s ordinary encryption. A censor could, in principle, passively detect and deobfuscate the
protocol by recovering the key and using it to decrypt the rest of the stream. obfuscated-
openssh could optionally incorporate a pre-shared password into the key derivation function,
which would protect against this attack. Dust [195], similarly randomized bytes (at least in
its v1 version—later versions permitted fitting to distributions other than uniform). It was
not susceptible to passive deobfuscation because it required an out-of-band key exchange to
happen before each session. Shadowsocks [170] is a lightweight encryption layer atop a simple
proxy protocol.

There is a line of successive look-like-nothing protocols—obfs2, obfs3, ScrambleSuit, and
obfs4—which I like because they illustrate the mutual advances of censors and circumventors
over several years. obfs2 [112], which debuted in 2012 in response to blocking in Iran [43], uses

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 11

very simple obfuscation inspired by obfuscated-openssh: it is essentially equivalent to sending
an encryption key, then the rest of the stream encrypted with that key. obfs2 is detectable,
with no false negatives and negligible false positives, by even a passive censor who knows
how it works; and it is vulnerable to active probing attacks, where the censor speculatively
connects to servers to see what protocols they use. However, it sufficed against the keyword-
and pattern-based censors of its era. obfs3 [113]—first available in 2013 but not really released
to users until 2014 [153]—was designed to fix the passive detectability of its predecessor.
obfs3 employs a Diffie–Hellman key exchange that prevents easy passive detection, but it can
still be subverted by an active man in the middle, and remains vulnerable to active probing.
(The Great Firewall of China had begun active-probing for obfs2 by January 2013, and for
obfs3 by August 2013—see Table 4.2.) ScrambleSuit [200], first available to users in 2014 [28],
arose in response to the active-probing of obfs3. Its innovations were the use of an out-of-
band secret to authenticate clients, and traffic shaping techniques to perturb the underlying
stream’s statistical properties. When a client connects to a ScrambleSuit proxy, it must
demonstrate knowledge of the out-of-band secret before the proxy will respond, which prevents
active probing. obfs4 [207], first available in 2014 [155], is an incremental advancement on
ScrambleSuit that uses more efficient cryptography, and additionally authenticates the key
exchange to prevent active man-in-the-middle attacks.

There is an advantage in designing polymorphic protocols, as opposed to steganographic
ones, which is that every proxy can potentially have its own characteristics. ScrambleSuit
and obfs4, in addition to randomizing packet contents, also shape packet sizes and timing
to fit random distributions. Crucially, the chosen distributions are consistent within each
proxy, but vary across proxies. That means that even if a censor is able to build a profile for
a particular proxy, it is not necessarily useful for detecting other instances.

2.3 Address blocking resistance strategies

The first-order solution for reaching a destination whose address is blocked is to instead
route through a proxy. But a single, static proxy is not much better than direct access,
for circumvention purposes—a censor can block the proxy just as easily as it can block the
destination. Circumvention systems must come up with ways of addressing this problem.

There are two reasons why resistance to blocking by address is challenging. The first is
due to the nature of network routing: the client must, somehow, encode the address of the
destination into the messages it sends. The second is the insider attack: legitimate clients
must have some way to discover the addresses of proxies. By pretending to be a legitimate
client, the censor can learn those addresses in the same way.

Compared to content obfuscation, there are relatively few strategies for resistance to
blocking by address. They are basically five:

• sharing private proxies among only a few clients

• having a large population of secret proxies and distributing them carefully

• having a very large population of proxies and treating them as disposable

• proxying through a service with high collateral damage

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 12

• address spoofing

The simplest proxy infrastructure is no infrastructure at all: require every client to set up
and maintain a proxy for their own personal use, or for a few of their friends. As long as
the use of any single address remains low, it may escape the censor’s notice [49 §4.2]. The
problem with this strategy, of course, is usability and scalability. If it were easy for everyone
to set up their own proxy on an unblocked address, they would do it, and blocking by address
would not be a concern. The challenge is making such techniques general so they are usable
by more than experts. uProxy [184] is now working on just that: automating the process of
setting up a proxy on a server.

What Köpsell and Hillig call the “many access points” model [119 §5.2] has been adopted
in some form by many circumvention systems. In this model, there are many proxies in
operation. They may be full-fledged general-purpose proxies, or only simple forwarders to a
more capable proxy. They may be operated by volunteers or coordinated centrally. In any
case, the success of the system hinges on being able to sustain a population of proxies, and
distribute information about them to legitimate users, without revealing too many to the
censor. Both of these considerations pose challenges.

Tor’s blocking resistance design [49], based on secret proxies called “bridges,” was of
this kind. Volunteers run bridges, which report themselves to a central database called
BridgeDB [181]. Clients contact BridgeDB through some unblocked out-of-band channel
(HTTPS, email, or word of mouth) in order to learn bridge addresses. The BridgeDB server
takes steps to prevent the easy enumeration of its database [126]. Each request returns only
a small set of bridges, and repeated requests by the same client return the same small set
(keyed by a hash of the client’s IP address prefix or email address). Requests through the
HTTPS interface require the client to solve a captcha, and email requests are honored only
from the domains of email providers that are known to limit the rate of account creation. The
population of bridges is partitioned into “pools”—one pool for HTTPS distribution, one for
email, and so on—so that if an adversary manages to enumerate one of the pools, it does not
affect the bridges of the others. But even these defenses may not be enough. Despite public
appeals for volunteers to run bridges (for example Dingledine’s initial call in 2007 [44]), there
have never been more than a few thousand of them, and Dingledine reported in 2011 that
the Great Firewall of China managed to enumerate both the HTTPS and email pools [45 §1,
46 §1].

Tor relies on BridgeDB to provide address blocking resistance for all its transports that
otherwise have only content obfuscation. And that is a great strength of such a system. It
enables, to some extent, content obfuscation to be developed independently, and rely on
an existing generic proxy distribution mechanism in order to produce an overall working
system. There is a whole line of research, in fact, on the question of how best to distribute
information about an existing population of proxies, which is known as the “proxy distribution
problem” or “proxy discovery problem.” Proposals such as Proximax [137], rBridge [188],
and Salmon [54] aim to make proxy distribution robust by tracking the reputation of clients
and the unblocked lifetimes of proxies.

A way to make proxy distribution more robust against censors (but at the same time less
usable by clients) is to “poison” the set of proxy addresses with the addresses of important
servers, the blocking of which would result in high collateral damage. VPN Gate employed

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 13

this idea [147 §4.2], mixing into the their public proxy list the addresses of root DNS servers
and Windows Update servers.

Apart from “in-band” discovery of bridges via subversion of a proxy distribution system,
one must also worry about “out-of-band” discovery, for example by mass scanning [46 §6,
49 §9.3]. Durumeric et al. found about 80% of existing (unobfuscated) Tor bridges [57 §4.4]
by scanning all of IPv4 on a handful of common bridge ports. Matic et al. had similar results
in 2017 [136 §V.D], using public search engines in lieu of active scanning. The best solution
to the scanning problem is to do as ScrambleSuit [200], obfs4 [207], and Shadowsocks [170] do,
and associate with each proxy a secret, without which a scanner cannot initiate a connection.
Scanning for bridges is closely related to active probing, the topic of Chapter 4.

Another way of achieving address blocking resistance is to treat proxies as temporary and
disposable, rather than permanent and valuable. This is the idea underlying flash proxy [85]
and Snowflake (Chapter 7). Most proxy distribution strategies are designed around proxies
lasting at least on the order days. In contrast, disposable proxies may last only minutes or
hours. Setting up a Tor bridge or even something lighter-weight like a SOCKS proxy still
requires installing some software on a server somewhere. Flash proxy and Snowflake proxies
have a low set-up and tear-down cost: you can run one just by visiting a web page. These
designs do not need a sophisticated proxy distribution strategy as long as the rate of proxy
creation is kept higher than the censor’s rate of discovery.

The logic behind diffusing many proxies widely is that a censor would have to block large
swaths of the Internet in order to effectively block them. However, it also makes sense to
take the opposite tack: have just one or a few proxies, but choose them to have high enough
collateral damage that the censor does not dare block them. Refraction networking [160] puts
proxy capability into network routers—in the middle of paths, rather than at the end. Clients
cryptographically tag certain flows in a way that is invisible to the censor but detectable to a
refraction-capable router, which redirects from its apparent destination to some other, covert
destination. In order to prevent circumvention, the censor has to induce routes that avoid the
special routers [168], which is costly [108]. Domain fronting [90] has similar properties. Rather
than a router, it uses another kind of network intermediary: a content delivery network.
Using properties of HTTPS, a client may request one site while appearing (to the censor)
to request another. Domain fronting is the topic of Chapter 6. The big advantage of this
general strategy is that the proxies do not need to be kept secret from the censor.

The final strategy for address blocking resistance is address spoofing. The notable design
in this category is CensorSpoofer [187]. A CensorSpoofer client never communicates directly
with a proxy. It sends upstream data through a low-bandwidth, indirect channel such as email
or instant messaging, and downstream data through a simulated VoIP conversation, spoofed
to appear as if it were coming from some unrelated dummy IP address. The asymmetric
design is feasible because of the nature of web browsing: typical clients send much less than
they receive. The client never even needs to know the actual address of the proxy, meaning
that CensorSpoofer has high resistance to insider attack: even running the same software
as a legitimate client, the censor does not learn enough information to effect a block. The
idea of address spoofing goes back farther; as early as 2001, TriangleBoy [167] employed
lighter-weight intermediate proxies that simply forwarded client requests to a long-lived proxy
at a static, easily blockable address. In the downstream direction, the long-lived proxy would,
rather than route back through the intermediate proxy, only spoof its responses to look as

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 14

if they came from proxy. TriangleBoy did not match CensorSpoofer’s resistance to insider
attack, because clients still needed to find and communicate directly with a proxy, so the
whole system basically reduced to the proxy discovery problem, despite the use of address
spoofing.

2.4 Spheres of influence and visibility

It is usual to assume, conservatively, that whatever the censor can detect, it also can block;
that is, to ignore blocking per se and focus only on the detection problem. We know from
experience, however, that there are cases in practice where a censor’s reach exceeds its grasp:
where it is able to detect circumvention but for some reason cannot block it. It may be useful
to consider this possibility when modeling. Khattak, Elahi, et al. [115] express it nicely by
subdividing the censor’s network into a sphere of influence within which the censor has active
control, and a potentially larger sphere of visibility within which the censor may only observe,
but not act.

A landmark example of this kind of thinking is the 2006 research on “Ignoring the
Great Firewall of China” by Clayton et al. [30]. They found that the firewall would block
connections by injecting phony TCP RST packets (which cause the connection to be torn
down) or SYN/ACK packets (which cause the connection to become unsynchronized), and
that simply ignoring the anomalous packets rendered blocking ineffective. (Why did the
censor choose to inject its own packets, rather than drop those of the client or server? The
answer is probably that injection is technically easier to achieve, highlighting a limit on the
censor’s power.) One can think of this ignoring as shrinking the censor’s sphere of influence:
it can still technically act within this sphere, but not in a way that actually achieves blocking.
Additionally, intensive measurements revealed many failures to block, and blocking rates that
changed over time, suggesting that even when the firewall intends a policy of blocking, it
does not always succeed.

Another fascinating example of “look, but don’t touch” communication is the “filecasting”
technique used by Toosheh [145], a file distribution service based on satellite television
broadcasts. Clients tune their satellite receivers to a certain channel and record the broadcast
to a USB flash drive. Later, they run a program on the recording that decodes the information
and extracts a bundle of files. The system is unidirectional: clients can only receive the files
that the operators choose to provide. The censor can easily see that Toosheh is in use—it’s
a broadcast, after all—but cannot identify users, or block the signal in any way short of
continuous radio jamming or tearing down satellite dishes.

There are parallels between the study of Internet censorship and that of network intrusion
detection. One is that a censor’s detector may be implemented as a network intrusion
detection system or monitor, a device “on the side” of a communication link that receives
a copy of the packets that flow over the link, but that, unlike a router, is not responsible
for forwarding the packets onward. Another parallel is that censors are susceptible to the
same kinds of evasion and obfuscation attacks that affect network monitors more generally.
In 1998, Ptacek and Newsham [159] and Paxson [150 §5.3] outlined various attacks against
network intrusion detection systems—such as manipulating the IP time-to-live field or sending
overlapping IP fragments—that cause a monitor either to accept what the receiver will reject,

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 15

or reject what the receiver will accept. A basic problem is that a monitor’s position in the
middle of the network does not enable it to predict exactly how each packet will be interpreted
by the endpoints. Cronin et al. [35] posit that the monitor’s conflicting goals of sensitivity
(recording all that is relevant) and selectivity (recording only what is relevant) give rise to an
unavoidable “eavesdropper’s dilemma.”

Monitor evasion techniques can be used to reduce a censor’s sphere of visibility—eliminating
certain traffic features from its consideration. Crandall et al. [32] in 2007 suggested using
IP fragmentation to prevent keyword matching. In 2008 and 2009, Park and Crandall [149]
explicitly characterized the Great Firewall as a network intrusion detection system and found
that a lack of TCP reassembly allowed evading keyword matching. Winter and Lindskog [199]
found that the Great Firewall still did not do TCP segment reassembly in 2012. They
released a tool, brdgrd [196], that by manipulating the TCP window size, prevented the
censor’s scanners from receiving a full response in the first packet, thereby foiling active
probing. Anderson [8] gave technical information on the implementation of the Great Firewall
as it existed in 2012, and observed that it is implemented as an “on-the-side” monitor.
Khattak et al. [116] applied a wide array of evasion experiments to the Great Firewall in
2013, identifying classes of working evasions and estimating the cost to counteract them.
Wang et al. [189] did further evasion experiments against the Great Firewall a few years
later, finding that the firewall had evolved to prevent some previous evasion techniques, and
discovering new ones.

2.5 Early censorship and circumvention

Internet censorship and circumvention began to rise to importance in the mid-1990s, coinciding
with the popularization of the World Wide Web. Even before national-level censorship by
governments became an issue, researchers investigated the blocking policies of personal
firewall products—those intended, for example, for parents to install on the family computer.
Meeks and McCullagh [141] reported in 1996 on the secret blocking lists of several programs.
Bennett Haselton and Peacefire [102] found many cases of programs blocking more than they
claimed, including web sites related to politics and health.

Governments were not far behind in building legal and technical structures to control
the flow of information on the web, in some cases adapting the same technology originally
developed for personal firewalls. The term “Great Firewall of China” first appeared in an
article in Wired [14] in 1997. In the wake of the first signs of blocking by ISPs, people were
thinking about how to bypass filters. The circumvention systems of that era were largely
HTML-rewriting web proxies: essentially a form on a web page into which a client would
enter a URL. The server would fetch the desired page on behalf of the client, and before
returning the response, rewrite all the links and external references in the page to make
them relative to the proxy. CGIProxy [133], SafeWeb [134], Circumventor [101], and the first
version of Psiphon [27] were all of this kind.

These systems were effective against their censors of their day—at least with respect to
the blocking of destinations. They had the major advantage of requiring no special client-side
software other than a web browser. The difficulty they faced was second-order blocking as
censors discovered and blocked the proxies themselves. Circumvention designers deployed

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 16

some countermeasures; for example Circumventor had a mailing list [49 §7.4] which would
send out fresh proxy addresses every few days. A 1996 article by Rich Morin [143] presented
a prototype HTML-rewriting proxy called Rover, which eventually became CGIProxy. The
article predicted the failure of censorship based on URL or IP address, as long as a significant
fraction of web servers ran such proxies. That vision has not come to pass. Accumulating a
sufficient number of proxies and communicating their addresses securely to clients—in short,
the proxy distribution problem—turned out not to follow automatically, but to be a major
sub-problem of its own.

Threat models had to evolve along with censor capabilities. The first censors would be
considered weak by today’s standards, mostly easy to circumvent by simple countermeasures,
such as tweaking a protocol or using an alternative DNS server. (We see the same progression
play out again when countries first begin to experiment with censorship, such as in Turkey in
2014, where alternative DNS servers briefly sufficed to circumvent a block of Twitter [34].)
Not only censors were changing—the world around them was changing as well. In field of
circumvention, which is so heavily affected by concerns about collateral damage, the milieu
in which censors operate is as important as the censors themselves. A good example of this
is the paper on Infranet, the first academic circumvention design I am aware of. Its authors
argued, not unreasonably for 2001, that TLS would not suffice as a cover protocol [62 §3.2],
because the relatively few TLS-using services at that time could all be blocked without much
harm. Certainly the circumstances are different today—domain fronting and all refraction
networking schemes require the censor to permit TLS. As long as circumvention remains
relevant, it will have to change along with changing times, just as censors do.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

Chapter 3

Understanding censors

The main tool we have to build relevant threat models is the natural study of censors. The
study of censors is complicated by difficulty of access: censors are not forthcoming about their
methods. Researchers are obligated to treat censors as a black box, drawing inferences about
their internal workings from their externally visible characteristics. The easiest thing to learn
is the censor’s what—the destinations that are blocked. Somewhat harder is the investigation
into where and how, the specific technical mechanisms used to effect censorship and where
they are deployed in the network. Most difficult to infer is the why, the motivations and goals
that underlie an apparatus of censorship. The why gets to the heart of why circumvention is
even possible: a censoring firewall’s true purpose is not only blocking; the blocking is done in
pursuit of some other goal.

From the survey of measurement studies we may draw some general conclusions. Censors
change over time, and not always in the direction of more restrictions. Censorship differs
greatly across countries, not only in subject but in mechanism and motivation. However it is
reasonable to assume a basic set of capabilities that many censors have in common:

• blocking of specific IP addresses and ports

• control of default DNS servers

• blocking DNS queries

• injection of false DNS responses

• injection of TCP RSTs

• pattern matching / keyword filtering

• application protocol parsing (“deep packet inspection”)

• participation in a circumvention system as a client

• scanning to discover proxies

• throttling connections

• temporary total shutdowns

17

CHAPTER 3. UNDERSTANDING CENSORS 18

Not all censors will be able to—or be motivated to—do all of these. As the amount of traffic
to be handled increases, in-path attacks such as throttling become relatively more expensive.
Whether a particular act of censorship even makes sense will depend on a local cost–benefit
analysis, a weighing of the expected gains against the potential collateral damage. Some
censors may be able to tolerate a brief total shutdown, while for others the importance of the
Internet is too great for such a blunt instrument.

The Great Firewall of China (GFW), because of its unparalleled technical sophistication, is
tempting to use as a model adversary. There has indeed been more research focused on China
than any other country. But the GFW is in many ways an outlier, and not representative of
other censors. A worldwide view is needed.

Questions of ethics are tied to models of censors; e.g., will a censor arrest/harm someone
who is caught circumventing? What URLs are “safe” to probe in a measurement system?
Wright et al. “Fine-Grained Censorship Mapping: Information Sources, Legality and
Ethics” [203]. Jones et al. “Ethical Concerns for Censorship Measurement” [110]. Crandall
et al. “Forgive Us our SYNs: Technical and Ethical Considerations for Measuring Internet
Filtering” [31].

3.1 Censorship measurement studies

A large part of censorship research is composed of studies of censor behavior in the wild.
In this section I summarize past studies, which, taken together, present a picture of censor
behavior in general. They are based on those in an evaluation study done by me and others in
2016 [182 §IV.A]. The studies are diverse and hard to categorize. Here, I have grouped them
according whether they were one-time measurements or long-term projects, and whether they
looked at more than one censor (or country).

Thus published knowledge about censors’ capabilities consists mostly of a series of “spot
checks” with blank areas between them. There have been a few designs proposed to do ongoing
measurements of censorship, such as ConceptDoppler [32] in 2007 and CensMon [169] in 2011,
but these have not lasted long in practice, and for the most part there is an unfortunate lack
of longitudinal and cross-country measurements.

Zittrain and Edelman “Internet filtering in China” [209]. Access Denied [39]. Wright
“Regional Variation in Chinese Internet Filtering” [202]. Mathrani and Alipour “Website
Blocking Across Ten Countries: A Snapshot” [135]. Aase et al. “Whiskey, Weed, and
Wukan on the World Wide Web: On Measuring Censors’ Resources and Motivations” [1].
Dalek et al. “O Pakistan, We Stand on Guard for Thee” [38]. Marquis-Boire et al. “Planet
Blue Coat”[132]. Anderson “Splinternet Behind the Great Firewall of China” [8]. Dalek
et al. “A Method for Identifying and Confirming the Use of URL Filtering Products for
Censorship” [37]. Gill et al. “Characterizing Web Censorship Worldwide: Another Look at
the OpenNet Initiative Data” [97]. Aceto and Pescapè “Analyzing Internet Censorship in
Pakistan” [2]. Gwagwa “A study of Internet-based information controls in Rwanda” [100].

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 3. UNDERSTANDING CENSORS 19

One-shot studies

One of the earliest technical studies of censorship occurred in a place you might not expect, the
German state of North Rhein-Westphalia. In 2003, Dornseif [52] tested ISPs’ implementation
of a controversial legal order to block web sites. While there were many possible ways to
implement the block, none were trivial to implement, nor free of overblocking side effects.
The most popular implementation used DNS tampering, which is returning (or injecting)
false responses to DNS requests for the domain names of the blocked sites. An in-depth
survey of DNS tampering found a variety of implementations, some blocking more and some
blocking less than required by the order. This time period seems to be near the onset of DNS
tampering in general; Dong [51] had reported it in China in late 2002.

Clayton [29] in 2006 studied a “hybrid” blocking system, CleanFeed by the British ISP
BT, that aimed for a better balance of costs and benefits: a “fast path” IP address and port
matcher acted as a prefilter for the “slow path,” a full HTTP proxy. The system, in use since
2004, was designed to block access to any of a secret list of pedophile web sites compiled by a
third party. The author identifies ways to circumvent or attack such a system: use a proxy,
use source routing to evade the blocking router, obfuscate requested URLs, use an alternate
IP address or port, return false DNS results to put third parties on the “bad” list. They
demonstrate that the two-level nature of the blocking system unintentionally makes it an
oracle that can reveal the IP addresses of sites in the secret blocking list.

In 2006, Clayton, Murdoch, and Watson [30] further studied the technical aspects of the
Great Firewall of China. They relied on an observation that the firewall was symmetric,
treating incoming and outgoing traffic equally. By sending web requests from outside the
firewall to a web server inside, they could provoke the same blocking behavior that someone on
the inside would see. They sent HTTP requests containing forbidden keywords (e.g., “falun”)
caused the firewall to inject RST packets towards both the client and server. Simply ignoring
RST packets (on both ends) rendered the blocking mostly ineffective. The injected packets
had inconsistent TTLs and other anomalies that enabled their identification. Rudimentary
countermeasures such as splitting keywords across packets were also effective in avoiding
blocking. The authors of this paper bring up an important point that would become a major
theme of future censorship modeling: censors are forced to trade blocking effectiveness against
performance. In order to cope with high load at a reasonable costs, censors may choose
the architecture of a network monitor or intrusion detection system, one that can passively
monitor and inject packets, but cannot delay or drop them.

Nearly contemporary studies by Wolfgarten [201] and Tokachu [175] found cases of DNS
tampering, search engine filtering, and RST injection caused by keyword detection. In 2007,
Lowe, Winters, and Marcus [127] did detailed experiments on DNS tampering in China. They
tested about 1,600 recursive DNS servers in China against a list of about 950 likely-censored
domains. For about 400 domains, responses came back with bogus IP addresses, chosen
from a set of about 20 distinct IP addresses. Eight of the bogus addresses were used more
than the others: a whois lookup placed them in Australia, Canada, China, Hong Kong, and
the U.S. By manipulating TTLs, the authors found that the false responses were injected
by an intermediate router: the authentic response would be received as well, only later. A
more comprehensive survey [11] of DNS tampering and injection occurred in 2014, giving
remarkable insight into the internal structure of the censorship machines. DNS injection

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 3. UNDERSTANDING CENSORS 20

happens only at border routers. IP ID and TTL analysis show that each node is a cluster of
several hundred processes that collectively inject censored responses. They found 174 bogus
IP addresses, more than previously documented. They extracted a blacklist of about 15,000
keywords.

The Great Firewall, because of its unusual sophistication, has been an enduring object
of study. Part of what makes it interesting is its many blocking modalities, both active
and passive, proactive and reactive. The ConceptDoppler project of Crandall et al. [32]
measured keyword filtering by the Great Firewall and showed how to discover new keywords
automatically by latent semantic analysis, using the Chinese-language Wikipedia as a corpus.
They found limited statefulness in the firewall: sending a naked HTTP request without a
preceding SYN resulted in no blocking. In 2008 and 2009, Park and Crandall [149] further
tested keyword filtering of HTTP responses. Injecting RST packets into responses is more
difficult than doing the same to requests, because of the greater uncertainty in predicting
TCP sequence numbers once a session is well underway. In fact, RST injection into responses
was hit or miss, succeeding only 51% of the time, with some, apparently diurnal, variation.
They also found inconsistencies in the statefulness of the firewall. Two of ten injection
servers would react to a naked HTTP request; that it, one sent outside of an established
TCP connection. The remaining eight of ten required an established TCP connection. Xu
et al. [205] continued the theme of keyword filtering in 2011, with the goal of discovering
where filters are located at the IP and AS levels. Most filtering is done at border networks
(autonomous systems with at least one non-Chinese peer). In their measurements, the firewall
was fully stateful: blocking was never triggered by an HTTP request outside an established
TCP connection. Much filtering occurs at smaller regional providers, rather than on the
network backbone.

Winter and Lindskog [199], and later Ensafi et al. [60] did a formal investigation into
active probing, a reported capability of the Great Firewall since around October 2011. They
focused on the firewall’s probing of Tor and its most common pluggable transports.

Anderson [5] documented network throttling in Iran, which occurred over two major
periods between 2011 and 2012. Throttling degrades network access without totally blocking
it, and is harder to detect than blocking. Academic institutions were affected by throttling,
but less so than other networks. Aryan et al. [13] tested censorship in Iran during the two
months before the June 2013 presidential election. They found multiple blocking methods:
HTTP request keyword filtering, DNS tampering, and throttling. The most usual method
was HTTP request filtering. DNS tampering (directing to a blackhole IP address) affected
only three domains: facebook.com, youtube.com, and plus.google.com. SSH connections were
throttled down to about 15% of the link capacity, while randomized protocols were throttled
almost down to zero 60 seconds into a connection’s lifetime. Throttling seemed to be achieved
by dropping packets, thereby forcing TCP’s usual recovery.

Khattak et al. [116] evaluated the Great Firewall from the perspective that it works like
an intrusion detection system or network monitor, and applied existing technique for evading
a monitor the the problem of circumvention. They looked particularly for ways to evade
detection that are expensive for the censor to remedy. They found that the firewall is stateful,
but only in the client-to-server direction. The firewall is vulnerable to a variety of TCP- and
HTTP-based evasion techniques, such as overlapping fragments, TTL-limited packets, and
URL encodings.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 3. UNDERSTANDING CENSORS 21

Nabi [144] investigated web censorship in Pakistan in 2013, using a publicly known list of
banned web sites. They tested on 5 different networks in Pakistan. Over half of the sites on
the list were blocked by DNS tampering; less than 2% were additionally blocked by HTTP
filtering (an injected redirection before April 2013, or a static block page after that). They
conducted a small survey to find the most commonly used circumvention methods in Pakistan.
The most used method was public VPNs, at 45% of respondents.

Ensafi et al. [61] employed an intriguing technique to measure censorship from many
locations in China—a “hybrid idle scan.” The hybrid idle scan allows one to test TCP
connectivity between two Internet hosts, without needing to control either one. They
selected roughly uniformly geographically distributed sites in China from which to measure
connectivity to Tor relays, Tor directory authorities, and the web servers of popular Chinese
web sites. There were frequent failures of the firewall resulting in temporary connectivity,
typically lasting in bursts of hours.

In 2015, Marczak et al. [131] investigated an innovation in the capabilities of the border
routers of China, an attack tool dubbed the “Great Cannon.” The cannon was responsible
for denial-of-service attacks on Amazon CloudFront and GitHub. The unwitting participants
in the attack were web browsers located outside of China, who began their attack when the
cannon injected malicious JavaScript into certain HTTP responses originating in China. The
new attack tool is noteworthy because it demonstrated previously unseen in-path behavior,
such as packet dropping.

A major aspect of censor modeling is that many censors use commercial firewall hardware.
A case in point is the analysis by Chaabane et al. [26] of 600 GB of leaked logs from Blue
Coat proxies used for censorship in Syria. The logs cover 9 days in July and August 2011,
and contain an entry for every HTTP request. The authors of the study found evidence of IP
address blocking, domain name blocking, and HTTP request keyword blocking, and also of
users circumventing censorship by downloading circumvention software or using the Google
cache. All subdomains of .il, the top-level domain for Israel, were blocked, as were many IP
address ranges in Israel. Blocked URL keywords included “proxy”, “hotspotshield”, “israel”,
and “ultrasurf” (resulting in collateral damage to the Google Toolbar and Facebook Like
button because they have “proxy” in HTTP requests). Tor was only lightly censored—only
one of several proxies blocked it, and only sporadically.

Multiple-location studies

For a decade, the OpenNet Initiative produced reports on Internet filtering and surveillance
in dozens of countries, until it ceased operation in 2014. For example, their 2005 report
on Internet filtering in China [148] studied the problem from many perspectives, political,
technical, and legal. They translated and interpreted Chinese laws relating to the Internet,
which provide strong legal justifications for filtering. The laws regulate both Internet users
and service providers, including cybercafes. They prohibit the transfer of information that is
indecent, subversive, false, criminal, or that reveals state secrets. The OpenNet Initiative
tested the extent of filtering of web sites, search engines, blogs, and email. They found
a number of blocked web sites, some related to news and politics, and some on sensitive
subjects such as Tibet and Taiwan. In some cases, entire sites (domains) were blocked; in
others, only specific pages within a larger site were blocked. In a small number of cases, sites

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 3. UNDERSTANDING CENSORS 22

were accessible by IP address but not by domain name. There were cases of overblocking:
apparently inadvertently blocked sites that simply shared an IP address or URL keyword
with an intentionally blocked site. On seeing a prohibited keyword, the firewall blocked
connections by injecting a TCP RST packet to tear down the connection, then injecting a
zero-sized TCP window, which would prevent any communication with the same server for a
short time. Using technical tricks, the authors inferred that Chinese search engines index
blocked sites (perhaps having a special exemption from the general firewall policy), but do
not return them in search results. The firewall blocks access searches for certain keywords on
Google as well as the Google Cache—but the latter could be worked around by tweaking the
format of the URL. Censorship of blogs comprised keyword blocking by domestic blogging
services, and blocking of external domains such as blogspot.com. Email filtering is done by
the email providers themselves, not by an independent network firewall. Email providers seem
to implement their filtering rules independently and inconsistently: messages were blocked by
some providers and not others.

Sfakianakis et al. [169] built CensMon, a system for testing web censorship using PlanetLab
nodes as distributed measurement points. They ran the system for for 14 days in 2011 across
33 countries, testing about 5,000 unique URLs. They found 193 blocked domain–country
pairs, 176 of them in China. CensMon reports the mechanism of blocking. Across all nodes,
it was 18.2% DNS tampering, 33.3% IP address blocking, and 48.5% HTTP keyword filtering.
The system was not run on a continuing basis. Verkamp and Gupta [185] did a separate study
in 11 countries, using a combination of PlanetLab nodes and the computers of volunteers.
Censorship techniques vary across countries; for example, some show overt block pages and
others do not. China was the only stateful censor of the 11.

Dainotti et al. [36] reported on the total Internet shutdowns that took place in Egypt
and Libya in the early months of 2011. They used multiple measurements to document
the outages as they occurred: BGP data, a large network telescope, and active traceroutes.
During outages, there was a drop in scanning traffic (mainly from the Conficker botnet) to
their telescope. By comparing these different measurements, they showed that the shutdown
in Libya was accomplished in more that one way, both by altering network routes and by
firewalls dropping packets.

Long-term measurement platforms

Just as in circumvention, in censorship measurement a host of difficulties arise when running
a scalable system for a long time, that do not arise when doing a one-time operation.

Dedicated measurement platforms such as OONI [93] and ICLab [109] provide regular
measurements from many locations worldwide. Even with these, there are challenges around
getting probes into difficult locations and keeping them running.

PlanetLab is a system that was not originally designed for censorship measurement,
that was later adapted for that purpose. Another recent example is RIPE Atlas, a globally
distributed Internet measurement network consisting of physical probes hosted by volunteers,
Atlas allows 4 types of measurements: ping, traceroute, DNS resolution, and X.509 certificate
fetching. Anderson et al. [7] used Atlas to examine two case studies of censorship: Turkey’s
ban on social media sites in March 2014 and Russia’s blocking of certain LiveJournal blogs
in March 2014. In Turkey, they found at least six shifts in policy during two weeks of site

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 3. UNDERSTANDING CENSORS 23

blocking. They observed an escalation in blocking in Turkey: the authorities first poisoned
DNS for twitter.com, then blocked the IP addresses of the Google public DNS servers, then
finally blocked Twitter’s IP addresses directly. In Russia, they found ten unique bogus IP
addresses used to poison DNS.

Pearce, Ensafi, et al. “Augur: Internet-Wide Detection of Connectivity Disruptions” [151].
Pearce et al. “Global Measurement of DNS Manipulation” [152].

3.2 The evaluation of circumvention systems

Evaluating the quality of circumvention systems is tricky, whether they are only proposed or
actually deployed. The problem of evaluation is directly tied to threat modeling. Circumven-
tion is judged according to how well it works under a given model; the evaluation is therefore
meaningful only as far as the threat model reflects reality. Without grounding in reality,
researchers risk running an imaginary arms race that evolves independently of the real one.

I took part, with Michael Carl Tschantz, Sadia Afroz, and Vern Paxson, in a meta-
study [182], of how circumvention systems are evaluated by their authors and designers, and
comparing those empirically determined censor models. This kind of work is rather different
than the direct evaluations of circumvention tools that have happened before, for example
those done by the Berkman Center [162] and Freedom House [25] in 2011. Rather than
testing tools against censors, we evaluated how closely calibrated designers’ own models were
to models derived from actual observations of censors.

This research was partly born out of frustration with some typical assumptions made in
academic research on circumvention, which we felt placed undue emphasis on steganography
and obfuscation of traffic streams, while not paying enough attention to the perhaps more
important problems of bridge distribution and rendezvous. We wanted to help bridge the
gap by laying out a research agenda to align the incentives of researchers with those of
circumventors. This work was built on extensive surveys of circumvention tools, measurement
studies, and known censorship events against Tor. Our survey included over 50 circumvention
tools.

One outcome of the research is that that academic designs tended to be concerned with
detection in the steady state after a connection is established (related to detection by content),
while actually deployed systems cared more about how the connection is established initially
(related to detection by address). Real censors care greatly about the cost of running detection,
and prefer cheap, passive, stateless solutions whenever possible. It is important to guard
against these modes of detection before becoming too concerned with those that require fast
computation, packet flow blocking, or lots of state. Designers tend to misperceive the censor’s
weighting of false positives and false negatives—assuming a whitelist rather than a blacklist,
say—and indeed it remains an open problem how to estimate these.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

Chapter 4

Active probing

The Great Firewall of China rolled out an innovation in the identification of proxy servers
around 2010: active probing of suspected proxy addresses. In active probing, the censor
pretends to be a legitimate client, making its own connections to suspected addresses to
see whether they speak a proxy protocol. Any addresses that are found to be proxies are
added to a blacklist so that access to them will be blocked in the future. The input to the
active probing subsystem, a set of suspected addresses, comes from passive observation of
the content of client connections. The censor sees a client connect to a destination and tries
to determine, by content inspection, what protocol is in use. When the censor’s content
classifier is unsure whether the protocol is a proxy protocol, it passes the destination address
to the active probing subsystem. Active prober then checks, by connecting to the destination,
whether it actually is a proxy. Figure 4.1 illustrates the process.

Active probing makes good sense for the censor, whose main restriction is the risk of
false-positive classifications that result in collateral damage. Any classifier based purely on
passive content inspection must be very precise (have a low rate of false positives). Active
probing increases precision by blocking only those servers that are determined, through active
inspection, to really be proxies. The censor can get away with a mediocre content classifier—it
can return a superset of the set of actual proxy connections, and active probes will weed out
its false positives. A further benefit of active probing, from the censor’s point of view, is that
it can run asynchronously, separate from the firewall’s other responsibilities that require a
low response time.

Active probing, as I use the term in this chapter, is distinguished from other types of
active scans by being reactive, driven by observation of client connections. It is distinct from
proactive, wide-scale port scanning, in which a censor regularly scans likely ports across the
Internet to find proxies, independent of client activity. The potential for the latter kind of
scanning has been appreciated for over a decade. Dingledine and Mathewson [49 §9.3] raised
scanning resistance as a consideration in the design document for Tor bridges. McLachlan
and Hopper [139 §3.2] observed that the bridges’ tendency to run on a handful of popular
ports would make them more discoverable in an Internet-wide scan, which they estimated
would take weeks using then-current technology. Dingledine [46 §6] mentioned indiscriminate
scanning as one of ten ways to discover Tor bridges—while also bringing up the possibility
of reactive probing which the Great Firewall was then just beginning to use. Durumeric
et al. [57 §4.4] demonstrated the effectiveness of Internet-wide scanning, targeting only two

24

CHAPTER 4. ACTIVE PROBING 25

Figure 4.1: The censor watches a connection between a client and a destination. If content inspection
does not definitively indicate the use of a circumvention protocol, but also does not definitively rule
it out, the censor passes the destination’s address to an active prober. The active prober attempts
connections using various proxy protocols. If any of the proxy connections succeeds, the censor adds
the destination to an address blacklist.

ports to discover about 80% of public Tor bridges in only a few hours, Tsyrklevich [183] and
Matic et al. [136 §V.D] later showed how existing public repositories of Internet scan data
could reveal bridges, without even the necessity of running one’s own scan.

The Great Firewall of China is the only censor known to employ active probing. It has
increased in sophistication over time, adding support for new protocols and reducing the
delay between a client’s connection and the sending of probes. The Great Firewall has the
documented ability to probe the plain Tor protocol and some of its pluggable transports,
as well as certain VPN protocols and certain HTTPS-based proxies. Probing takes place
only seconds or minutes after a connection by a legitimate client, and the active-probing
connections come from a large range of source IP addresses. The experimental results in this
chapter all have to do with China.

Active probing occupies a space somewhere in the middle of the dichotomy, put forward
in Chapter 2, of detection by content and detection by address. An active probing system
takes suspected addresses as input and produces to-be-blocked addresses as output. But it is
content-based classification that produces the list of suspected addresses in the first place.
The existence of active probing is The use of active probing is, in a sense, a good sign for
circumvention: it only became relevant content obfuscation had gotten better. If a censor
could easily identify the use of circumvention protocols by mere passive inspection, then it
would not go to the extra trouble of active probing.

Contemporary circumvention systems must be designed to resist active probing attacks.
The strategy of the look-like-nothing systems ScrambleSuit [200], obfs4 [207], and Shadow-
socks [128, 157] is to authenticate clients using a per-proxy password or public key; i.e.,
to require some additional secret information beyond just an IP address and port number.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 4. ACTIVE PROBING 26

2010 August Nixon notices unusual, random-looking connections from China in SSH
logs [146].

2011 May–June Nixon’s random-looking probes are temporarily replaced by TLS probes
before changing back again [146].

2011 October hrimfaxi reports that Tor bridges are quickly detected by the GFW [41].
2011 November Nixon publishes observations and hypotheses about the strange SSH

connections [146].
2011 December Wilde investigates Tor probing [48, 193, 194]. He finds two kinds of

probe: “garbage” random probes and Tor-specific ones.
2012 February The obfs2 transport becomes available [43]. The Great Firewall is

initially unable to probe for it.
2012 March Winter and Lindskog investigate Tor probing in detail [199].
2013 January The Great Firewall begins to active-probe obfs2 [47, 60 §4.3]. The obfs3

transport becomes available [68].
2013 June–July Majkowski observes TLS and garbage probes and identifies fingerprint-

able features of the probers [130].
2013 August The Great Firewall begins to active-probe obfs3 [60 Figure 8].
2014 August The ScrambleSuit transport, which is resistant to active probing, be-

comes available [154].
2015 April The obfs4 transport (resistant to active probing) becomes available [155].
2015 August BreakWa11 discovers an active-probing vulnerability in Shadowsocks [18,

157 §2].
2015 October Ensafi et al. [60] publish results of multi-modal experiments on active

probing.
2017 February Shadowsocks changes its protocol to better resist active probing [104].

Table 4.2: Timeline of research on active probing.

Domain fronting (Chapter 6) deals with active probing by co-locating proxies with important
web services: the censor can tell that circumvention is taking place but cannot block the proxy
without unacceptable collateral damage. In Snowflake (Chapter 7), proxies are web browsers
running ordinary peer-to-peer protocols, authenticated using a per-connection shared secret.
Even if a censor discovers one of Snowflake’s proxies, it cannot verify that the proxy is
running Snowflake or something else, without having first negotiated a shared secret through
Snowflake’s broker mechanism.

4.1 History of active probing research

Active probing research has mainly focused on Tor and its pluggable transports. There is
also some work on Shadowsocks. Table 4.2 summarizes the research covered in this section.

Nixon [146] published in late 2011 an analysis of suspicious connections from IP addresses
in China that his servers had at that point been receiving for a year. The connections were to
the SSH port, but did not follow the SSH protocol; rather they contained apparently random
bytes, resulting in error messages in the log file. Nixon discovered a pattern: the random-

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 4. ACTIVE PROBING 27

looking “garbage” probes were preceded, at an interval of 5–20 seconds, by a legitimate
SSH login from some other IP address in China. The same pattern was repeated at three
other sites. Nixon supposed that the probes were triggered by legitimate SSH users, as their
connections traversed the firewall; and that the random payloads were a simple form of service
identification, sent only to see how the server would respond to them. For a few weeks in
May and June 2011, the probes did not look random, but instead looked like TLS.

In October 2011, Tor user hrimfaxi reported that a newly set up, unpublished Tor bridge
would be blocked within 10 minutes of their first being accessed from China [41]. Moving
the bridge to another port on the same IP address would work temporarily, but the new
address would also be blocked within another 10 minutes. Wilde systematically investigated
the phenomenon in December 2011 and published an extensive analysis of active probing that
was triggered by connections from inside China to outside [193, 194]. There were two kinds of
probes: “garbage” random probes like those Nixon had described, and specialized Tor probes
that established a TLS session and inside the session sent the Tor protocol. The garbage
probes were triggered by TLS connections to port 443, and were sent immediately following
the original connection. The Tor probes, in contrast, were triggered by TLS connections to
any port, as long as the TLS client handshake matched that of Tor’s implementation [48].
The Tor probes were not sent immediately, but in batches of 15 minutes. The probes came
from diverse IP addresses in China: 20 different /8 networks [192]. Bridges using the obfs2
transport were, at that time, neither probed nor blocked.

Winter and Lindskog revisited the question of Tor probing a few months later in 2012 [199].
They used open proxies and a server in China to reach bridges and relays in Russia, Singapore,
and Sweden. The bridges and relays were configured so that ordinary users would not connect
to them by accident. They confirmed Wilde’s finding that the blocking of one port did not
affect other ports on the same IP address. Blocked ports became reachable again 12 hours.
By simulating multiple Tor connections, they collected over 3,000 active probe samples in
17 days. During that time, there were about 72 hours which where mysteriously free of active
probing. Half of the probes came from a single IP address, 202.108.181.70; the other half
were almost all unique. Reverse-scanning the probes’ source IP addresses, a few minutes
after the probes were received, sometimes found a live host, though usually with a different
IP TTL than was used during the probing, which the authors suggested may be a sign of
address spoofing by the probing infrastructure. Because probing was triggered by patterns in
the TLS client handshake, they developed a server-side tool, brdgrd [196], that rewrote the
TCP window so that the client’s handshake would be split across packets. The tool sufficed,
at the time, to prevent active probing, but the authors reported that it stopped working in
2013[197 §Software].

The obfs2 pluggable transport, first available in February 2012 [43], worked against active
probing for about a year. The first report of its being probing arrived in March 2013 [47].
I found evidence for an even earlier onset, in January 2013, by analyzing the logs of my web
server [60 §4.3]. At about the same time, the obfs3 pluggable transport became available [68].
It was, in principle, as vulnerable to active probing as obfs2 was, but the firewall did not
gain the ability to probe for it until August 2013 [60 Figure 8].

Majkowski [130] documented a change in active-probing behavior between June and
July 2013. In June, he reproduced the observations of Winter and Lindskog: pairs of TLS
probes, one from 202.108.181.70 and one from some other IP address. He also provided TLS

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 4. ACTIVE PROBING 28

fingerprints for the probers, which were distinct from the fingerprints of ordinary Tor clients.
In July, he began to see pairs of probes with apparently random contents, like the garbage
probes Wilde described. The TLS fingerprints of the July probes differed from those seen
earlier, but were still distinctive.

The ScrambleSuit transport, designed to be immune to active-probing attacks, first
shipped with Tor Browser 4.0 in October 2014 [154]. The successor transport obfs4, similarly
immune, shipped in Tor Browser 4.5 in April 2015 [155].

In August 2015, developer BreakWa11 described an active-probing vulnerability in the
Shadowsocks protocol [18, 157 §2]. The flaw had to do with a lack of integrity protection,
allowing a prober to introduce errors into ciphertext and watch the server’s reaction. As a
stopgap, the Shadowsocks developers deployed protocol modifications that proved to have
separate vulnerabilities to probing. They deployed another protocol change in February 2017,
adding cryptographic integrity protection and fixing the problem [104]. Despite the long
window of vulnerability, there is no evidence that the Great Firewall tried to active-probe
Shadowsocks servers.

Ensafi et al. (including me) [60] did the largest controlled study of active probing to date
throughout early 2015. We collected data from a variety of sources: a private network of our
own bridges, isolated so that only we and active probers would connect to them; induced
intensive probing of a single bridge over a short time period, in the manner of Winter and
Lindskog; analysis of server log files going back to 2010; and reverse-scanning active prober
source IP addresses using tools such as ping, traceroute, and Nmap. Using these sources
of data, we investigated many aspects of active probing, such as the types of probes the
firewall was capable of sending, the probers’ source addresses, and potentially fingerprintable
peculiarities of the probers’ protocol implementations. Observations from this research project
appear in the remaining sections of this chapter.

4.2 Types of probes

Our experiments confirmed the existence of known probe types from prior research, and new
types that had not been documented before. Our observations of the known probe types
were consistent with previous reports, with only minor differences in some details. We found,
at varying times, these kinds of probes:

Tor We found probing of the Tor protocol, as expected. The probes we observed in 2015,
however, differed from those Wilde described in 2011, which proceeded as far as building
a circuit. The ones we saw used less of the Tor protocol: after the TLS handshake they
only queried the server’s version and disconnected. Also, in contrast to what Winter
and Lindskog found in 2012, the probes were sent immediately after a connection, not
batched to a multiple of 15 minutes.

obfs2 The obfs2 protocol is meant to look like a random stream, but it has a weakness that
makes it trivial to identify, passively and retroactively, needing only the first 20 bytes
sent by the client. We turned the weakness of obfs2 to our advantage. It allowed us to
distinguish obfs2 from other random-looking payloads, isolating a set of connections
that could belong only to legitimate circumventors or to active probers.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 4. ACTIVE PROBING 29

obfs3 The obfs3 protocol is also meant to look like a random stream; but unlike obfs2, it
is not trivially identifiable passively. It is not possible to retroactively recognize obfs3
connections (from, say, a packet capture) with certainty: sure classification requires
active participation in the protocol. In some of our experiments, we ran an obfs3
server that was able to participate in the handshake and so confirm that the protocol
really was obfs3. In the passive log analysis, we labeled “obfs3” any probes that looked
random but were not obfs2.

SoftEther We unexpectedly found evidence of probe types other than Tor-related ones. One
of these was an HTTPS request:

POST /vpnsvc/connect.cgi HTTP/1.1

Connection: Keep-Alive

Content-Length: 1972

Content-Type: image/jpeg

GIF89a...

Both the path “/vpnsvc/connect.cgi”, and the body being a GIF image despite having
a Content-Type of “image/jpeg”, are characteristic of the client handshake of the
SoftEther VPN software that underlies the VPN Gate circumvention system [147].

AppSpot This type of probe is an HTTPS request:

GET / HTTP/1.1

Accept-Encoding: identity

Connection: close

Host: webncsproxyXX.appspot.com

Accept: */*

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like

Gecko) Ubuntu Chromium/34.0.1847.116 Chrome/34.0.1847.116 Safari/537.36

where the ‘XX’ is a number that varies. The intent of this probe seems to be the discovery
of servers that are capable of domain fronting for Google services, including Google
App Engine, which runs at appspot.com. (See Chapter 6 for more on domain fronting.)
At one time, there were simple proxies running at webncsproxyXX.appspot.com.

urllib This probe type is new since our 2015 paper. I discovered it while re-analyzing my
server logs in order to update Figure 4.3. It is a particular request that was sent over
both HTTP and HTTPS:

GET / HTTP/1.1

Accept-Encoding: identity

Host: 69.164.193.231

Connection: close

User-Agent: Python-urllib/2.7

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 4. ACTIVE PROBING 30

obfs2

short

empty

TLS

obfs3

SoftEther

AppSpot

urllib

O N D J
2013

F M A M J J A S O N D J
2014

F M A M J J A S O N D J
2015

F M A M J J A S O N D J
2016

F M A M J J A S O N D J
2017

F M A M J J A S O N D

probes
per day
1
5
15

30

Figure 4.3: Active probes received at my web server (ports 80 and 443) over five years. This is an
updated version of Figure 8 from the paper “Examining How the Great Firewall Discovers Hidden
Circumvention Servers” [60]; the vertical blue stripe divides old and new data. The “short” probes
are those that looked random but did not provide enough data (20 bytes) for the obfs2 test; it is
likely that they, along with the “empty” probes, are really truncated obfs2, obfs3, or Tor probes.
The traffic from the IP addresses represented in this chart was overwhelmingly composed of active
probes, but there were also 97 of what looked like genuine client browser requests. Active probing
activity—at least against this server—has subsided since 2016.

The urllib requests are unremarkable except for having been sent from an IP address
that at some other time send another kind of active probe. The User-Agent “Python-
urllib/2.7” and appears many other places in my logs, not in an active probing context.
I cannot guess what the purpose of this probe type may be, except to observe that
Nobori and Shinjo also caught a “Python-urllib” client scraping the VPN Gate server
list [147 §6.3].

These probe types are not necessarily exhaustive. The purpose of the random “garbage”
probes is still not known; they were not obfs2 and were too early to be obfs3, so they must
have had some other purpose.

Most of our experiments were designed around exploring known Tor-related probe types:
plain Tor, obfs2, and obfs3. The server log analysis, however, unexpectedly turned up the
other probe types. The server log data set consisted of application-layer logs from my personal
web and mail server, which was also a Tor bridge. Application-layer logs lack much of the
fidelity you would normally want in a measurement experiment; they do not have precise
timestamps or transport-layer headers, for example, and web server logs truncate the client’s
payload at the first ‘\0’ or ‘\n’ byte. But they make up for that with time coverage. Figure 4.3
shows the history of probes received at my server since 2013 (there were no probes before
that, though the logs go back to 2010). We began by searching the logs for definite probes:
those that were classifiable as obfs2 or otherwise looked like random garbage. Then we looked
for what else appeared in the logs for the IP addresses that had, at any time, sent a probe.
In a small fraction of cases, the other logs lines appeared to be genuine HTTP requests from
legitimate clients; but usually they were other probe-like payloads. We continued this process,
adding new classifiers for likely probes, until reaching a fixed point with the probe types
described above.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 4. ACTIVE PROBING 31

100 Hz
200 Hz

1,000 Hz

0

2 31

2 32

Dec Jan
2015

Feb Mar Apr May Jun

TS
va

l
probe type

empty

short

obfs2

obfs3

TLS

SoftEther

AppSpot

Figure 4.4: TCP timestamp values of active probes. A TCP timestamp is a 32-bit counter that
increases at a constant rate [17 §5.4]; a sequence of timestamps is characterized by its rate and
starting offset. There are 4,239 probes from 3,797 different source IP addresses depicted in the
graph; however there are only a few distinct TCP timestamp sequences. There are three rates of
increase (different slopes): 100 Hz, 200 Hz, and 1,000 Hz. The shaded area marks a gap in packet
capture.

4.3 Probing infrastructure

The most striking feature of active probes is the large number of source addresses from which
they are sent, or appear to be sent. The 13,089 probes received by the HTTP and HTTPS
ports of my server came from 11,907 distinct IP addresses, representing 47 /8 networks and
26 autonomous systems. 96% of the addresses appeared only once. There is one extreme
outlier, the address 202.108.181.70, which by itself accounted for 2% of the probes. (Even this
large fraction stands in contrast to previous studies, where that single IP address accounted
for roughly half the probes [199 §4.5.1].) Among the address ranges are ones belonging to
residential ISPs.

Despite the many source addresses, the probes seems to be managed by only a few
underlying processes. The evidence for this lies in shared patterns in metadata: TCP initial
sequence numbers and TCP timestamps. Figure 4.4 shows clear patterns in TCP timestamps,
from about six months during which we ran a full packet capture on my web server, in
addition to application-layer logging.

We tried connecting back to the source address of probes. Immediately after receiving a
probe, the probing IP address would be completely unresponsive to any stimulus we could
think to apply. In some cases though, within an hour the address became responsive. The
responsive hosts looked like what you would expect to find if you scanned such address ranges,
with a variety of operating systems and open ports.

4.4 Fingerprinting the probers

A potential countermeasure against active probing is for each proxy, when it receives a
connection, to somehow decide whether the connection comes from a legitimate client, or
from a prober. Of course, the right way to identify legitimate clients is with cryptographic

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 4. ACTIVE PROBING 32

authentication, whether at the transport layer (like BridgeSPA [172]) or at the application
layer (like ScrambleSuit, obfs4, and Shadowsocks). But when that is not possible, one might
hope to distinguish probers by their fingerprints, idiosyncrasies in their implementation that
make them stand out from ordinary clients. In the case of the Great Firewall, the source IP
address does not suffice as a fingerprint because of the great diversity of source addresses the
system makes use of. And in a reversal of the usual collateral damage, the source addresses
include those where we might expect legitimate clients to reside. The probes do, however,
exhibit certain fingerprints at the application layer. While none of the ones we found were
robust enough to effectively exclude active probers, they do hint at how the probing is
implemented.

The active probers have an unusual TLS fingerprint, TLSv1.0 with a peculiar list of
ciphersuites. Tor probes sent only a VERSIONS cell [50 §4.1], waited for a response, then
closed the connection. The format of the VERSIONS cell was that of a “v2” Tor handshake
that has been superseded since 2011, though still in use by a small number of real clients.
The Tor probes described by Wilde in 2011 went further into the protocol. It hints at the
possibility that at one time, the active probers used a (possibly modified) Tor client, and
later switched to a custom implementation.

The obfs2 probes were conformant with the protocol specification, and unremarkable
except for the fact that sometimes payloads were duplicated. obfs2 clients are supposed
to use fresh randomness for each connection, but a small fraction, about 0.65%, of obfs2
probes shared an identical payload with one other probe. The two probes in a pair came
from different source IP addresses and arrived within a second of each other. The apparently
separate probers must therefore share some state—at least a shared pseudorandom number
generator.

The obfs3 protocol calls for the client to send a random amount of random bytes as
padding. The active probers’ implementation of the protocol gets the probability distribution
wrong, half the time sending too much padding. This feature would be difficult to exploit for
detection, though, because it would rely on application-layer proxy code being able to infer
TCP segment boundaries.

The SoftEther probes seem to have been based on an earlier version of the official SoftEther
client software than was current at the time, differing from current version in that they
lack an HTTP Host header. They also differed from the official client in that their POST
request was not preceded by a GET request. The TLS fingerprint of the official client is
much different from that of the probers, again hinting at a custom implementation.

The AppSpot probes have a User-Agent header that claims to be a specific version of the
Chrome browser; however the rest of the header, and the TLS fingerprint are inconsistent
with Chrome.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

Chapter 5

Time delays in censors’ reactions

Tor bridges are secret relays that help clients get around censorship. The effectiveness of
bridges depends on their secrecy—a censor that learns a bridge’s address can simply block its
IP address. Since the beginning, the designers of Tor’s bridge system envisioned that users
would learn of bridges through covert or social channels [49 §7], in order to prevent any one
actor from learning about and blocking a large number of bridges.

But as it turns out, most users do not use bridges in the way envisioned. Rather, most
users who use bridges use one of a small number of default bridges hardcoded in a configuration
file within Tor Browser. (According to Matic et al. [136 §VII.C], over 90% of bridge users
use a default bridge.) At a conceptual level, the notion of a “default” bridge is a ridiculous
contradiction. Bridges are meant to be secret, not plainly listed in the source code. Any
reasonable threat model would assume that default bridges are immediately blocked. And
yet in practice we find that they are often not blocked, even by censors that otherwise block
Tor relays. We face a paradox: why is it that censors do not take blocking steps that we
find obvious? There must be some quality of censors’ internal dynamics that we do not
understand adequately.

The purpose of the present chapter is to begin to peel back the veneer of censorship, to
gain insight into why they behave as they do—particularly when they behave contrary to
expectations. We posit that censors, far from being unitary entities of focused purpose, are
rather complex organizations composed of human and machine components, with perhaps
conflicting goals; this project is a small step towards better understanding what lies under
the face that censors present. The main vehicle for the exploration of this subject is the
observation of default bridges (a specific kind of proxy) to find out how quickly they are
blocked after they first become discoverable by a censor. I took part in this project along
with Lynn Tsai and Qi Zhong; the results in this chapter are an extension of work Lynn and
I published in 2016 [92]. Through active measurements of default bridges from probe sites in
China, Iran, and Kazakhstan, we uncovered previously undocumented behaviors of censors
that hint at how they operate at a deeper level.

It was with a similar spirit that Aase, Crandall, Dı́az, Knockel, Ocaña Molinero, Saia,
Wallach, and Zhu [1] looked into case studies of censorship with a focus on understanding
censors’ motivation, resources, and sensitivity to time. They had “assumed that censors
are fully motivated to block content and the censored are fully motivated to disseminate
it.” But some of their observations challenged that assumption, with varied and seemingly

33

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 34

undirected censorship hinting at behind-the-scenes resource limitations. They describe an
apparent “intern effect,” by which keyword lists seem to have been compiled by a bored and
unmotivated worker, without much guidance. Knockel et al. [118] looked into censorship of
keywords in Chinese mobile games, finding that censorship enforcement in that context is
similarly decentralized, different from the centralized control we commonly envision when
thinking about censorship.

Zhu et al. [208] studied the question of censor reaction time in a different context: deletion
of posts on the Chinese microblogging service Sina Weibo. Through frequent polling, they
were able to measure—down to the minute—the delay between when a user made a post
and when a censor deleted it. About 90% of deletions happened within 24 hours, and 30%
within 30 minutes—but there was a long tail of posts that survived several weeks before
being deleted. The authors used their observations to make educated guesses about the inner
workings of the censors. Posts on trending topics tended to be deleted more quickly. Posts
made late at night had a longer average lifetime, seemingly reflecting workers arriving in the
morning and clearing out a nightly backlog of posts. King et al. [117] examined six months
of deleted posts on Chinese social networks. The pattern of deletions seemed to give a view
into the goal of the censor: not to prevent criticism of the government, as might be expected,
but to forestall collective public action.

Nobori and Shinjo give a timeline [147 §6.3] of circumventor and censor actions and
reactions during the first month and a half of the deployment of VPN Gate in China.
Within the first four days, the firewall had blocked their main proxy distribution server, and
begun scraping the proxy list. When they blocked the single scraping server, the firewall
began scraping from multiple other locations within a day. After VPN Gate deployed the
countermeasure of mixing high-collateral-damage servers into their proxy list, the firewall
stopped blocking proxies for two days, after which it resumed blocking proxies, after checking
them first to see that they really were VPN Gate proxies.

Wright et al. [203] motivated a desire for fine-grained censorship measurement by highlight-
ing limitations that would tend to prevent a censor from begin equally effective everywhere
in its controlled network. Not only resource limitations, but also administrative and logistical
requirements, make it difficult to manage a system as complex as a national censorship
apparatus.

There has been no prior long-term study dedicated to measuring time delays in the
blocking of default bridges. There have, however, been a couple of point measurements that
put bounds on what blocking delays in the past must have been. Tor Browser first shipped
with obfs2 bridges on February 11, 2012 [43]; Winter and Lindskog tested them 41 days
later [199 §5.1] and found all 13 of them blocked. (The bridges then were blocked by RST
injection, different than the timeouts we have seen more recently.) In 2015 I used public
reports of blocking and non-blocking of the first batch of default obfs4 bridges to infer a
blocking delay of not less than 15 and not more than 76 days [70].

we are used to making conservative assumptions if an attacker gets code execution, it’s
game over but what really does happen when someone gets code execution? similarly, it
is prudent to assume that default bridges are immediately blocked but what really does
happen?

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 35

5.1 The experiment

Our experiment primarily involved frequent, active measurements of the reachability of default
bridges from probe sites in China, Iran, and Kazakhstan (countries well known to censor
the network), as well as a control site in the U.S. We used a script that, every 20 minutes,
attempted to make a TCP connection to each default bridge. The script recorded, for each
attempt, whether the connection was successful, the time elapsed, and any error code. The
error code allows us to distinguish between different kinds of failures such as “timeout” and
“connection refused.” The control site in the U.S. enables to distinguish temporary bridge
failures from actual blocking.

The script only tests whether it is possible to make a TCP connection, which is necessary
but not sufficient to actually make a Tor connection through the bridge. In Kazakhstan, we
additionally deployed measurements that attempted to establish a full Tor connection, in
order to better understand the different type of blocking we discovered there.

The experiment was opportunistic in nature: we ran from China, Iran, and Kazakhstan
not only because they are likely suspects for Tor blocking, but because we happened to have
access to a site from which we could run probes over some period of time. Therefore the
measurements cover different dates in different countries. We began at a time when Tor
was building up its stock of default bridges. We began monitoring the new bridges as they
were added, coordinating with Tor Browser developers to get advance notice of them when
possible. Additionally we had the developers run certain more controlled experiments for
us—such as adding a bridge to the source code but commenting it out—that are further
detailed below.

We were only concerned with default bridges, not secret ones. Our goal was not to
estimate the difficulty of the proxy discovery problem, but to better understand how censors
deal with what seems to be a trivial task. We focused on bridges using the obfs4 pluggable
transport [207], which not only is the most-used transport and the one marked “recommended”
in the interface, but also has properties that help in our experiment. The content obfuscation
of obfs4 reduces the risk of its passive detection. More importantly, it resists active probing
attacks as described in Chapter 4. We could not have done the experiment with obfs3 bridges,
because whether default bridges or not, they would be probed and blocked shortly after their
first use.

Bridges are identified by a nickname and a port number. The nickname is an arbitrary
identifier, chosen by the bridge operator. So, for example, “ndnop3:24215” is one bridge, and
“ndnop3:10527” is another bridge on the same IP address. We pulled the list of bridges from
Tor Browser and Orbot, which is the port of Tor for Android. Tor Browser and Orbot mostly
shared bridges in common, though there were a few Orbot-only bridges. A list of bridges and
other destinations we measured appears in Table 5.1. Along with the new obfs4 bridges, we
tested some existing bridges.

There are four stages in the process of deploying a new default bridge. At the start, the
bridge is secret, perhaps only having been discussed on a private mailing list. Each successive
stage of deployment makes the bridge more public, increasing the number of places where a
censor may look to discover it. The whole process takes a few days to a few weeks, mostly
depending on the release schedule.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 36

New Tor Browser default obfs4 bridges
ndnop3 : 24215, 10527
ndnop5 : 13764

riemann : 443
noether : 443

Mosaddegh : 41835, 80, 443, 2934, 9332, 15937
MaBishomarim : 49868, 80, 443, 2413, 7920, 16488

GreenBelt : 60873, 80, 443, 5881, 7013, 12166
JonbesheSabz : 80, 1894, 4148, 4304

Azadi : 443, 4319, 6041, 16815
Lisbeth : 443

NX01 : 443
LeifEricson : 50000, 50001, 50002

cymrubridge31 : 80
cymrubridge33 : 80

Orbot-only default obfs4 bridges
Mosaddegh : 1984

MaBishomarim : 1984
JonbesheSabz : 1984

Azadi : 1984

Already existing default bridges
LeifEricson : 41213 (obfs4)

fdctorbridge01 : 80 (FTE)

Never-published bridges
ndnop4 : 27668 (obfs4)

Table 5.1: The bridges whose reachability we tested. Except for the already existing and never-
published bridges, they were all introduced during the course of our experiment. Each bridge is
identified by a nickname (a label chosen by its operator) and a port. Each nickname represents a
distinct IP address. Port numbers are in chronological order of release.

Ticket filed The process begins with the filing of a ticket in Tor’s public issue tracker. The
ticket includes the bridge’s IP address. A censor that pays attention to the issue tracker
could discover bridges as early as this stage.

Ticket merged After review, the ticket is merged and the new bridge is added to the source
code of Tor Browser. From there it will begin to be included in nightly builds. A censor
that reads the bridge configuration file from the source code repository, or downloads
nightly builds, could discover bridges at this stage.

Testing release Just prior to a public release, Tor Browser developers send candidate builds
to a public mailing list to solicit quality assurance testing. A censor that follows
testing releases would find ready-made executables with bridges embedded at this stage.
Occasionally the developers skip the testing period, such as in the case of an urgent
security release.

Public release After testing, the releases are made public and announced on the Tor Blog.
A censor could learn of bridges at this stage by reading the blog and downloading
executables. This is also the stage at which the new bridges begin to have an appreciable
number of users. There are two release tracks of Tor Browser: stable and alpha. Alpha
releases are distinguished by an ‘a’ in their version number, for example 6.5a4. According
to Tor Metrics [180], stable downloads outnumber alpha downloads by a factor of about
30 to 1.

We advised operators to configure their bridges so that they would not become public except
via the four stages described above. Specifically, we made sure the bridges did not appear in
BridgeDB [181], the online database of secret bridges, and that the bridges did not expose

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 37

any transports other than obfs4. We wanted to ensure that any blocking of bridges could only
be the result of their status as default bridges, and not a side effect of some other detection
system.

5.2 Results from China

We had access to probe sites in China for just over a year, from December 2015 to January
2017. Due to the difficulty of getting access to hosts in China, we used four different IP
addresses (all in the same autonomous system) at different points in time. The times during
which we had control of each IP address partially overlap, but there is a 21-day gap in
measurements during August 2016.

Our observations in China turned up several interesting behaviors of the censor. Through-
out this section, refer to Figure 5.2, which shows the timeline of reachability of every bridge,
in context with dates related to tickets and releases. Circled references in the text (a©, b©,
etc.) refer to marked points in the figure. A “batch” of releases is a set that all contain the
same default bridges.

The most significant single event—covered in detail in subsection 5.2.7—was a change
in the censor’s detection and blocking strategy in October 2016. Before that date, blocking
was port-specific and happened only after the “public release” stage. After, bridges began
to be blocked on all ports simultaneously, and were blocked soon after the “ticket merged”
stage. We believe that this change reflects a shift in how the censor discovers bridges, from
running the finished software to see what addresses it connects to, to extracting addresses
from source code. More details and evidence appear in the following subsections.

5.2.1 Per-port blocking

In the first few release batches, the censor blocked individual ports, not an entire IP address.
This characteristic of the Great Firewall has been documented as far back as 2006 by Clayton
et al. [30], and in 2012 by Winter and Lindskog [199]. For example, see point a© in Figure 5.2:
after ndnop3:24215 was blocked, we opened ndnop3:10527 on the same IP address. The
alternate port remained reachable until it, too, was blocked in the next release batch. We
used this technique of rotating ports in several release batches.

Per-port blocking is also evident in the continued reachability of non-bridge ports. For
example, many of the bridges had an SSH port open, in addition to their obfs4 ports.
After riemann:443 (obfs4) was blocked (point c© in Figure 5.2), riemann:22 (SSH) remained
reachable for a further nine months, until it was finally blocked at point m©. Per-port blocking
would give way to whole-IP blocking in October 2016.

5.2.2 Blocking only after public release

In the first six batches, blocking occurred only after public release—despite the fact that the
censor could potentially have learned about and blocked the bridges in an earlier stage. In
the 5.5.5/6.0a5/6.0 batch, the censor even seems to have missed the 5.5.5 and 6.0a5 releases
(point e© in Figure 5.2), only blocking after the 6.0 release, 36 days later. This observation

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 38

ndnop3:24215 ⓐ ⓑ

riemann:443
ndnop5:13764

ndnop3:10527

noether:443
Mosaddegh:41835

MaBishomarim:49868

ⓒ

JonbesheSabz:80
Azadi:443 ⓓ

Mosaddegh:443
Mosaddegh:80

MaBishomarim:443
MaBishomarim:80

GreenBelt:60873

GreenBelt:443
GreenBelt:80 ⓔ

LeifEricson:50000
GreenBelt:5881

MaBishomarim:2413
JonbesheSabz:1894

Azadi:4319

Mosaddegh:2934
ⓕ

ⓖ

Lisbeth:443

LeifEricson:50001

// NX01:443

GreenBelt:7013

MaBishomarim:7920
JonbesheSabz:4148

Azadi:6041

Mosaddegh:9332
ⓗ

ⓘ

LeifEricson:50002
NX01:443

GreenBelt:12166

MaBishomarim:16488
JonbesheSabz:4304

Azadi:16815

Mosaddegh:15937
ⓙ

Mosaddegh:1984
MaBishomarim:1984
JonbesheSabz:1984

Azadi:1984

ⓚ

LeifEricson:41213
fdctorbridge01:80

riemann:22
ndnop4:27668

ⓛ
ⓜ

ⓝ

5.0.5
5.0.6
5.5a5

5.5
6.0a1

5.5.1
5.5.2
6.0a2

5.5.4
6.0a4

5.5.5
6.0a5

6.0

6.0.5
6.5a3

6.0.6
6.5a4

6.0.8
6.5a6

Orbot
bridges

existing or
unreleased

bridges
and other

destinations
Oct Nov Dec Jan

2016
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

2017

Probe results
success
timed out

connection refused
no route to host

Agreement with control
agrees with control
disagrees with control

Bridge events
ticket filed ticket merged

blocked

Releases
testing release
public release

China

Figure 5.2: Tor Browser default bridge reachability from a single autonomous system in China.
Releases are grouped into batches according to the new bridges they contain. The thickness of lines
indicates whether the measurements agreed with those of the control site; their color shows whether
the attempted TCP connection was successful. Blocking events appear as a transition from narrow
blue (success, agrees with control) to wide gray (timeout, disagrees with control). The notation
“// NX01:443” means that the bridge was commented out for that release. Points marked with
circled letters a©, b©, etc., are explained in the text.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 39

hints that, before October 2016 anyway, the censor was somehow extracting bridge addresses
from the release packages themselves. In Sections 5.2.3 and 5.2.6 we present more evidence
that supports the hypothesis that the censor extracted bridge addresses from public releases,
not reacting at any earlier phase.

An evident change in blocking technique occurred around October 2016 with the 6.0.6/6.5a4
batch, when for the first time bridge were blocked before a public or testing release was
available. The changed technique is the subject of subsection 5.2.7.

5.2.3 Simultaneous blocking of all bridges in a batch

The first five blocking incidents were single events: when a batch contained more than one
bridge, all were blocked at the same time (within 20 minutes). These incidents appear as
crisp vertical columns of blocking icons in Figure 5.2, for example at point c©. This fact
supports the idea that the censor discovered bridges by examining release packages directly,
and did not, for example, detect bridges one by one by examining network traffic.

The 6.0.5/6.5a3 batch is an exception to the pattern of simultaneous blocking. In that
batch, one bridge (LeifEricson:50000) was already blocked, three were blocked simultaneously
as in the previous batches, but two others (GreenBelt:5881 and Azadi:4319) were temporarily
unscathed. At the time, GreenBelt:5881 was experiencing a temporary outage—which could
explain why it was not blocked—but Azadi:4319 was operational. This specific case is
discussed more in subsection 5.2.6.

5.2.4 Variable delays before blocking

During the time when the censor was blocking bridges simultaneously after a public release,
we found no pattern in the length of time between the release and the blocking event. The
blocking events did not seem to occur after a fixed length of time, nor did they occur on the
same day of the week or at the same time of day. The delays were 7, 2, 18, 10, 35, and 6 days
after a batch’s first public release—up to 57 days after the filing of the first ticket. Recall
from Section 4.3 that the firewall was even at that time capable of detecting and blocking
secret bridges within minutes. Delays of days or weeks really stand out in contrast.

5.2.5 Inconsistent blocking and failures of blocking

There is a conspicuous on–off pattern in the reachability of certain bridges from China, for
example in ndnop3:24215 throughout February, March, and April 2016 (point b© in Figure 5.2).
Although the censor no doubt intended to block the bridge fully, 47% of connection attempts
were successful during that time. On closer inspection, we find that the pattern is roughly
periodic with a period of 24 hours. The pattern may come and go, for example in riemann:443
before and after March 27, 2016. The predictable daily variation in reachability rates makes
us think that, at least at the times under question, the Great Firewall’s effectiveness was
dependent on load—varying load at different times of day leads to varying bridge reachability.

Beyond the temporary reachability of individual bridges, we also see what are apparent
temporary failures of firewall, making all bridges reachable for hours or days at a time.
Point d© in Figure 5.2 marks such a failure. All the bridges under test, including those that

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 40

had already been blocked, became available between 10:00 and 18:00 UTC on March 27,
2016. Further evidence that these results indicate a failure of the firewall come from a
press report [103] that Google services—normally blocked in China—were also unexpectedly
available on the same day, from about 15:30 to 17:15 UTC. A similar pattern appears across
all bridges for nine hours starting on June 28, 2016 at 17:40 UTC.

After the switch to whole-IP blocking, there are more instances of spotty and inconsistent
blocking, though of a different nature. Several cases are visible near point j© in Figure 5.2.
It is noteworthy that not all ports on a single host are affected equally. For example, the
blocking of GreenBelt is inconsistent on ports 5881 and 12166, but it is solidly blocked on ports
80, 443, 7013, and 60873. Similarly, Mosaddegh’s ports 1984 and 15937 are intermittently
reachable, in the exact same pattern, while ports 80, 443, 2934, and 9332 remain blocked.
These observations lead us to suspect a two-tiered structure of the firewall: one tier for
per-port blocking and a separate one for whole-IP blocking. If there were a temporary failure
of the whole-IP tier, any port not specifically handled by the per-port tier would become
reachable.

5.2.6 Failure to block all new bridges in a batch

The 6.0.5/6.5a2 release batch was noteworthy in several ways. Its six new bridges were all
fresh ports on already used IP addresses. For the first time, not all bridges were blocked
simultaneously. Only three of the bridges—Mosaddegh:2934, MaBishomarim:2413, and
JonbesheSabz:1894—were blocked in a way consistent with previous release batches. Of the
other three,

• LeifEricson:50000 had been blocked since we began measuring it. The LeifEricson IP
address is one of the oldest in the browser. We suspect the entire IP address had been
blocked at some point. We will have more to say about LeifEricson in subsection 5.2.8.

• GreenBelt:5881 (point f©) was offline at the time when other bridges in the batch
were blocked. We confirmed this fact by talking with the bridge operator and through
control measurements: the narrow band in Figure 5.2 shows that while connection
attempts were timing out not only from China, but also from the U.S. The bridge
became reachable again from China as soon as it came back online.

• Azadi:4319 (point g©), in contrast, was fully operational at the time of the other bridges’
blocking, and the censor nevertheless failed to block it.

We take from the failure to block GreenBelt:5881 and Azadi:5881 that the censor, as
late as September 2016, was most likely not discovering bridges by inspecting the bridge
configuration file in the source code, because if it had been, it would not have missed two of
the bridges in the list. Rather, we suspect that the censor used some kind of network analysis—
perhaps running a release of Tor Browser in a black-box fashion, and making a record of
all addresses it connected to. This would explain why GreenBelt:5881 was not blocked (it
couldn’t be connected to while the censor was harvesting bridge addresses) and could also
explain why Azadi:4319 was not blocked (Tor does not try every bridge simultaneously, so it
simply may not have tried to connect to Azadi:4319 in the time the censors allotted for the

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 41

test). It is consistent with the observation that bridges were not blocked before a release: the
censor’s discovery process needed a runnable executable.

Azadi:4319 remained unblocked even after an additional port on the same host was blocked
in the next release batch. This tidbit will enable us, in the next section, to fairly narrowly
locate the onset of bridge discovery based on parsing the bridge configuration file in October
2016.

5.2.7 A switch to blocking before release

The 6.0.6/6.5a4 release batch marked two major changes in the censor’s behavior:

1. For the first time, newly added bridges were blocked before a release. (Not counting
LeifEricson, an old bridge which we had never been able to reach from China.)

2. For the first time, new blocks affected more than one port. (Again not counting
LeifEricson.)

The 6.0.6/6.5a4 batch contained eight new bridges. Six were new ports on previously
used IP addresses (including LeifEricson:50001, which we expected to be already blocked,
but included for completeness). The other two—Lisbeth:443 and NX01:443—were fresh IP
addresses. However one of the new bridges, NX01:443, had a twist: we left it commented out
in the bridge configuration file, thus:

pref(..., "obfs4 192.95.36.142:443 ...");

// Not used yet

// pref(..., "obfs4 85.17.30.79:443 ...");

Six of the bridges—all but the exceptional LeifEricson:50000 and NX01:443—were blocked,
not quite simultaneously, but within 13 hours of each other (see point h© in Figure 5.2). The
blocks happened 14 days (or 22 days in the case of Lisbeth:443 and NX01:443) after ticket
merge, and 27 days before the next public release.

We hypothesize that this blocking event indicates a change in the censor’s technique,
and that in October 2016 the Great Firewall began to discover bridge addresses either by
examining newly filed tickets, or by inspecting the bridge configuration file in the source code.
A first piece of evidence for the hypothesis is, of course, that the bridges were blocked at a
time when they were present in the bridge configuration file, but had not yet appeared in a
release. The presence of the never-before-seen Lisbeth:443 in the blocked set removes the
possibility that the censor spontaneously decided to block additional ports on IP addresses it
already knew about, as does the continued reachability of certain blocked bridges on further
additional ports.

A second piece of evidence comes from a careful scrutiny of the timelines of the Azadi:4319
and Azadi:6041 bridges. As noted in subsection 5.2.6, Azadi:4316 had unexpectedly been
left unblocked in the previous release batch, and it remained so, even after Azadi:6041 was
blocked in this batch.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 42

7 September Azadi:4319 enters the source code
16 September Azadi:4319 appears in public release 6.0.5
6 October Azadi:4319 is deleted from the source code, and Azadi:6041 is added

20 October Azadi:6041 (among others) is blocked
15 November Azadi:6041 appears in public release 6.0.6

The same ticket that removed Azadi:4319 on October 6 also added Azadi:6041. On October 20
when the bridges were blocked, Azadi:4319 was gone from the bridge configuration file, having
been replaced by Azadi:6041. It appears that the yet-unused Azadi:6041 was blocked merely
because it appeared in the bridge configuration file, even though it would have been more
beneficial to the censor to instead block the existing Azadi:4319, which was still in active use.

The Azadi timeline enables us to locate fairly narrowly the change in bridge discovery
techniques. It must have happened during the two weeks between October 6 and October 20,
2016. It cannot have happened before October 6, because at that time Azadi:4319 was still
listed, which would have gotten it blocked. And it cannot have happened after October 20,
because that is when bridges listed in the file were first blocked.

A third piece of evidence supporting the hypothesis that the censor began to discover
bridges through the bridge configuration file is its treatment of the commented-out bridge
NX01:443. The bridge was commented out in the 6.0.6/6.5a4 batch, in which it remained
unblocked, and uncommented in the following 6.0.8/6.5a6 batch. The bridge was blocked
four days after the ticket uncommenting it was merged, which was still 11 days before the
public release in which it was to have become active (see point i© in Figure 5.2).

5.2.8 The onset of whole-IP blocking

The blocking event on October 20 2016 was noteworthy not only because it occurred before a
release, but also because it affected more than one port on some bridges. See point h© in
Figure 5.2. When GreenBelt:7013 was blocked, so were GreenBelt:5881 (which had escaped
blocking in the previous batch) and GreenBelt:12166 (which was awaiting deployment in the
next batch). Similarly, when MaBishomarim:7920 and JonbesheSabz:4148 were blocked, so
were the Orbot-reserved MaBishomarim:1984 and JonbesheSabz:1984 (point k©), ending an
eight-month unblocked streak.

The blocking of Mosaddegh:9332 and Azadi:6041 also affected other ports, though after
a delay of some days. We do not have an explanation for why some multiple-port blocks
took effect faster than others. The SSH port riemann:22 was blocked at about the same
time (point m©), 10 months after the corresponding obfs4 port riemann:443 had been blocked;
there had been no changes to the riemann host in all that time. We suspected that the Great
Firewall might employ a threshold scheme: once a certain number of individual ports on
a particular IP address have been blocked, go ahead and block the entire IP address. But
riemann with its single obfs4 port is a counterexample to that idea.

This was the first time we saw blocking of multiple ports on bridges that had been
introduced during our measurements. LeifEricson may be an example of the same phenomenon
happening in the past, before we even began our experiment. The host LeifEricson had,
since February 2014, been running bridges on multiple ports, and obfs4 on port 41213 since
October 2014. LeifEricson:41213 remained blocked (except intermittently) throughout the

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 43

entire experiment (see point l© in Figure 5.2). We asked its operator to open additional obfs4
ports so we could rotate through them in successive releases; when we began testing them
on August 30, 2016, they were all already blocked. To confirm, on October 4 we asked the
operator privately to open additional, randomly selected ports, and they too were blocked, as
was the SSH port 22.

In subsection 5.2.5, we observed that ports that had been caught up in whole-IP blocking
exhibited different patterns of intermittent reachability after blocking, than did those ports
that had been blocked individually. We suspected that a two-tiered system left certain ports
double-blocked—blocked both by port and by IP address—which would make their blocking
robust to a failure of one of the tiers. The same pattern seems to happen with LeifEricson.
The newly opened ports 50000, 50001, and 50002 share brief periods of reachability in
September and October 2016, but port 41213 during the same time remained solidly down.

5.2.9 No discovery of Orbot bridges

Orbot, the Android version of Tor, also includes default bridges. It has its own bridge
configuration file, similar to Tor Browser’s but in a different format. Most of Orbot’s bridges
are borrowed from Tor Browser, so when a bridge gets blocked, it ends up being blocked for
both Orbot and Tor Browser users.

There were, however, a few bridges that were used only by Orbot (see the “Orbot bridges”
batch in Figure 5.2). They were only alternate ports on IP addresses that were already used
by Tor Browser, but they remained unblocked for over eight months, even as the ports used
by Tor Browser were blocked one by one. The Orbot-only bridges were finally blocked—see
point k© in Figure 5.2—as a side effect of the whole-IP blocking that began in October 2016
(subsection 5.2.8). (All of the Orbot bridges suffered outages, as Figure 5.2 shows, but they
were the result of temporary misconfigurations, not blocking. They were unreachable during
those outages from the control site as well.)

These results show that whatever mechanism the censor had for discovering and blocking
default Tor Browsers, it had not even that much for discovering and blocking Orbot bridges.
Again we have a case of our assumptions not matching reality—blocking that should be easy
to do, and yet is not done. A lesson to take from all this is that there is a benefit to some
degree of compartmentalization between sets of default bridges. Even though they are all in
theory easy to discover, in practice the censor may not have built the necessary automation.

5.2.10 Continued blocking of established bridges

We monitored some bridges that were already established and had been distributed before
we began our experiments. As expected, they were already blocked at the beginning, and
remained so (point l© in Figure 5.2).

5.2.11 No blocking of unused bridges

As a control measure, we reserved a bridge in secret. ndnop4:27668 (see point n© in Figure 5.2)
was not published, neither in Tor Browser’s bridge configuration file, nor in BridgeDB. As
expected, it was never blocked.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 44

ndnop3:24215

riemann:443
ndnop3:10527

ndnop5:13764
noether:443

Mosaddegh:41835
MaBishomarim:49868

JonbesheSabz:80
Azadi:443

Mosaddegh:443
Mosaddegh:80

MaBishomarim:443
MaBishomarim:80

GreenBelt:60873

GreenBelt:443
GreenBelt:80

Mosaddegh:1984
MaBishomarim:1984
JonbesheSabz:1984

Azadi:1984

ndnop4:27668

LeifEricson:41213
fdctorbridge01:80

riemann:22

5.0.5
5.0.6
5.5a5

5.5
6.0a1

5.5.1
5.5.2
6.0a2

5.5.4
6.0a4

5.5.5
6.0a5

6.0

Orbot
bridges

existing or
unreleased

bridges
and other

destinations
Dec Jan

2016
Feb Mar Apr May Jun Jul Aug

Probe results
success
timed out

connection refused
no route to host

Agreement with control
agrees with control
disagrees with control

Bridge events
ticket filed ticket merged

Releases
testing release
public release

Iran

Figure 5.3: Tor Browser default bridge reachability from Iran. We found no evidence of blocking of
default bridges in Iran. What connection failures there were, were also seen from our control site.

5.3 Results from Iran

We had a probe site in Iran from December 2015 to June 2016, a virtual private server which
a personal contact could only provide for a limited time.

In contrast to the situation in China, in Iran we found no evidence of blocking. See
Figure 5.3. Although there were timeouts and refused connections, they were the result of
failures at the bridge side, as confirmed by a comparison with measurements from our control
site. This, despite the fact that Iran is a notorious censor, and has in the past blocked Tor
directory authorities [6].

It seems that Iran has overlooked the blocking of default bridges. Tor Metrics shows
thousands of simultaneous bridge users in Iran since 2014 [178], so it is unlikely that the
bridges were simply blocked in a way that our probing script could not detect. However, in
Kazakhstan we found exactly that situation, with bridges being effectively blocked despite
the firewall allowing TCP connections to them.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 45

5.4 Results from Kazakhstan

We had a single probe site in Kazakhstan between December 2016 and May 2017. It was a
VPN (virtual private network) node, with IP address 185.120.77.110. It was in AS 203087,
which belongs to GoHost.kz, a Kazakh hosting provider. The flakiness of the VPN left us
with two extended gaps in measurements.

The bridge blocking in Kazakhstan was of a different nature than that which we observed
in China. At a TCP reachability level, the only blocked bridge was LeifEricson:41213—in
Figure 5.4 it is the only one whose measurements disagree with controls. This, however,
disagreed with reports of blocking of Tor and pluggable transports since June 2016 [89 §obfs
blocking]. The reports stated that the connection would stall (no packets received from the
bridge) a short time after the TCP handshake.

We deployed an additional probe script in Kazakhstan. This one did not only try to
establish a TCP connection, but also build a full Tor-in-obfs4 connection and build a circuit.
Figure 5.5 shows the results. Tor reports its connection progress as a percentage; connections
to blocked bridges would usually fail at 25%. The bridges in the first three release batches were
blocked before we started measurements in December 2015. The bridges in the 6.0.6/6.5a4
and 6.0.8/6.5a6 batches were blocked on or around January 26, 2017, evidenced by the fact
that they usually progressed to 100% before that date, and only to 25% after. The blocking
date comes either 71 or 43 days after public release, depending on which release you compare
to.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 5. TIME DELAYS IN CENSORS’ REACTIONS 46

ndnop3:10527
ndnop5:13764

Mosaddegh:443
Mosaddegh:80

GreenBelt:443
GreenBelt:80

Mosaddegh:9332
Lisbeth:443

NX01:443

cymrubridge31:80
cymrubridge33:80

ndnop4:27668

LeifEricson:41213
fdctorbridge01:80

riemann:22

5.5
6.0a1

5.5.4
6.0a4

5.5.5
6.0a5

6.0

6.0.6
6.5a4

6.0.8
6.5a6

6.5.2
7.0a3
7.0a4

existing or
unreleased

bridges
and other

destinations
Dec Jan

2017
Feb Mar Apr May

Probe results
success
timed out

connection refused
no route to host

Agreement with control
agrees with control
disagrees with control

Bridge events
ticket filed ticket merged

blocked

Releases
testing release
public release

Kazakhstan, by TCP reachability

Figure 5.4: Tor Browser default bridge reachability from Kazakhstan. Judging by TCP reachability
alone, it would seem that the only disagreement with control—and the only blocked bridge—is
LeifEricson:41213, one of the oldest bridges. However, actually trying to establish a Tor connection
through the obfs4 channel reveals that bridges actually are blocked.

ndnop3:10527
ndnop5:13764

Mosaddegh:80
Mosaddegh:443

GreenBelt:80
GreenBelt:443

Lisbeth:443
Mosaddegh:9332

NX01:443

cymrubridge31:80
cymrubridge33:80

5.5
6.0a1

5.5.4
6.0a4

5.5.5
6.0a5

6.0

6.0.6
6.5a4

6.0.8
6.5a6

6.5.2
7.0a3
7.0a4

Dec Jan
2017

Feb Mar Apr May

0% 25% 50% 75% 100%

Bootstrap progress Agreement with control
agrees with control
disagrees with control

Bridge events
ticket filed ticket merged

blocked

Releases
testing release
public release

Kazakhstan, by bridge bootstrap progress

Figure 5.5: Tor connection progress in the U.S. and Kazakhstan. These measurements show that
even though bridges accepted TCP connections, the firewall usually caused them to stall before a
Tor circuit could be fully constructed. The first three batches were blocked since before we started
measuring; the next two were blocked while we were watching; and the last was not blocked.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

Chapter 6

Domain fronting

Domain fronting is a general-purpose circumvention technique based on HTTPS. It disguises
the true destination of a client’s messages by routing them through a large web server or
content delivery network that hosts many web sites. From the censor’s point of view, messages
appear to go not to their actual (presumably blocked) destination, but to some other front
domain, one whose blocking would result in high collateral damage. Because (with certain
caveats) the censor cannot distinguish domain-fronted HTTPS requests from ordinary HTTPS
requests, it cannot block circumvention without also blocking the front domain. Domain
fronting primarily addresses the problem of detection by address (Section 2.3), but also deals
with detection by content (Section 2.2) and active probing (Chapter 4). Domain fronting is
today an important component of many circumvention systems.

The core idea of domain fronting is the use of different domain names at different protocol
layers. When you make an HTTPS request, the domain name of the server you’re trying to
access normally appears in three places that are visible to the censor:

• the DNS query

• the client’s TLS Server Name Indication (SNI) extension [59 §3]

• the server’s TLS certificate [42 §7.4.2]

and in one place that is not visible to the censor, because it is encrypted:

• the HTTP Host header [65 §5.4]

In a normal request, the same domain name appears in all four places, and all of them
except for the Host header afford the censor an easy basis for blocking. The difference in a
domain-fronted request is that the domain name in the Host header, on the “inside” of the
request, is not the same as the domain that appears in the other places, on the “outside.”
Figure 6.1 shows the first steps of a client making a domain-fronted request.

The SNI extension and the Host header serve similar purposes. They both enable virtual
hosting, which is when one server handles requests for multiple domains. Both fields allow
the client to tell the server which domain it wants to access, but they work at different layers.
The SNI works at the TLS layer, telling the server which certificate to send. The Host header
works at the HTTP layer, telling the server what contents to serve. It is something of an

47

CHAPTER 6. DOMAIN FRONTING 48

Figure 6.1: Domain fronting uses different names at different protocol layers. The forbidden
destination domain is encrypted within the TLS layer. The censor sees only a front domain, one
chosen to be expensive to block. Not shown here, the server’s certificate will also expose only the
front domain, because the certificate is a property of the TLS layer, not the HTTP layer.

accident that these two partially redundant fields both exist. Before TLS, virtual hosting
required only the Host header. The addition of TLS creates a chicken-and-egg problem: the
client cannot send the Host header until the TLS handshake is complete, and the server
cannot complete the TLS handshake without knowing which certificate to send. The SNI
extension resolves the deadlock by sending the domain name in plaintext in the TLS layer.
Domain fronting takes advantage of decoupling the two normally coupled values. It relies on
the server decrypting the TLS layer and throwing it away, then routing requests according to
the Host header.

Virtual hosting, in the form of content delivery networks (CDNs), is now common. A CDN
works by placing an “edge server” between the client and the destination, called an “origin
server” in this context. When the edge server receives an HTTP request, it forwards the
request to the origin server named by the Host header. The edge server receives the response
from the origin server and forwards it back to the client. The edge server is effectively a proxy:
the client never contacts the destination directly, but only through the intermediary CDN,
which foils address-based blocking of the destination the censor may have imposed. Domain
fronting also works on application hosting services like Google App Engine, because one can
upload a simple application that emulates a CDN. The contents of the client’s messages,
as well as the domain name of the true destination, are protected by TLS encryption. The
censor may, in an attempt to block domain fronting, block CDN edge servers or the front
domain, but only at the cost of blocking all other, non-circumvention-related traffic to those
addresses, with whatever collateral damage that entails.

Domain fronting may be an atypical use of HTTPS, but it is not a way to get free CDN
service. A CDN does not forward requests to arbitrary domains, only to domains belonging
to one of its customers. Setting up domain fronting requires becoming a customer of a CDN
and paying for service—and the cost can be high, as Section 6.3 shows.

It may seem at first that domain fronting is only useful for accessing HTTPS web sites,
and then only when they are hosted on a CDN. But extending the idea to work with arbitrary

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 49

destinations only requires the minor additional step of running an HTTPS-based proxy server
and hosting it on the web service in question. The CDN forwards to the proxy, which then
forwards to the destination. Domain fronting shields the address of the proxy, which does
not pose enough risk of collateral damage, on its own, to resist blocking. Exactly this sort of
HTTPS tunneling underlies meek, a circumvention system based on domain fronting that is
discussed further in Section 6.2.

One of the best features of domain fronting is that it does not require any secret information,
completely bypassing the proxy distribution problem (Section 2.3). The address of the CDN
edge server, the address of the proxy hidden behind it, the fact that some fraction of traffic
to the edge server is circumvention—all of these may be known by the censor, without
diminishing the system’s blocking resistance. This is not to say, of course, that domain
fronting is impossible to block—as always, a censor’s capacity to block depends on its
tolerance for collateral damage. But the lack of secrecy makes the censor’s choice stark: allow
circumvention, or block a domain. This is the way to think about circumvention in general:
not “can it be blocked?” but “what does it cost to block?”

6.1 Work related to domain fronting

I did not invent domain fronting. I did, however, give it a name, help popularize its use,
and produce an important implementation. As far as I have been able to find out, the first
implementation of domain fronting was in GoAgent, a circumvention system, circa 2012.
GoAgent employed a variant of fronting where the SNI is omitted, rather than being faked.
Earlier in 2012, Bryce Boe wrote a blog post [16] outlining how to use Google App Engine as
a proxy, and suggested that sending a false SNI could bypass SNI whitelisting. Even farther
back, in 2004, when HTTPS and CDNs were less common, Köpsell and Hillig [119 §5.2]
foresaw the possibilities of a situation such as exists today: “Imagine that all web pages of
the United States are only retrievable (from abroad) by sending encrypted requests to one
and only one special node. Clearly this idea belongs to the ‘all or nothing’ concept because a
blocker has to block all requests to this node.”

Refraction networking is the name for a class of circumvention techniques that share
similarities with domain fronting. The idea was introduced in 2011 with the designs Cirri-
pede [106], CurveBall [114], and Telex [204]. In refraction networking, it is network routers
that act as proxies, lying at the middle of network paths rather than at the ends. The
client “tags” its messages in a way that the censor cannot detect (analogously to the way
the Host header is encrypted in domain fronting). When the router finds a tagged message,
it shunts the message away from its nominal destination and towards some other, covert
destination. Refraction networking derives its blocking resistance from the collateral damage
that would result from blocking the cover channel (typically TLS) or the refraction-capable
network routers. Refraction networking has the potential to be the basis of exceptionally
high-performance circumvention, as a test deployment in Spring 2017 demonstrated [95].

CloudTransport [22], proposed in 2014, is like domain fronting in many respects. It uses
HTTPS to a shared server (in this case a cloud storage server). The specific storage area
being accessed—what the censor would like to know—is encrypted, so the censor cannot
block CloudTransport without blocking the storage service completely.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 50

Figure 6.2: Putting it together: how to build a circumvention system around domain fronting. The
CDN acts as a limited proxy, only capable of forwarding to destinations within its own network—one
of which is a bridge, which we control. The bridge acts as a general-purpose proxy, capable of
reaching access to any destination. Fronting through the CDN hides the bridge’s address, which is
presumably blocked.

In 2015 I published a paper on domain fronting [90] with Chang Lan, Rod Hynes, Percy
Wegmann, and Vern Paxson. In it, we described the experience of deploying domain fronting
on Tor, Lantern [120], and Psiphon [158], and began an investigation into side channels,
such as packet size and timing, that a censor might use to detect domain fronting. The Tor
deployment, called meek, is the subject of Sections 6.2 and 6.3.

Later in 2015 there were a couple of papers on the detection of circumvention transports,
including meek. Tan et al. [174] measured the Kullback–Leibler divergence between the
distributions of packet size and packet timing in different protocols. (The paper is written in
Chinese and my understanding of it is based on an imperfect translation.) Wang et al. [186]
built classifiers for meek among other protocols using entropy, timing, and transport-layer
features. They emphasized practical classifiers and tested their false-classification rates
against real traffic traces.

6.2 A pluggable transport for Tor

I am the main author and maintainer of meek, a pluggable transport for Tor based on domain
fronting. meek uses domain-fronted HTTP POST requests as the primitive operation to
send or receive chunks of data up to a few kilobytes in size. The intermediate CDN receives
domain-fronted requests and forwards them to a Tor bridge. Auxiliary programs on the client
and the bridge convert the sequence of HTTP requests to the byte stream expected by Tor.
The Tor processes at either end are oblivious to the domain-fronted that is going on between
them. Figure 6.2 shows how the components and protocol layers interact.

When the client has something to send, it issues a POST request with data in the body;
the server sends data back in the body of its responses. HTTP/1.1 does not provide a way
for a server to preemptively push data to a client, so the meek server buffers its outgoing
data until it receives a request, then includes the buffered data in the body of the HTTP
response. The client must poll the server periodically, even when it has nothing to send,

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 51

meek client meek server

POST / HTTP/1.1

Host: forbidden.example

X-Session-Id: cbIzfhx1Hn+

Content-Length: 517

\x16\x03\x01\x02...

→

←
HTTP/1.1 200 OK

Content-Length: 739

\x16\x03\x03\x00...

POST / HTTP/1.1

Host: forbidden.example

X-Session-Id: cbIzfhx1Hn+

Content-Length: 0

→

←
HTTP/1.1 200 OK

Content-Length: 75

\x14\x03\x03\x00...

Figure 6.3: The HTTP-based framing protocol of meek. Each request and response is domain-
fronted. The second POST is an example of an empty polling request, sent only to give the server
an opportunity to send data downstream.

to give the server an opportunity to send back whatever buffered data it may have. The
meek server must handle multiple simultaneous clients. Each client, at the beginning of
a session, generates a random session identifier string and sends it with its requests in a
special X-Session-Id HTTP header. The server maintains separate connections to the local
Tor process for each session identifier. Figure 6.3 shows a sequence of requests and responses.

Even with domain fronting to hide the destination request, a censor may try to distinguish
circumventing HTTPS connections by their TLS fingerprint. TLS implementations have a lot
of latitude in composing their handshake messages, enough that it is possible to distinguish
different TLS implementations through passive observation. For example, the Great Firewall
used Tor’s TLS fingerprint for detection as early as 2011 [48]. For this reason, meek strives
to make its TLS fingerprint look like that of a browser. It does this by relaying its HTTPS
requests through a local headless browser (which is completely separate from the browser
that the user interacts with).

meek first appeared in Tor Browser in October 2014 [154], and continues in operation to
the present. It is Tor’s second-most-used transport (behind obfs4) [176]. The next section is
a detailed history of its deployment.

6.3 An unvarnished history of meek deployment

Fielding a circumvention system and keeping it running is full of unexpected challenges. At
the time of the publication of the domain fronting paper [90] in 2015, meek had been deployed

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 52

first alpha release
first stable release

meek-azure performance improvement
rate-limited meek-google and meek-amazon

meek-azure outage
meek-azure restored

rate-limited meek-azure
relaxed rate limits

meek-google suspended

Orbot problems
Orbot fixed

rate-limited meek-amazon
rate-limited meek-azure

started new meek-azure

meek-amazon outage
meek-amazon restored

first announcement0

5,000

10,000

15,000

J
2014

F M A M J J A S O N D J
2015

F M A M J J A S O N D J
2016

F M A M J J A S O N D J
2017

F M A M J J A S O N D

Figure 6.4: Estimated mean number of concurrent users of the meek pluggable transport, with
selected events. This graph is an updated version of Figure 5 from the 2015 paper “Blocking-resistant
communication through domain fronting” [90]; the vertical blue stripe divides old and new data.
The user counts come from Tor Metrics [125].

Google Amazon Azure total

2014 Jan $0.00 — — $0.00
Feb $0.09 — — $0.09
Mar $0.00 — — $0.00
Apr $0.73 — — $0.73
May $0.69 — — $0.69
Jun $0.65 — — $0.65
Jul $0.56 $0.00 — $0.56
Aug $1.56 $3.10 — $4.66
Sep $4.02 $4.59 $0.00 $8.61
Oct $40.85 $130.29 $0.00 $171.14
Nov $224.67 $362.60 $0.00 $587.27
Dec $326.81 $417.31 $0.00 $744.12

2014 total $600.63 $917.89 $0.00 $1,518.52

Google Amazon Azure total

2015 Jan $464.37 $669.02 $0.00 $1,133.39
Feb $650.53 $604.83 $0.00 $1,255.36
Mar $690.29 $815.68 $0.00 $1,505.97
Apr $886.43 $785.37 $0.00 $1,671.80
May $871.64 $896.39 $0.00 $1,768.03
Jun $601.83 $820.00 $0.00 $1,421.83
Jul $732.01 $837.08 $0.00 $1,569.09
Aug $656.76 $819.59 $154.89 $1,631.24
Sep $617.08 $710.75 $490.58 $1,818.41
Oct $672.01 $110.72 $300.64 $1,083.37
Nov $602.35 $474.13 $174.18 $1,250.66
Dec $561.29 $603.27 $172.60 $1,337.16

2015 total $8,006.59 $8,146.83 $1,292.89 $17,446.31

Google Amazon Azure total

2016 Jan $771.17 $1,581.88 $329.10 $2,682.15
Feb $986.39 $977.85 $445.83 $2,410.07
Mar $1,079.49 $865.06 $534.71 $2,479.26
Apr $1,169.23 $1,074.25 $508.93 $2,752.41
May $525.46 $1,097.46 $513.56 $2,136.48
Jun — $1,117.67 $575.50 $1,693.17
Jul — $1,121.71 $592.47 $1,714.18
Aug — $1,038.62 $607.13 $1,645.75
Sep — $932.22 $592.92 $1,525.14
Oct — $1,259.19 $646.00 $1,905.19
Nov — $1,613.00 $597.76 $2,210.76
Dec — $1,569.84 $1,416.10 $2,985.94

2016 total $4,531.74 $14,248.75 $7,360.01 $26,140.50

Google Amazon Azure total

2017 Jan — $1,550.19 $1,196.28 $2,746.47
Feb — $1,454.68 $960.01 $2,414.69
Mar — $2,298.75 ? $2,298.75+

Apr — ? ? ?
May — ? ? ?
Jun — ? ? ?
Jul — ? ? ?
Aug — ? ? ?
Sep — ? ? ?
Oct — ? ? ?
Nov — ? ? ?

2017 total — $5,303.62+ $2,156.29+ $7,459.91+

grand total $13,138.96 $28,617.09+$10,809.19+$52,565.24+

Table 6.5: Costs for running meek, compiled from my monthly reports [140 §Costs]. (The reference
has minor arithmetic errors that are corrected here.) meek ran on three different web services:
Google App Engine, Amazon CloudFront, and Microsoft Azure. The notation ‘—’ means meek
wasn’t deployed on that service in that month; for example, we stopped using App Engine after May
2016 following the suspension of the service (see discussion on p. 58). The notation ‘?’ marks the
months after I stopped handling the invoices personally. I don’t know the costs for those months, so
certain totals are marked with ‘+’ to indicate that they are higher than the values shown.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 53

for only a year and a half. Here I will recount the history of the project from its inception
to the present, a period of four years. As the main developer and project leader, I have a
unique perspective that I hope to share. As backdrops to the narrative, Figure 6.4 shows the
estimated concurrent number of users of meek over its existence, and Table 6.5 shows the
monthly cost to run it.

2013: Precursors; prototypes

The prehistory of meek begins in 2013 with flash proxy [84]. Flash proxy clients need a secure
rendezvous, a way to register their address to a central facilitator, so that flash proxies may
connect back to them. Initially there were only two means of registration: flashproxy-reg-http,
which sent client registrations as HTTP requests; and flashproxy-reg-email, which sent client
registrations to a distinguished email address. We knew that flashproxy-reg-http was easily
blockable; flashproxy-reg-email had good blocking resistance but was somewhat slow and
complicated, requiring a server to poll for new messages. At some point, Jacob Appelbaum
showed me an example of using domain fronting—though we didn’t have a name for it
then—to access a simple HTML-rewriting proxy based on Google App Engine. I eventually
realized that the same trick would work for flash proxy rendezvous. I proposed a design [20]
in May 2013 and within a month Arlo Breault had written flashproxy-reg-appspot, which
worked just like flashproxy-reg-http, except that it fronted through www.google.com rather
than contacting the registration server directly. The fronting-based registration became flash
proxy’s preferred registration method, being faster and simpler than the email-based one.

The development of domain fronting, from a simple rendezvous technique, into a full-
fledged bidirectional transport, seems slow in retrospect. All the pieces were there; it was a
matter of putting them together. I did not immediately appreciate the potential of domain
fronting when I first saw it. Even after the introduction of flashproxy-reg-appspot, months
passed before the beginning of meek. The whole idea behind flash proxy rendezvous is
that the registration channel can be of low quality—unidirectional, low-bandwidth, and
high-latency—because it is only used to bootstrap into a more capable channel (WebSocket,
in flash proxy’s case). Email fits this model well: not good for a general-purpose channel,
but just good enough for rendezvous. The fronting-based HTTP channel, however, was more
capable than needed for rendezvous, being bidirectional and reasonably high-performance.
Rather than handing off the client to a flash proxy, it should be possible to carry all the
client’s traffic through the same domain-fronted channel. It was around this time that I first
became aware of the circumvention system GoAgent through the “Collateral Freedom” [163]
report of Robinson et al. GoAgent used an early form of domain fronting, issuing HTTP
requests directly from a Google App Engine server. According to the report, GoAgent was
the most used circumvention tool among a group of users in China. I read the source code of
GoAgent in October 2013 and wrote ideas about writing a similar pluggable transport [73],
which would become meek.

I dithered for a while over what to call the system I was developing. Naming things is the
worst part of software engineering. My main criteria were that the name should not sound
macho, and that it should be easier to pronounce than “obfs.” I was self-conscious that the
idea at the core of the system, domain fronting was a simple one and easy to implement. Not
wanting to oversell it, I settled on the name “meek,” in lower case for extra meekness.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 54

I lost time in the premature optimization of meek’s network performance. I was thinking
about the request–response nature of HTTP, and how requests and responses could conceivably
arrive out of order (even if reordering was unlikely to occur in practice, because of keepalive
connections and HTTP pipelining). I made several attempts at a TCP-like reliability and
sequencing layer, none of which were satisfactory. I wrote a simplified experimental prototype
called “meeker,” which simply prepended an HTTP header before the client and server streams,
but meeker only worked for direct connections, not through an HTTP-aware intermediary
like App Engine. When I explained these difficulties to George Kadianakis in December
2013, he advised me to forget the complexity and implement the simplest thing that could
work, which was good advice. I started implementing a version that strictly serialized HTTP
requests and responses.

2014: Development; collaboration; deployment

According to the Git revision history, I started working on the source code of meek proper
on January 26, 2014. I made the first public announcement on January 31, 2014, in a post
to the tor-dev mailing list titled “A simple HTTP transport and big ideas” [66]. (If the
development time seems short, it’s only because months of prototypes and false starts cleared
the way.) In the post, I linked to the source code, described the protocol, and explained how
to try it, using an App Engine instance I set up shortly before. At this time there was no
web browser TLS camouflage, and only App Engine was supported. I was not yet using the
term “domain fronting.” The big ideas of the title were as follows: we could run one big
public bridge rather than relying on multiple smaller bridges as other transports did; a web
server with a PHP “reflector” script could take the place of a CDN, providing a diversity
of access points even without domain fronting; we could combine meek with authentication
and serve a 404 to unauthenticated users; and Cloudflare and other CDNs are alternatives to
App Engine. We did end up running a public bridge for public benefit (and later worrying
over how to pay for it), and deploying on platforms other than App Engine (with Tor we
use other CDNs, but not Cloudflare specifically). Arlo Breault would write a PHP reflector,
though there was never a repository of public meek reflectors as there were for other types of
Tor bridges. Combining meek with authentication never happened; it was never needed for
our public domain-fronted instances because active probing doesn’t help the censor in those
cases anyway.

During the spring 2014 semester (January–May) I was enrolled in Vern Paxson’s Inter-
net/Network Security course along with fellow student Chang Lan. We made the development
and security evaluation of meek our course project. During this time we built browser TLS
camouflage extensions, tested and polished the code, and ran performance tests. Our final
report, “Blocking-resistant communication through high-value web services,” became the
kernel of our later research paper.

I began the process of getting meek integrated into Tor Browser in February 2014 [86].
The initial integration would be completed in August 2014. In the intervening time, along
with much testing and debugging, Chang Lan and I wrote browser extensions for Chrome
and Firefox in order to hide the TLS fingerprint of the base meek client. I placed meek’s
code in the public domain (Creative Commons CC0 [33]) on February 8, 2014. The choice of
(non-)license was a strategic decision to encourage adoption by projects other than Tor.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 55

In March 2014, I met some developers of Lantern at a one-day hackathon sponsored by
OpenITP [23]. Lantern developer Percy Wegmann and I realized that the meek code I had
been working on could act as a glue layer between Tor and the HTTP proxy exposed by
Lantern, in effect allowing you to use Lantern as a pluggable transport for Tor. We worked
out a prototype and wrote a summary of the process [75]. In that specific application, we
used meek not for its domain-fronting properties but for its HTTP-tunneling properties; but
the early contact with other circumvention developers was valuable.

June 2014 brought a surprise: the Great Firewall of China blocked all Google services [3,
98]. It would be vain to think that it was in response to the nascent deployment of meek
on App Engine; a much more likely cause was Google’s decision to begin using HTTPS for
web searches, which would foil keyword-based URL filtering. Nevertheless, the blocking cast
doubt on the feasibility of domain fronting: I had believed that blocking all of Google would
be too costly in terms of collateral damage to be sustained for long by any censor, even the
Great Firewall, and that belief was wrong. In any case, we now needed fronts other than
Google in order to have any claim of effective circumvention in China. I set up additional
backends: Amazon CloudFront and Microsoft Azure. When meek made its debut in Tor
Browser, it would offer three modes: meek-google, meek-amazon, and meek-azure.

Google sponsored a summit of circumvention researchers in June 2014, at which I presented
domain fronting. (By this time I had started using the term “domain fronting,” realizing
that what I had been working on needed a specific name. I have tried to the idea “domain
fronting” separate from the implementation “meek,” but the two terms have sometimes gotten
confused.) Developers from Lantern and Psiphon where there—I was pleased to learn that
Psiphon had already implemented and deployed domain fronting after reading my mailing list
posts. The meeting started a fruitful collaboration between the developers of Tor, Lantern,
and Psiphon.

Chang, Vern, and I submitted a paper on domain fronting to the Network and Distributed
System Security Symposium in August 2014, whence it was rejected. One reviewer said the
technique was already well known; the others generally wanted to see more on the experience
of deployment, and a deeper investigation into resistance against traffic analysis attacks based
on packet sizes and timing.

The first public release of Tor Browser that had a built-in easy-to-use meek client was
version 4.0-alpha-1 on August 12, 2014 [28]. This was an alpha release, used by fewer users
than the stable release. I made a blog post explaining how to use it a few days later [74].
The release and blog post had a positive effect on the number of users, however the absolute
numbers from around this time are uncertain, because of a mistake I made in configuring the
meek bridge. I was running the meek bridge and the flash proxy bridge on the same instance
of Tor; and because of how Tor’s statistics are aggregated, the counts of the two transports
were spuriously correlated [78]. I switched the meek bridge to a separate instance of Tor on
September 15; numbers after that date are more trustworthy. In any case, the usage before
this first release was tiny: the App Engine bill, at a rate of $0.12/GB with one GB free each
day, was less than $1.00 per month for the first seven months of 2014 [140 §Costs]. In August,
the cost began to be nonzero every day, and would continue to rise from there. See Table 6.5
on page 52 for a history of monthly costs.

Tor Browser 4.0 [154] was released on October 15, 2014. It was the first stable (not alpha)
release to have meek, and it had an immediate effect on the number of users: which jumped

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 56

from 50 to 500 within a week. (The increase was partially conflated with a failure of the
meek-amazon bridge to publish statistics before that date, but the other bridge, servicing
both meek-google and meek-azure, individually showed the same increase.) It was a lesson in
user behavior: although meek had been available in an alpha release for two months already,
evidently a large number of users did not know of it or chose not to try it until the first
stable release. At that time, the other transports available were obfs3, FTE, ScrambleSuit,
and flash proxy.

2015: Growth; restraints; outages

Through the first part of 2015, the estimated number of simultaneous users continued to
grow, reaching about 2,000, as we fixed bugs and Tor Browser had further releases. The first
release of Orbot that included meek appeared in February [94].

We submitted a revised version of the domain fronting paper [90], now with contributions
from Psiphon and Lantern, to the Privacy Enhancing Technologies Symposium, where it was
accepted and appeared on June 30 at the symposium.

The increasing use of domain fronting by various circumvention tools began to attract
more attention. A March 2015 article by Eva Dou and Alistair Barr in The Wall Street
Journal [53] described domain fronting and “collateral freedom” in general, depicting cloud
service providers as being caught in the crossfire between censors and circumventors. The
journalists contacted me but I declined to be interviewed; I thought it was not the right time
for extra publicity, and anyway personally did not want to deal with doing an interview.
Shortly thereafter, GreatFire, an anticensorship organization that was mentioned in the
article, experienced a new type of denial-of-service attack [171], caused by a Chinese network
attack system later dubbed the Great Cannon [131]. They blamed the attack on the attention
brought by the news article. As further fallout, Cloudflare, a CDN which Lantern used for
fronting and whose CEO was quoted in the article, stopped supporting domain fronting [156],
by beginning to enforce a match between the SNI and the Host header

Since its first deployment, the Azure backend had been slower, with fewer users, than the
other two options, App Engine and CloudFront. For months I had chalked it up to limitations
of the platform. In April 2015, though, I found the real source of the problem: the component
I wrote that runs on Azure, receives domain-fronted HTTP requests and forwards them to
the meek bridge, was not reusing TCP connections. For every outgoing request, the code
was doing a fresh TCP and TLS handshake—causing a bottleneck at the bridge as its CPU
tried to cope with all the incoming TLS. When I fixed the code to reuse connections [67], the
number of users (overall, not only for Azure) had a sudden jump, increasing from 2,000 to
reaching 6,000 in two weeks. Evidently, we had been leaving users on the table by having
one of the backends not run as fast as possible.

The deployment of domain fronting was being partly supported by a $500/month grant
from Google. Already in February 2015, the monthly cost for App Engine alone began to
exceed that amount [140 §Costs]. In an effort to control costs, in May 2015 we began to
rate-limit the App Engine and CloudFront bridges, deliberately slowing the service so that
fewer would use it. Until October 2015, the Azure bridge was on a research grant provided by
Microsoft, so we allowed it to run as fast as possible. When the grant expired, we rate-limited
the Azure bridge as well. This rate-limiting explains the relative flatness of the user graph

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 57

from May to the end of 2015.
Google changed the terms of service governing App Engine in 2015. (I received a message

announcing the change in May, but it seems the changes had been changed online since
March.) The updated terms included a paragraph that seemed to prohibit running a proxy
service [99]:

Networking. Customer will not, and will not allow third parties under its control
to: (i) use the Services to provide a service, Application, or functionality of
network transport or transmission (including, but not limited to, IP transit,
virtual private networks, or content delivery networks); or (ii) sell bandwidth
from the Services.

This was a stressful time: we seemed to have Google’s support, but the terms of service said
otherwise. I contacted Google to ask for clarification or guidance, in the meantime leaving
meek-google running; however I never got an answer to my questions. The point became moot
a year later, when Google shut down our App Engine project, for another reason altogether;
see below.

By this time we had not received reports of any attempts to block domain fronting. We
did, however, suffer a few accidental outages (which are just as bad as blocking, from a client’s
point of view). Between July 20 and August 14, an account transition error left the Azure
configuration broken [77]. I set up another configuration on Azure and published instructions
on how to use it, but it would not be available to the majority of users until the next release
of Tor Browser, which happened on August 11. Between September 30 and October 9, the
CloudFront bridge was effectively down because of an expired TLS certificate. When it
rebooted on October 9, an administrative oversight caused its Tor relay identity fingerprint
to change—meaning that clients expecting the former fingerprint refused to connect to it [88].
The situation was not fully resolved until November 4 with the next release of Tor Browser:
cascading failures led to over a month of downtime.

In October 2015 there appeared a couple of research papers that investigated meek’s
susceptibility to detection via side channels. Tan et al. [174] used Kullback–Leibler divergence
to quantify the differences between protocols, with respect to packet size and interarrival
time distributions. Their paper is written in Chinese; I read it in machine translation. Wang
et al. [186] published a more comprehensive report on detecting meek (and other protocols),
emphasizing practicality and precision. They showed that some previously proposed classifiers
would have untenable false-positive rates, and constructed a classifier for meek based on
entropy and timing features. It’s worth noting that since the first reported efforts to block
meek in 2016, censors have preferred, as far as we can tell, to use techniques other than those
described in these papers.

A side benefit of building a circumvention system atop Tor is easy integration with Tor
Metrics—the source of the user number estimates in this section. Since the beginning of
meek’s deployment, we had known about a problem with the way it integrates with Tor
Metrics. Tor pluggable transports geolocate the client’s IP address in order to aggregate
statistics by country. But when a meek bridge receives a connection, the “client IP address”
it sees is not that of the true client, but rather that of some cloud server, the intermediary
through which the client’s domain-fronted traffic passes. So the total user counts were fine,
but the per-country counts were meaningless. For example, because App Engine’s servers

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 58

were located in the U.S., every meek-google connection was being counted as if it belonged to
a client in the U.S. By the end of 2015, meek users were a large enough fraction (about 20%)
of all bridge users that they were skewing the overall per-country counts. I wrote a patch [91]
to have the client’s true IP address forwarded through the network intermediary in a special
HTTP header, which fixed the per-country counts from then on.

2016: Taking off the reins; misuse; blocking efforts

In mid-January 2016 the Tor Project asked me to raise the rate limits on the meek bridges,
in anticipation of rumored attempts to block Tor in Egypt. I asked the bridge operators raise
the limits from approximately 1 MB/s to 3 MB/s. The effect of the relaxed rate limits was
immediate: the count shot up as high 15,000 simultaneous users, briefly making meek Tor’s
most-used pluggable transport, before settling in at around 10,000.

The first action that may have been a deliberate attempt to block domain fronting came
on January 29, 2016, when the Great Firewall of China blocked one of the edge servers of the
Azure CDN. The blocking was by IP address, a severe method: not only the domain name we
were using for fronting, but thousands of other names became inaccessible. The block lasted
about four days. On February 2, the server changed its IP address (simply incrementing
the final octet from .200 to .201), causing it to become unblocked. I am aware of no other
incidents of edge server blocking.

The next surprise was on May 13, 2016. meek’s App Engine backend stopped working
and I got a notice:

We’ve recently detected some activity on your Google Cloud Platform/API Project
ID meek-reflect that appears to violate our Terms of Service. Please take a moment
to review the Google Cloud Platform Terms of Service or the applicable Terms of
Service for the specific Google API you are using.

Your project is being suspended for committing a general terms of service violation.

We will delete your project unless you correct the violation by filling in the appeals
form available on the project page of Developers Console to get in touch with our
team so that we can provide you with more details.

My first thought—which turned out to be wrong—was that it was because of the changes
to the terms of service that had been announced the previous year. I tried repeatedly to
contact Google and learn the nature of the violation, But none of my inquiries received
even an acknowledgement. It was not until June 18 that I got some insight, through an
unofficial channel, about what happened. Some botnet had apparently been misusing meek
for command and control purposes. Its operators had not even bothered to set up their
own App Engine project; they were freeriding on the service we had been operating for the
public. Although we may have been able to reinstate the meek-google service, seeing as the
suspension was the result of someone else’s actions, not ours, with the existing uncertainty
around the terms of service I didn’t have the heart to pursue it. meek-google remained off,
and users migrated to meek-amazon or meek-azure. It turned out, later, that it had been no
common botnet misusing meek-google, but an organized political hacker group, known as
Cozy Bear or APT29. Matthew Dunwoody presented observations to that effect in a FireEye

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 59

blog post [55] in March 2017. The malware would install a backdoor that operated over a
Tor onion service, and used meek for camouflage. He and Nick Carr had earlier presented
those findings at DerbyCon in September 2016 [56], but I was not aware of them until the
blog post.

The year 2016 brought the first reports of efforts to block meek. These efforts all had
in common that they used TLS fingerprinting in conjunction with SNI inspection. In
May, a Tor user reported that Cyberoam, a firewall company, had released an update
that enabled detection and blocking of meek, among other Tor pluggable transports [111].
Through experiments we determined that the firewall was detecting meek whenever it saw a
combination of two features: a specific client TLS fingerprint, and an SNI containing any
of our three front domains: www.google.com, a0.awsstatic.com, or ajax.aspnetcdn.com [69].
We verified that changing either the TLS fingerprint or the front domain was sufficient to
escape detection. Requiring both features to be present was a clever move by the firewall
to limit collateral damage: it did not block those domains for all clients, but only for the
subset having a particular TLS fingerprint. I admit that I had not considered the possibility
of using TLS and SNI together to make a more precise classifier. We had known since
the beginning of the possibility of TLS fingerprinting, which is why we took the trouble to
implement browser-based TLS camouflage. The camouflage was performing as intended: even
an ordinary Firefox 38 (the basis of Tor Browser, and what meek camouflaged itself as) would
be blocked by the firewall when accessing one of the three listed domains. However, Firefox 38
was by that time a year old. I found a source [69] saying that at that time, Firefox 38 made
up only 0.38% of desktop browsers, compared to 10.69% for the then-latest Firefox 45 My
guess is that the firewall makers considered the small amount of collateral blocking of genuine
Firefox 38 users to be acceptable.

In July I received a report of similar behavior by a FortiGuard firewall [72] from Tor
user Kanwaljeet Singh Channey. The situation was virtually the same as in the Cyberoam
case: the firewall would block connections having a specific TLS fingerprint and a specific
SNI. This time, the TLS fingerprint was that of Firefox 45 (which by then Tor Browser had
upgraded to); and the specific SNIs were two, not three, omitting www.google.com. As in
the previous case, changing either the TLS fingerprint or the front domain was sufficient to
get through the firewall.

For reasons not directly related to domain fronting or meek, I had been interested in
the blocking situation in Kazakhstan, ever since Tor Metrics reported a sudden drop in the
number of users in that country in June 2016 [89]. (See Section 5.4 for other results from
Kazakhstan.) I worked with an anonymous collaborator, who reported that meek was blocked
in the country since October 2016 or earlier. According to them, changing the front domain
would evade the block, but changing the TLS fingerprint didn’t help. I did not independently
confirm these reports. Kazakhstan remains the only case of country-level blocking of meek
that I am aware of.

Starting in July 2016, there was a months-long increase in the number of meek users
reported from Brazil [177]. The estimated count went from around 100 to almost 5,000,
peaking in September 2016 before declining again. During parts of this time, over half of
all reported meek users were from Brazil. We never got to the bottom of why there should
be so many users reported from Brazil in particular. The explanation may be some kind of
anomaly; for instance some third-party software that happened to use meek, or a malware

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 60

infection like the one that caused the shutdown of meek-google. The count of users from
Brazil dropped suddenly, from 1,500 almost to zero, on March 3, 2017, which happened also
to be the day that I shut down meek-azure pending a migration to new infrastructure. The
Brazil count would remain low until rising again in June 2017.

In September 2016, I began mentoring Katherine Li in writing a program GAEuploader [123],
to simplify and automate the process of setting up domain fronting. The program automati-
cally uploads the necessary code to Google App Engine, then outputs a bridge specification
ready to be pasted into Tor Browser or Orbot. We hoped also that the code would be
useful to other projects, like XX-Net [206], that require users to perform the complicated
task of uploading code to App Engine. GAEuploader had beta releases in January [122]
and November [124] 2017; however the effect on the number of users has so far not been
substantial.

Between October 19 and November 10, 2016, the number of meek users decreased globally
by about a third [87]. Initially I suspected a censorship event, but the other details didn’t
add up: the numbers decreased and later recovered simultaneously across many countries,
including ones not known for censorship. Discussion with other developers revealed the likely
cause: a botched release of Orbot that left some users unable to use the program [79]. Once a
fixed release was available, user numbers recovered. As an side effect of this event, we learned
that a majority of meek users were using Orbot rather than Tor Browser.

2017: Long-term support

In January 2017, a grant I had been using to pay meek-azure’s bandwidth bills ran out.
Lacking the means to keep it running, I announced my intention to shut it down [76]. Shortly
thereafter, Team Cymru offered to set up their own instances and pay the CDN fees, and so
we made plans to migrate meek-azure to the new setup in the next releases. For cost reasons,
though, I still had to shut down the old configuration before the new releases of Tor Browser
and Orbot were fully ready. I shut down my configuration on March 3. The next release of
Tor Browser was on March 7, and the next release of Orbot was on March 22: so there was a
period of days or weeks during which meek-azure was non-functional. It would have been
better to allow the two configurations to run concurrently for a time, so that users of the old
would be able to transparently upgrade to the new—but for cost reasons it was not possible.
Perhaps not coincidentally, the surge of users from Brazil, which had started in July 2016,
ceased on March 3, the same day I shut down meek-azure before its migration. Handing over
control of the infrastructure was a relief to me. I had managed to make sure the monthly
bills got paid, but it took more care and attention than I liked. A negative side effect of the
migration was that I stopped writing monthly summaries of costs, because I was no longer
receiving bills.

Also in January 2017, I became aware of the firewall company Allot Communications,
thanks to my anonymous collaborator in the work Kazakhstan work. Allot’s marketing
materials advertised support for detection of a wide variety of circumvention protocols,
including Tor pluggable transports, Psiphon, and various VPN services [81]. They claimed
detection of “Psiphon CDN (Meek mode)” going back to January 2015, and of “TOR (CDN
meek)” going back to April 2015. We did not have any Allot devices to experiment with, and
I do not know how (or how well) their detectors worked.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 6. DOMAIN FRONTING 61

In June 2017, the estimated user count from Brazil began to increase again [177], similarly
to how it had between July 2016 and March 2017. Just as before, we did not find an
explanation for the increase.

The rest of 2017 was fairly quiet. Starting in October, there were reports from China of
the disruption of look-like-nothing transports such as obfs4 and Shadowsocks [80], perhaps
related to the National Congress of the Communist Party of China that was then about to
take place. The disruption did not affect meek or other systems based on domain fronting; in
fact the number of meek users in China roughly doubled during that time.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

Chapter 7

Snowflake

Snowflake is a new circumvention system currently under development. It is based on peer-to-
peer connections through lightweight, ephemeral proxies that run in web browsers. Snowflake
proxies are lightweight: activating one is as easy as browsing to a web page and shutting one
down only requires closing the browser tab. They serve only as temporary stepping stones to
a full-fledged proxy. Snowflake derives its blocking resistance from having a large number of
proxies. A client may use a particular proxy for only seconds or minutes before switching
to another. If the censor manages to block the IP address of one proxy, there is little harm,
because many other temporary proxies are ready to take its place.

Snowflake [173] is the spiritual successor to flash proxy [85], a system that similarly used
browser-based proxies. Flash proxy, with obfs2 and obfs3, was one of the first three pluggable
transports for Tor [68], but since its introduction in 2013 it never had many users [179].
I believe that its lack of adoption was a result mainly of its incompatibility with NAT
(network address translation): its use of the TCP-based WebSocket protocol [64] required
clients to follow complicated port forwarding instructions [71]. For that reason flash proxy
was deprecated in 2016 [12].

Snowflake keeps flash proxy’s basic idea of in-browser proxies, but replaces WebSocket with
WebRTC [4], a suite of protocols for peer-to-peer communications. Importantly, WebRTC
uses UDP for communication, and includes facilities for NAT traversal, allowing most clients
to use it without manual configuration. WebRTC mandatorily encrypts its channels, which
as a side effect obscures any keywords or byte patterns in the tunneled traffic. (While leaving
open the possibility of detecting the use of WebRTC itself—see Section 7.2.)

Aside from flash proxy, the most similar existing design was a former version of uProxy [184].
uProxy required clients to know a confederate outside the censor’s network who could run a
proxy. The client would connect through the proxy using WebRTC; the proxy would then
directly fetch the client’s requested URLs. Snowflake centralizes the proxy discovery process,
removing the requirement to arrange one’s own proxy outside the firewall. Snowflake proxies
are merely dumb pipes to a more capable proxy, allowing them to carry traffic other than
web traffic, and preventing them from spying on the client’s traffic. prior coordination with a
friend before connecting.

The name “Snowflake” comes from one of WebRTC’s subprotocols, called ICE (Interactive
Connectivity Establishment) [164], and from the temporary proxies, which resemble snowflakes
in their impermanence and uniqueness.

62

CHAPTER 7. SNOWFLAKE 63

Figure 7.1: Schematic of Snowflake.

Snowflake now exists in an experimental alpha release, incorporated into Tor Browser.
My main collaborators on the Snowflake project are Arlo Breault, Mia Gil Epner, Serene
Han, and Hooman Mohajeri Moghaddam.

7.1 Design

There are three main components of the Snowflake system. Refer to Figure 7.1.

• many snowflake proxies (“snowflakes” for short), which communicate with clients using
WebRTC and forward their traffic to the bridge

• many clients, responsible for initially requesting service and then routing traffic though
snowflakes as they arrive

• the broker, an online database that serves to match clients with snowflakes

• the bridge (so called to distinguish it from the snowflake proxies), a full-featured proxy
capable of connecting to any destination

The architecture of the system is influenced by the requirement that proxies run in a browser,
and the nature of WebRTC connection establishment, which uses a bidirectional handshake.
In our implementation, the bridge is really a Tor bridge. Even though a Tor circuit consists
of multiple hops, that fact is abstracted away from the client’s perspective; the Snowflake
design does not inherently depend on Tor.

A Snowflake connection happens in multiple steps (refer to Figure 7.1). In the first part,
called rendezvous, the client and snowflake exchange information necessary for a WebRTC
connection.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 7. SNOWFLAKE 64

1. The client registers its need for service by sending a message to the broker. The message,
called an offer [166], contains the client’s IP address and other metadata needed to
establish a WebRTC connection. How the client sends its offer is further explained
below.

2. At some point, a snowflake comes online and polls the broker. The broker hands the
client’s offer to the proxy, which sends back its answer [166], containing its IP address
and other connection metadata the client will need to know.

3. The broker sends back to the client the snowflake’s answer message.

At this point rendezvous is finished. The snowflake has the client’s offer, and the client has
the snowflake’s answer, so they have all the information needed to establish a WebRTC
connection to each other.

4. The client and snowflake proxy connect to each other using WebRTC.

5. The snowflake proxy connects to the bridge (using WebSocket, though the specific type
of channel does not matter for this step).

The snowflake proxy then copies data back and forth between client and bridge until it is
terminated. The client’s communication with the bridge is encrypted and authenticated
end-to-end through the WebRTC tunnel, so the proxy may not interfere with it. When
the snowflake proxy terminates, the client may request a new one. Various optimizations
are possible, such as having the client maintain a pool of proxies so as to bridge gaps in
connectivity, but we have not implemented and tested them sufficiently to state their effects.

The rendezvous phase bears further explanation. Steps 1, 2, and 3 actually happen
synchronously, using interleaved HTTP requests and responses. See Figure 7.2. The client’s
single request uses domain fronting and those of the snowflakes are direct. In Step 1, the
client sends an request containing its offer. The broker holds the connection open but does
not immediately respond. In Step 2, a snowflake makes a polling request (“do you have any
clients for me?”) and the broker responds with the client’s offer. The snowflake composes
its answer and sends it back to the broker in a second HTTP request (linked to the first
by a random token). In Step 3, the broker finally responds to the client’s initial request
by passing on the snowflake’s answer. From the client’s point of view, it has sent a single
request (containing an offer) and received a single response (containing an answer). If no
proxy arrives within a time threshold of the client sending its offer, the broker replies with
an error message instead. We learned from the experience of running flash proxy that it
is not difficult to archive a proxy arrival rate of several per second, so timeouts should be
exceptional.

One may ask, if the domain-fronted rendezvous channel is bidirectional and already
assumed to be difficult to block, why doesn’t it suffice for circumvention on its own? The
answer is that it does suffice—that’s the idea behind meek (Section 6.3). The disadvantage
of building a system exclusively on domain fronting is high monetary cost (see Table 6.5 on
page 52). Snowflake offloads the bulk of data transfer onto WebRTC, and uses expensive
domain fronting only for rendezvous.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 7. SNOWFLAKE 65

Figure 7.2: Snowflake rendezvous. The client makes only one HTTP request–response pair. In
between the client’s request and response, the snowflake proxy makes two of its own request–response
pairs, the first to learn the client’s offer and the second to send back its answer.

There are two reasons why the snowflake proxies forward client traffic to a separate bridge,
rather than connecting directly to the client’s desired destination. The first is generality: a
browser-based proxy can only do the things a browser can do; it can fetch web pages but
cannot, for example, open sockets to arbitrary destinations. The second is privacy: the proxies
are operated by untrusted, potentially malicious strangers. If they were to exit client traffic
directly, they could tamper with it; furthermore a malicious client would be able to cause a
well-meaning proxy to connect to suspicious destinations, potentially getting its operator in
trouble. This is essentially untrusted messenger delivery [63], proposed by Feamster et al.
in 2003.

WebRTC offers two features that are necessary for Snowflake: 1. it is supported in web
browsers, and 2. it deals with NAT. In other respects, though, WebRTC is a nuisance. Its close
coupling with browser code makes it difficult to use as a library outside of a browser; a big
part of the Snowflake project was to extract the code into a reusable library, go-webrtc [21].
WebRTC comes with a lot of baggage around audio and video codecs, which is useful for some
of its intended use cases, but which we would prefer not to have to deal with. Working within
a browser environment limits our flexibility, because we cannot access the network directly,
but only at arm’s length through some or other API. This has implications for detection by
content, as discussed in the next section.

7.2 WebRTC fingerprinting

Snowflake primarily tackles the problem of detection by address. The pool of temporary
proxies changes too quickly for a censor to keep up with (at least that’s the idea). Equally
important, though, is the problem of detection by content. If Snowflake’s protocol has an

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 7. SNOWFLAKE 66

easily detectable “tell,” then it could be blocked despite its address diversity. Just as with
meek we were concerned about TLS fingerprinting (Section 6.2), with Snowflake we are
concerned with WebRTC fingerprinting.

Snowflake will always look like WebRTC—that’s unavoidable without a major change in
architecture. Therefore the best we can hope for is to make Snowflake’s WebRTC hard to
distinguish from other applications of WebRTC. And that alone is not enough—it also must
be that the censor is reluctant to block those other uses of WebRTC.

Mia Gil Epner and I began an investigation into the potential fingerprintability of
WebRTC [19, 83]. While preliminary, we were able to find many potential fingerprinting
features, and a small survey of applications revealed a diversity of implementation choices in
practice.

WebRTC is a stack of interrelated protocols, and leaves implementers much freedom to
combined them in different ways. We checked the various protocols in order to find places
where implementation choices could facilitate fingerprinting.

Signaling Signaling is WebRTC’s term for the exchange of metadata and control data
necessary to establish the peer-to-peer connection. WebRTC offers no standard way to
do signaling [4 §3]; it is left up to implementers. For example, some implementations do
signaling via XMPP, an instant messaging protocol. Snowflake does signaling through
the broker, during the rendezvous phase.

ICE ICE (Interactive Connectivity Establishment) [164] is a combination of two protocols.
STUN (Session Traversal Utilities for NAT) [165] helps hosts open and maintain a
binding in a NAT table. TURN (Traversal Using Relays around NAT) [129] is a way to
proxying through a third party, when the end hosts’ NAT configurations are such that
they cannot communicate directly. In STUN, both client and server messages have a
number of optional attributes, including one called SOFTWARE that directly specifies
the implementation. Furthermore, the very choice of what STUN and TURN server to
use is a choice made by the client.

Media and data channels WebRTC offers media channels (used for audio and video) as
well as two kinds of data channels (stream-oriented reliable and datagram-oriented
unreliable). All channels are encrypted, however they are encrypted differently according
to their type. Media channels use SRTP (Secure Real-time Transport Protocol) [15]
and data channels use DTLS (Datagram TLS) [161]. Even though the contents of both
are encrypted, an observer can easily distinguish a media channel from a data channel.
Applications that use media channels have options for doing key exchange: some borrow
the DTLS handshake in a process called DTLS-SRTP [138] and some use SRTP with
Security Descriptions (SDES) [10]. Snowflake uses reliable data channels.

DTLS DTLS, as with TLS, offers a wealth of fingerprintable features. Some of the most
salient are the protocol version, extensions, the client’s offered ciphersuites, and values
in the server’s certificate.

Snowflake uses a WebRTC library extracted from the Chromium web browser, which mit-
igates some potential dead-parrot distinguishers [105]. But the protocol remains complicated
and its behavior on the network depends on more than the WebRTC library in use.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

CHAPTER 7. SNOWFLAKE 67

We conducted a survey of some WebRTC-using applications in order to get an idea of
the implementation choices being made in practice. We tested three applications that use
media channels, all chat services: Google Hangouts (https://hangouts.google.com), Facebook
Messenger (https://www.messenger.com), and OpenTokRTC (https://opentokrtc.com/).
We also tested two applications that use data channels: Snowflake itself and Sharefest
(https://github.com/Peer5/ShareFest), a now-defunct file sharing service. Naturally, the
network fingerprints of all five applications were distinguishable at some level. Snowflake, by
default, uses a Google-operated STUN server, which may be a good choice because so do
Hangouts and Sharefest. All applications other than Hangouts used DTLS for key exchange.
While the client portions differed, the server certificate was more promising, in all cases
having a Common Name of “WebRTC” and a validity of 30 days.

Finally, we wrote a script [82] to detect and fingerprint DTLS handshakes. While DTLS
does not Vern Paxson ran it for us on a day’s worth of traffic from Lawrence Berkeley National
Lab. The script turned up only seven handshakes, having three distinct fingerprints. While it
is difficult to generalize from one measurement at one site, these results suggest that WebRTC
use—at least the forms that use DTLS—is not common. We guessed that Google Hangouts
would be the main source of WebRTC connections; however our script would not have found
Hangouts connections because Hangouts does not use DTLS.

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://hangouts.google.com
https://www.messenger.com
https://opentokrtc.com/
https://github.com/Peer5/ShareFest
https://www.bamsoftware.com/papers/thesis/

Chapter 8

Don’t call it a conclusion

here be dragonŊ

Computer security is already on shaky ground even when we are dealing with trustworthy
endpoints. How much harder it is when users’ own computers must be counted among the
threats they face. People already have an adversarial relationship with the hostile apps on
their phones free software

Let us strive, therefore, to control the pace, and spend whatever time remains in the race
winning, not losing.

68

Bibliography

Note about archived URLs.

[1] Nicholas Aase, Jedidiah R. Crandall, Álvaro Dı́az, Jeffrey Knockel, Jorge Ocaña
Molinero, Jared Saia, Dan Wallach, and Tao Zhu. “Whiskey, Weed, and Wukan on
the World Wide Web: On Measuring Censors’ Resources and Motivations”. In: Free
and Open Communications on the Internet. USENIX, 2012. https://www.usenix.org/
system/files/conference/foci12/foci12-final17.pdf (cit. on pp. 18, 33).

[2] Giuseppe Aceto, Alessio Botta, Antonio Pescapè, M. Faheem Awan, Tahir Ahmad,
and Saad Qaisar. “Analyzing Internet Censorship in Pakistan”. In: Research and
Technologies for Society and Industry. IEEE, 2016. http://wpage.unina.it/giuseppe.
aceto/pub/aceto2016analyzing.pdf (cit. on p. 18).

[3] Percy Alpha. Google disrupted prior to Tiananmen Anniversary; Mirror sites enable
uncensored access to information. June 2014. https://en.greatfire.org/blog/2014/jun/
google-disrupted-prior-tiananmen-anniversary-mirror-sites-enable-uncensored-access
(cit. on p. 55).

[4] Harald Alvestrand. Overview: Real Time Protocols for Browser-based Applications.
IETF, Nov. 2017. https://tools.ietf.org/html/draft-ietf-rtcweb-overview-19 (cit. on
pp. 62, 66).

[5] Collin Anderson. Dimming the Internet: Detecting Throttling as a Mechanism of
Censorship in Iran. Tech. rep. University of Pennsylvania, 2013. https://arxiv.org/
abs/1306.4361v1 (cit. on p. 20).

[6] Collin Anderson, Roger Dingledine, Nima Fatemi, harmony, and mttp. Vanilla Tor
Connectivity Issues In Iran -- Directory Authorities Blocked? July 2014. https://bugs.
torproject.org/12727 (cit. on p. 44).

[7] Collin Anderson, Philipp Winter, and Roya. “Global Network Interference Detection
over the RIPE Atlas Network”. In: Free and Open Communications on the Internet.
USENIX, 2014. https://www.usenix.org/system/files/conference/foci14/foci14-
anderson.pdf (cit. on p. 22).

[8] Daniel Anderson. “Splinternet Behind the Great Firewall of China”. In: ACM Queue
10.11 (2012), p. 40. https://queue.acm.org/detail.cfm?id=2405036 (cit. on pp. 15, 18).

69

https://www.usenix.org/system/files/conference/foci12/foci12-final17.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final17.pdf
http://wpage.unina.it/giuseppe.aceto/pub/aceto2016analyzing.pdf
http://wpage.unina.it/giuseppe.aceto/pub/aceto2016analyzing.pdf
https://en.greatfire.org/blog/2014/jun/google-disrupted-prior-tiananmen-anniversary-mirror-sites-enable-uncensored-access
https://en.greatfire.org/blog/2014/jun/google-disrupted-prior-tiananmen-anniversary-mirror-sites-enable-uncensored-access
https://tools.ietf.org/html/draft-ietf-rtcweb-overview-19
https://arxiv.org/abs/1306.4361v1
https://arxiv.org/abs/1306.4361v1
https://bugs.torproject.org/12727
https://bugs.torproject.org/12727
https://www.usenix.org/system/files/conference/foci14/foci14-anderson.pdf
https://www.usenix.org/system/files/conference/foci14/foci14-anderson.pdf
https://queue.acm.org/detail.cfm?id=2405036

BIBLIOGRAPHY 70

[9] Ross J. Anderson. “The Eternity Service”. In: Theory and Applications of Cryptology.
CTU Publishing House, 1996, pp. 242–253. https://www.cl.cam.ac.uk/∼rja14/Papers/
eternity.pdf (cit. on p. 3).

[10] Flemming Andreasen, Mark Baugher, and Dan Wing. Session Description Protocol
(SDP) Security Descriptions for Media Streams. IETF, July 2006. https://tools.ietf.
org/html/rfc4568 (cit. on p. 66).

[11] Anonymous. “Towards a Comprehensive Picture of the Great Firewall’s DNS Cen-
sorship”. In: Free and Open Communications on the Internet. USENIX, 2014. https:
//www.usenix.org/system/files/conference/foci14/foci14-anonymous.pdf (cit. on
p. 19).

[12] Anonymous, David Fifield, Georg Koppen, Mark Smith, and Yawning Angel. Remove
Flashproxy from Tor Browser. Oct. 2015. https://bugs.torproject.org/17428 (cit. on
p. 62).

[13] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. “Internet Censorship in Iran:
A First Look”. In: Free and Open Communications on the Internet. USENIX, 2013.
https://censorbib.nymity.ch/pdf/Aryan2013a.pdf (cit. on p. 20).

[14] Geremie R. Barme and Ye Sang. “The Great Firewall of China”. In: Wired (June
1997). https://archive.wired.com/wired/archive/5.06/china pr.html (cit. on p. 15).

[15] Mark Baugher, David McGrew, Mats Naslund, Elisabetta Carrara, and Karl Norrman.
The Secure Real-time Transport Protocol (SRTP). IETF, Mar. 2004. https://tools.ietf.
org/html/rfc3711 (cit. on p. 66).

[16] Bryce Boe. Bypassing Gogo’s Inflight Internet Authentication. Mar. 2012. http://
bryceboe.com/2012/03/12/bypassing-gogos-inflight-internet-authentication/ (cit. on
p. 49).

[17] David Borman, Bob Braden, Van Jacobson, and Richard Scheffenegger. TCP Exten-
sions for High Performance. IETF, Sept. 2014. https://tools.ietf.org/html/rfc7323
(cit. on p. 31).

[18] BreakWa11. ShadowSocks协议的弱点分析和改进. Aug. 2015. https://web.archive.org/
web/20160829052958/https://github.com/breakwa11/shadowsocks-rss/issues/38
(cit. on pp. 26, 28).

[19] Arlo Breault, David Fifield, and Mia Gil Epner. Snowflake/Fingerprinting. Tor Bug
Tracker & Wiki. https://trac.torproject.org/projects/tor/wiki/doc/Snowflake/
Fingerprinting (cit. on p. 66).

[20] Arlo Breault, David Fifield, and George Kadianakis. Registration over App Engine.
May 2013. https://bugs.torproject.org/8860 (cit. on p. 53).

[21] Arlo Breault and Serene Han. go-webrtc. https://github.com/keroserene/go-webrtc
(cit. on p. 65).

[22] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. “CloudTransport: Using
Cloud Storage for Censorship-Resistant Networking”. In: Privacy Enhancing Technolo-
gies Symposium. Springer, 2014. https://petsymposium.org/2014/papers/paper 68.pdf
(cit. on pp. 8, 10, 49).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.cl.cam.ac.uk/~rja14/Papers/eternity.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/eternity.pdf
https://tools.ietf.org/html/rfc4568
https://tools.ietf.org/html/rfc4568
https://www.usenix.org/system/files/conference/foci14/foci14-anonymous.pdf
https://www.usenix.org/system/files/conference/foci14/foci14-anonymous.pdf
https://bugs.torproject.org/17428
https://censorbib.nymity.ch/pdf/Aryan2013a.pdf
https://archive.wired.com/wired/archive/5.06/china_pr.html
https://tools.ietf.org/html/rfc3711
https://tools.ietf.org/html/rfc3711
http://bryceboe.com/2012/03/12/bypassing-gogos-inflight-internet-authentication/
http://bryceboe.com/2012/03/12/bypassing-gogos-inflight-internet-authentication/
https://tools.ietf.org/html/rfc7323
https://web.archive.org/web/20160829052958/https://github.com/breakwa11/shadowsocks-rss/issues/38
https://web.archive.org/web/20160829052958/https://github.com/breakwa11/shadowsocks-rss/issues/38
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake/Fingerprinting
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake/Fingerprinting
https://bugs.torproject.org/8860
https://github.com/keroserene/go-webrtc
https://petsymposium.org/2014/papers/paper_68.pdf
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 71

[23] Willow Brugh. San Francisco Hackathon/DiscoTech (+ RightsCon + Responsible Data
Forum). Mar. 2014. http://codesign.mit.edu/2014/03/sfdiscotech/ (cit. on p. 55).

[24] Sam Burnett, Nick Feamster, and Santosh Vempala. “Chipping Away at Censorship
Firewalls with User-Generated Content”. In: USENIX Security Symposium. USENIX,
2010. https://www.usenix.org/event/sec10/tech/full papers/Burnett.pdf (cit. on
p. 8).

[25] Cormac Callanan, Hein Dries-Ziekenheiner, Alberto Escudero-Pascual, and Robert
Guerra. Leaping Over the Firewall: A Review of Censorship Circumvention Tools. Tech.
rep. Freedom House, 2011. https://freedomhouse.org/report/special-reports/leaping-
over-firewall-review-censorship-circumvention-tools (cit. on p. 23).

[26] Abdelberi Chaabane, Terence Chen, Mathieu Cunche, Emiliano De Cristofaro, Arik
Friedman, and Mohamed Ali Kaafar. “Censorship in the Wild: Analyzing Inter-
net Filtering in Syria”. In: Internet Measurement Conference. ACM, 2014. http :
//conferences2.sigcomm.org/imc/2014/papers/p285.pdf (cit. on p. 21).

[27] The Citizen Lab. Psiphon. Oct. 2006. https://web.archive.org/web/20061026081356/
http://psiphon.civisec.org/ (cit. on p. 15).

[28] Erinn Clark. Tor Browser 3.6.4 and 4.0-alpha-1 are released. The Tor Blog. Aug. 2014.
https://blog.torproject.org/tor-browser-364-and-40-alpha-1-are-released (cit. on
pp. 11, 55).

[29] Richard Clayton. “Failures in a Hybrid Content Blocking System”. In: Privacy En-
hancing Technologies. Springer, 2006, pp. 78–92. https://www.cl.cam.ac.uk/∼rnc1/
cleanfeed.pdf (cit. on p. 19).

[30] Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. “Ignoring the Great
Firewall of China”. In: Privacy Enhancing Technologies. Springer, 2006, pp. 20–35.
https://www.cl.cam.ac.uk/∼rnc1/ignoring.pdf (cit. on pp. 8, 14, 19, 37).

[31] Jedidiah R. Crandall, Masashi Crete-Nishihata, and Jeffrey Knockel. “Forgive Us
our SYNs: Technical and Ethical Considerations for Measuring Internet Filtering”.
In: Ethics in Networked Systems Research. ACM, 2015. http://ensr.oii.ox.ac.uk/
wp - content/ uploads /2015 / 07/ Forgive - Us - Our - SYNs - Technical - and - Ethical -
Considerations-for-Measuring-Internet-Censorship.pdf (cit. on p. 18).

[32] Jedidiah R. Crandall, Daniel Zinn, Michael Byrd, Earl Barr, and Rich East. “Con-
ceptDoppler: A Weather Tracker for Internet Censorship”. In: Computer and Commu-
nications Security. ACM, 2007, pp. 352–365. http://www.csd.uoc.gr/∼hy558/papers/
conceptdoppler.pdf (cit. on pp. 15, 18, 20).

[33] Creative Commons. CC0 1.0 Universal. https://creativecommons.org/publicdomain/
zero/1.0/ (cit. on p. 54).

[34] Elena Cresci. “How to get around Turkey’s Twitter ban”. In: The Guardian (Mar.
2014). https://www.theguardian.com/world/2014/mar/21/how-to-get-around-
turkeys-twitter-ban (cit. on p. 16).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

http://codesign.mit.edu/2014/03/sfdiscotech/
https://www.usenix.org/event/sec10/tech/full_papers/Burnett.pdf
https://freedomhouse.org/report/special-reports/leaping-over-firewall-review-censorship-circumvention-tools
https://freedomhouse.org/report/special-reports/leaping-over-firewall-review-censorship-circumvention-tools
http://conferences2.sigcomm.org/imc/2014/papers/p285.pdf
http://conferences2.sigcomm.org/imc/2014/papers/p285.pdf
https://web.archive.org/web/20061026081356/http://psiphon.civisec.org/
https://web.archive.org/web/20061026081356/http://psiphon.civisec.org/
https://blog.torproject.org/tor-browser-364-and-40-alpha-1-are-released
https://www.cl.cam.ac.uk/~rnc1/cleanfeed.pdf
https://www.cl.cam.ac.uk/~rnc1/cleanfeed.pdf
https://www.cl.cam.ac.uk/~rnc1/ignoring.pdf
http://ensr.oii.ox.ac.uk/wp-content/uploads/2015/07/Forgive-Us-Our-SYNs-Technical-and-Ethical-Considerations-for-Measuring-Internet-Censorship.pdf
http://ensr.oii.ox.ac.uk/wp-content/uploads/2015/07/Forgive-Us-Our-SYNs-Technical-and-Ethical-Considerations-for-Measuring-Internet-Censorship.pdf
http://ensr.oii.ox.ac.uk/wp-content/uploads/2015/07/Forgive-Us-Our-SYNs-Technical-and-Ethical-Considerations-for-Measuring-Internet-Censorship.pdf
http://www.csd.uoc.gr/~hy558/papers/conceptdoppler.pdf
http://www.csd.uoc.gr/~hy558/papers/conceptdoppler.pdf
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.theguardian.com/world/2014/mar/21/how-to-get-around-turkeys-twitter-ban
https://www.theguardian.com/world/2014/mar/21/how-to-get-around-turkeys-twitter-ban
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 72

[35] Eric Cronin, Micah Sherr, and Matt Blaze. The Eavesdropper’s Dilemma. Tech. rep.
MS-CIS-05-24. Department of Computer and Information Science, University of
Pennsylvania, 2005. http://www.crypto.com/papers/internet-tap.pdf (cit. on p. 15).

[36] Alberto Dainotti, Claudio Squarcella, Emile Aben, Kimberly C. Claffy, Marco Chiesa,
Michele Russo, and Antonio Pescapè. “Analysis of Country-wide Internet Outages
Caused by Censorship”. In: Internet Measurement Conference. ACM, 2011, pp. 1–18.
http://conferences.sigcomm.org/imc/2011/docs/p1.pdf (cit. on p. 22).

[37] Jakub Dalek, Bennett Haselton, Helmi Noman, Adam Senft, Masashi Crete-Nishihata,
Phillipa Gill, and Ronald J. Deibert. “A Method for Identifying and Confirming the
Use of URL Filtering Products for Censorship”. In: Internet Measurement Conference.
ACM, 2013. http://conferences.sigcomm.org/imc/2013/papers/imc112s-dalekA.pdf
(cit. on p. 18).

[38] Jakub Dalek, Adam Senft, Masashi Crete-Nishihata, and Ron Deibert. O Pakistan,
We Stand on Guard for Thee: An Analysis of Canada-based Netsweeper’s Role in
Pakistan’s Censorship Regime. June 2013. https://citizenlab.ca/2013/06/o-pakistan/
(cit. on p. 18).

[39] Ronald Deibert, John Palfrey, Rafal Rohozinski, and Jonathan Zittrain, eds. Access
denied: the practice and policy of global Internet filtering. Cambridge, Mass: MIT Press,
2008. isbn: 978-0-262-54196-1. http://access.opennet.net/?page id=61 (cit. on p. 18).

[40] Deloitte. The economic impact of disruptions to Internet connectivity. Oct. 2016.
https://globalnetworkinitiative.org/sites/default/files/The-Economic-Impact-of-
Disruptions-to-Internet-Connectivity-Deloitte.pdf (cit. on p. 9).

[41] denverroot, Roger Dingledine, Aaron Gibson, hrimfaxi, George Kadianakis, Andrew
Lewman, OlgieD, Mike Perry, Fabio Pietrosanti, and quick-dudley. Bridge easily
detected by GFW. Oct. 2011. https://bugs.torproject.org/4185 (cit. on pp. 26, 27).

[42] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. IETF, Aug. 2008. https://tools.ietf.org/html/rfc5246 (cit. on p. 47).

[43] Roger Dingledine. Obfsproxy: the next step in the censorship arms race. The Tor Blog.
Feb. 2012. https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race
(cit. on pp. 10, 26, 27, 34).

[44] Roger Dingledine. Please run a bridge relay! (was Re: Tor 0.2.0.13-alpha is out).
tor-talk mailing list. Dec. 2007. https://lists.torproject.org/pipermail/tor-talk/2007-
December/003854.html (cit. on p. 12).

[45] Roger Dingledine. Strategies for getting more bridge addresses. Tech. rep. 2011-05-001.
The Tor Project, May 2011. https://research.torproject.org/techreports/strategies-
getting-more-bridge-addresses-2011-05-13.pdf (cit. on p. 12).

[46] Roger Dingledine. Ten ways to discover Tor bridges. Tech. rep. 2011-10-002. The Tor
Project, Oct. 2011. https://research.torproject.org/techreports/ten-ways-discover-tor-
bridges-2011-10-31.pdf (cit. on pp. 12, 13, 24).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

http://www.crypto.com/papers/internet-tap.pdf
http://conferences.sigcomm.org/imc/2011/docs/p1.pdf
http://conferences.sigcomm.org/imc/2013/papers/imc112s-dalekA.pdf
https://citizenlab.ca/2013/06/o-pakistan/
http://access.opennet.net/?page_id=61
https://globalnetworkinitiative.org/sites/default/files/The-Economic-Impact-of-Disruptions-to-Internet-Connectivity-Deloitte.pdf
https://globalnetworkinitiative.org/sites/default/files/The-Economic-Impact-of-Disruptions-to-Internet-Connectivity-Deloitte.pdf
https://bugs.torproject.org/4185
https://tools.ietf.org/html/rfc5246
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race
https://lists.torproject.org/pipermail/tor-talk/2007-December/003854.html
https://lists.torproject.org/pipermail/tor-talk/2007-December/003854.html
https://research.torproject.org/techreports/strategies-getting-more-bridge-addresses-2011-05-13.pdf
https://research.torproject.org/techreports/strategies-getting-more-bridge-addresses-2011-05-13.pdf
https://research.torproject.org/techreports/ten-ways-discover-tor-bridges-2011-10-31.pdf
https://research.torproject.org/techreports/ten-ways-discover-tor-bridges-2011-10-31.pdf
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 73

[47] Roger Dingledine, David Fifield, George Kadianakis, Lunar, Runa Sandvik, and Philipp
Winter. GFW actively probes obfs2 bridges. Mar. 2013. https://bugs.torproject.org/
8591 (cit. on pp. 26, 27).

[48] Roger Dingledine, Arturo Filastò, George Kadianakis, Nick Mathewson, and Philipp
Winter. GFW probes based on Tor’s SSL cipher list. Dec. 2011. https://bugs.torproject.
org/4744 (cit. on pp. 26, 27, 51).

[49] Roger Dingledine and Nick Mathewson. Design of a blocking-resistant anonymity
system. Tech. rep. 2006-11-001. The Tor Project, Nov. 2006. https://research.torproject.
org/techreports/blocking-2006-11.pdf (cit. on pp. 12, 13, 16, 24, 33).

[50] Roger Dingledine and Nick Mathewson. Tor Protocol Specification. Sept. 2017. https:
//spec.torproject.org/tor-spec (cit. on p. 32).

[51] Bill Dong. A report about national DNS spoofing in China on Sept. 28th. Oct. 2002.
https://web.archive.org/web/20021015121616/http://www.dit-inc.us/hj-09-02.html
(cit. on p. 19).

[52] Maximillian Dornseif. “Government mandated blocking of foreign Web content”. In:
DFN-Arbeitstagung über Kommunikationsnetze. Gesellschaft für Informatik, 2003,
pp. 617–647. https://censorbib.nymity.ch/pdf/Dornseif2003a.pdf (cit. on p. 19).

[53] Eva Dou and Alistair Barr. U.S. Cloud Providers Face Backlash From China’s Censors.
TheWall Street Journal. Mar. 2015. https://www.wsj.com/articles/u-s-cloud-providers-
face-backlash-from-chinas-censors-1426541126 (cit. on p. 56).

[54] Frederick Douglas, Rorshach, Weiyang Pan, and Matthew Caesar. “Salmon: Robust
Proxy Distribution for Censorship Circumvention”. In: Privacy Enhancing Technologies
2016.4 (2016), pp. 4–20. https://www.degruyter.com/downloadpdf/j/popets.2016.
2016.issue-4/popets-2016-0026/popets-2016-0026.xml (cit. on p. 12).

[55] Matthew Dunwoody. APT29 Domain Fronting With TOR. FireEye Threat Research
Blog. Mar. 2017. https://www.fireeye.com/blog/threat-research/2017/03/apt29
domain frontin.html (cit. on p. 59).

[56] Matthew Dunwoody and Nick Carr. No Easy Breach. DerbyCon. Sept. 2016. https:
//www.slideshare.net/MatthewDunwoody1/no-easy-breach-derby-con-2016 (cit. on
p. 59).

[57] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. “ZMap: Fast Internet-Wide
Scanning and its Security Applications”. In: USENIX Security Symposium. USENIX,
2013. https://zmap.io/paper.pdf (cit. on pp. 13, 24).

[58] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. “Protocol
Misidentification Made Easy with Format-Transforming Encryption”. In: Computer
and Communications Security. ACM, 2013. https://eprint.iacr.org/2012/494.pdf
(cit. on p. 10).

[59] Don Eastlake. Transport Layer Security (TLS) Extensions: Extension Definitions.
IETF, Jan. 2011. https://tools.ietf.org/html/rfc6066 (cit. on p. 47).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://bugs.torproject.org/8591
https://bugs.torproject.org/8591
https://bugs.torproject.org/4744
https://bugs.torproject.org/4744
https://research.torproject.org/techreports/blocking-2006-11.pdf
https://research.torproject.org/techreports/blocking-2006-11.pdf
https://spec.torproject.org/tor-spec
https://spec.torproject.org/tor-spec
https://web.archive.org/web/20021015121616/http://www.dit-inc.us/hj-09-02.html
https://censorbib.nymity.ch/pdf/Dornseif2003a.pdf
https://www.wsj.com/articles/u-s-cloud-providers-face-backlash-from-chinas-censors-1426541126
https://www.wsj.com/articles/u-s-cloud-providers-face-backlash-from-chinas-censors-1426541126
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0026/popets-2016-0026.xml
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0026/popets-2016-0026.xml
https://www.fireeye.com/blog/threat-research/2017/03/apt29_domain_frontin.html
https://www.fireeye.com/blog/threat-research/2017/03/apt29_domain_frontin.html
https://www.slideshare.net/MatthewDunwoody1/no-easy-breach-derby-con-2016
https://www.slideshare.net/MatthewDunwoody1/no-easy-breach-derby-con-2016
https://zmap.io/paper.pdf
https://eprint.iacr.org/2012/494.pdf
https://tools.ietf.org/html/rfc6066
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 74

[60] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and
Vern Paxson. “Examining How the Great Firewall Discovers Hidden Circumvention
Servers”. In: Internet Measurement Conference. ACM, 2015. http://conferences2.
sigcomm.org/imc/2015/papers/p445.pdf (cit. on pp. 20, 26–28, 30).

[61] Roya Ensafi, Philipp Winter, Abdullah Mueen, and Jedidiah R. Crandall. “Analyzing
the Great Firewall of China Over Space and Time”. In: Privacy Enhancing Technologies
2015.1 (2015). https://censorbib.nymity.ch/pdf/Ensafi2015a.pdf (cit. on p. 21).

[62] Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David
Karger. “Infranet: Circumventing Web Censorship and Surveillance”. In: USENIX
Security Symposium. USENIX, 2002. http://wind.lcs.mit.edu/papers/usenixsec2002.
pdf (cit. on pp. 10, 16).

[63] Nick Feamster, Magdalena Balazinska, Winston Wang, Hari Balakrishnan, and David
Karger. “Thwarting Web Censorship with Untrusted Messenger Discovery”. In: Privacy
Enhancing Technologies. Springer, 2003, pp. 125–140. http://nms.csail.mit.edu/papers/
disc-pet2003.pdf (cit. on p. 65).

[64] Ian Fette and Alexey Melnikov. The WebSocket Protocol. IETF, Dec. 2011. https:
//tools.ietf.org/html/rfc6455 (cit. on p. 62).

[65] Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. IETF, June 2014. https://tools.ietf.org/html/rfc7230 (cit. on
p. 47).

[66] David Fifield. A simple HTTP transport and big ideas. tor-dev mailing list. Jan. 2014.
https://lists.torproject.org/pipermail/tor-dev/2014-January/006159.html (cit. on
p. 54).

[67] David Fifield. Big performance improvement for meek-azure. tor-dev mailing list. Apr.
2015. https://lists.torproject.org/pipermail/tor-dev/2015-April/008637.html (cit. on
p. 56).

[68] David Fifield. Combined flash proxy + pyobfsproxy browser bundles. The Tor Blog. Jan.
2013. https://blog.torproject.org/combined-flash-proxy-pyobfsproxy-browser-bundles
(cit. on pp. 26, 27, 62).

[69] David Fifield. Cyberoam firewall blocks meek by TLS signature. Network Traffic Ob-
fuscation mailing list. May 2016. https : / / groups . google . com / d / topic / traffic -
obf/BpFSCVgi5rs (cit. on p. 59).

[70] David Fifield. Estimating censorship lag by obfs4 blocking. tor-dev mailing list. Feb.
2015. https://lists.torproject.org/pipermail/tor-dev/2015-February/008222.html
(cit. on p. 34).

[71] David Fifield. Flash proxy howto. Tor Bug Tracker & Wiki. Mar. 2014. https://trac.
torproject .org/projects/tor/wiki/doc/PluggableTransports/FlashProxy/Howto
(cit. on p. 62).

[72] David Fifield. FortiGuard firewall blocks meek by TLS signature. Network Traffic
Obfuscation mailing list. July 2016. https://groups.google.com/d/topic/traffic-
obf/fwAN-WWz2Bk (cit. on p. 59).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

http://conferences2.sigcomm.org/imc/2015/papers/p445.pdf
http://conferences2.sigcomm.org/imc/2015/papers/p445.pdf
https://censorbib.nymity.ch/pdf/Ensafi2015a.pdf
http://wind.lcs.mit.edu/papers/usenixsec2002.pdf
http://wind.lcs.mit.edu/papers/usenixsec2002.pdf
http://nms.csail.mit.edu/papers/disc-pet2003.pdf
http://nms.csail.mit.edu/papers/disc-pet2003.pdf
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc7230
https://lists.torproject.org/pipermail/tor-dev/2014-January/006159.html
https://lists.torproject.org/pipermail/tor-dev/2015-April/008637.html
https://blog.torproject.org/combined-flash-proxy-pyobfsproxy-browser-bundles
https://groups.google.com/d/topic/traffic-obf/BpFSCVgi5rs
https://groups.google.com/d/topic/traffic-obf/BpFSCVgi5rs
https://lists.torproject.org/pipermail/tor-dev/2015-February/008222.html
https://trac.torproject.org/projects/tor/wiki/doc/PluggableTransports/FlashProxy/Howto
https://trac.torproject.org/projects/tor/wiki/doc/PluggableTransports/FlashProxy/Howto
https://groups.google.com/d/topic/traffic-obf/fwAN-WWz2Bk
https://groups.google.com/d/topic/traffic-obf/fwAN-WWz2Bk
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 75

[73] David Fifield. GoAgent: Further notes on App Engine and speculation about a pluggable
transport. Tor Bug Tracker & Wiki. Oct. 2013. https://trac.torproject.org/projects/
tor/wiki/doc/GoAgent?action=diff&version=2&old version=1 (cit. on p. 53).

[74] David Fifield. How to use the “meek” pluggable transport. The Tor Blog. Aug. 2015.
https://blog.torproject.org/how-use-meek-pluggable-transport (cit. on p. 55).

[75] David Fifield. HOWTO use Lantern as a pluggable transport. tor-dev mailing list. Mar.
2014. https://lists.torproject.org/pipermail/tor-dev/2014-March/006356.html (cit. on
p. 55).

[76] David Fifield. meek-azure funding has run out. tor-dev mailing list. Jan. 2017. https:
//lists.torproject.org/pipermail/tor-project/2017-January/000881.html (cit. on p. 60).

[77] David Fifield. Outage of meek-azure. tor-dev mailing list. Aug. 2015. https://lists.
torproject.org/pipermail/tor-talk/2015-August/038780.html (cit. on p. 57).

[78] David Fifield. Why the seeming correlation between flash proxy and meek on metrics
graphs? tor-dev mailing list. Sept. 2014. https://lists.torproject.org/pipermail/tor-
dev/2014-September/007484.html (cit. on p. 55).

[79] David Fifield, Adam Fisk, Nathan Freitas, and Percy Wegmann. meek seems blocked
in China since 2016-10-19. Network Traffic Obfuscation mailing list. Oct. 2016. https:
//groups.google.com/d/topic/traffic-obf/CSJLt3t- OI (cit. on p. 60).

[80] David Fifield, Vinicius Fortuna, Sergey Frolov, b.l. masters, Will Scott, Tom (hexuxin),
and Brandon Wiley. Reports of China disrupting shadowsocks. Oct. 2017. https :
//groups.google.com/d/msg/traffic-obf/dqw6CQLR944/StgigdK0BAAJ (cit. on
p. 61).

[81] David Fifield, Vinicius Fortuna, Philipp Winter, and Eric Wustrow. Allot Communi-
cations. Network Traffic Obfuscation mailing list. Jan. 2017. https://groups.google.
com/d/topic/traffic-obf/yzxlLpFyXLI (cit. on p. 60).

[82] David Fifield and Mia Gil Epner. DTLS-fingerprint. May 2016. https://github.com/
miagilepner/DTLS-fingerprint/ (cit. on p. 67).

[83] David Fifield and Mia Gil Epner. Fingerprintability of WebRTC. Tech. rep. May 2016.
https://arxiv.org/abs/1605.08805v1 (cit. on p. 66).

[84] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Roger Dingledine,
Phil Porras, and Dan Boneh. “Evading Censorship with Browser-Based Proxies”.
In: Privacy Enhancing Technologies Symposium. Springer, 2012, pp. 239–258. https:
//crypto.stanford.edu/flashproxy/flashproxy.pdf (cit. on p. 53).

[85] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Roger Dingledine,
Phillip Porras, and Dan Boneh. “Evading Censorship with Browser-Based Proxies”.
In: Privacy Enhancing Technologies Symposium. Springer, 2012, pp. 239–258. https:
//www.bamsoftware.com/papers/flashproxy.pdf (cit. on pp. 13, 62).

[86] David Fifield, George Kadianakis, Georg Koppen, and Mark Smith. Make bundles
featuring meek. Feb. 2014. https://bugs.torproject.org/10935 (cit. on p. 54).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://trac.torproject.org/projects/tor/wiki/doc/GoAgent?action=diff&version=2&old_version=1
https://trac.torproject.org/projects/tor/wiki/doc/GoAgent?action=diff&version=2&old_version=1
https://blog.torproject.org/how-use-meek-pluggable-transport
https://lists.torproject.org/pipermail/tor-dev/2014-March/006356.html
https://lists.torproject.org/pipermail/tor-project/2017-January/000881.html
https://lists.torproject.org/pipermail/tor-project/2017-January/000881.html
https://lists.torproject.org/pipermail/tor-talk/2015-August/038780.html
https://lists.torproject.org/pipermail/tor-talk/2015-August/038780.html
https://lists.torproject.org/pipermail/tor-dev/2014-September/007484.html
https://lists.torproject.org/pipermail/tor-dev/2014-September/007484.html
https://groups.google.com/d/topic/traffic-obf/CSJLt3t-_OI
https://groups.google.com/d/topic/traffic-obf/CSJLt3t-_OI
https://groups.google.com/d/msg/traffic-obf/dqw6CQLR944/StgigdK0BAAJ
https://groups.google.com/d/msg/traffic-obf/dqw6CQLR944/StgigdK0BAAJ
https://groups.google.com/d/topic/traffic-obf/yzxlLpFyXLI
https://groups.google.com/d/topic/traffic-obf/yzxlLpFyXLI
https://github.com/miagilepner/DTLS-fingerprint/
https://github.com/miagilepner/DTLS-fingerprint/
https://arxiv.org/abs/1605.08805v1
https://crypto.stanford.edu/flashproxy/flashproxy.pdf
https://crypto.stanford.edu/flashproxy/flashproxy.pdf
https://www.bamsoftware.com/papers/flashproxy.pdf
https://www.bamsoftware.com/papers/flashproxy.pdf
https://bugs.torproject.org/10935
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 76

[87] David Fifield and Georg Koppen. Unexplained drop in meek users, 2016-10-19 to
2016-11-10. Oct. 2016. https://bugs.torproject.org/20495 (cit. on p. 60).

[88] David Fifield, Georg Koppen, and Klaus Layer. Update the meek-amazon fingerprint to
B9E7141C594AF25699E0079C1F0146F409495296. Oct. 2015. https://bugs.torproject.
org/17473 (cit. on p. 57).

[89] David Fifield and kzblocked. Kazakhstan 2016–2017. OONI Censorship Wiki. June
2017. https://trac.torproject.org/projects/tor/wiki/doc/OONI/censorshipwiki/
CensorshipByCountry/Kazakhstan#a20348 (cit. on pp. 45, 59).

[90] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. “Blocking-
resistant communication through domain fronting”. In: Privacy Enhancing Technolo-
gies 2015.2 (2015). https://www.bamsoftware.com/papers/fronting/ (cit. on pp. 13,
50–52, 56).

[91] David Fifield, Karsten Loesing, Isis Agora Lovecruft, and Yawning Angel. meek’s
reflector should forward the client’s IP address/port to the bridge. Sept. 2014. https:
//bugs.torproject.org/13171 (cit. on p. 58).

[92] David Fifield and Lynn Tsai. “Censors’ Delay in Blocking Circumvention Proxies”. In:
Free and Open Communications on the Internet. USENIX, 2016. https://www.usenix.
org/conference/foci16/workshop-program/presentation/fifield (cit. on p. 33).

[93] Arturo Filastò and Jacob Appelbaum. “OONI: Open Observatory of Network In-
terference”. In: Free and Open Communications on the Internet. USENIX, 2012.
https://www.usenix.org/system/files/conference/foci12/foci12-final12.pdf (cit. on
p. 22).

[94] Nathan Freitas. Orbot v15-alpha-3 with VPN and Meek! guardian-dev mailing list. Feb.
2015. https://lists.mayfirst.org/pipermail/guardian-dev/2015-February/004243.html
(cit. on p. 56).

[95] Sergey Frolov, Fred Douglas, Will Scott, Allison McDonald, Benjamin VanderSloot,
Rod Hynes, Adam Kruger, Michalis Kallitsis, David G. Robinson, Steve Schultze,
Nikita Borisov, Alex Halderman, and Eric Wustrow. “An ISP-Scale Deployment of
TapDance”. In: Free and Open Communications on the Internet. USENIX, 2017.
https://www.usenix.org/system/files/conference/foci17/foci17-paper-frolov 0.pdf
(cit. on p. 49).

[96] John Geddes, Max Schuchard, and Nicholas Hopper. “Cover Your ACKs: Pitfalls
of Covert Channel Censorship Circumvention”. In: Computer and Communications
Security. ACM, 2013. https://www-users.cs.umn.edu/∼hopper/ccs13-cya.pdf (cit. on
p. 10).

[97] Phillipa Gill, Masashi Crete-Nishihata, Jakub Dalek, Sharon Goldberg, Adam Senft,
and Greg Wiseman. “Characterizing Web Censorship Worldwide: Another Look
at the OpenNet Initiative Data”. In: Transactions on the Web 9.1 (2015). https:
//censorbib.nymity.ch/pdf/Gill2015a.pdf (cit. on p. 18).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://bugs.torproject.org/20495
https://bugs.torproject.org/17473
https://bugs.torproject.org/17473
https://trac.torproject.org/projects/tor/wiki/doc/OONI/censorshipwiki/CensorshipByCountry/Kazakhstan#a20348
https://trac.torproject.org/projects/tor/wiki/doc/OONI/censorshipwiki/CensorshipByCountry/Kazakhstan#a20348
https://www.bamsoftware.com/papers/fronting/
https://bugs.torproject.org/13171
https://bugs.torproject.org/13171
https://www.usenix.org/conference/foci16/workshop-program/presentation/fifield
https://www.usenix.org/conference/foci16/workshop-program/presentation/fifield
https://www.usenix.org/system/files/conference/foci12/foci12-final12.pdf
https://lists.mayfirst.org/pipermail/guardian-dev/2015-February/004243.html
https://www.usenix.org/system/files/conference/foci17/foci17-paper-frolov_0.pdf
https://www-users.cs.umn.edu/~hopper/ccs13-cya.pdf
https://censorbib.nymity.ch/pdf/Gill2015a.pdf
https://censorbib.nymity.ch/pdf/Gill2015a.pdf
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 77

[98] Google. China, All Products, May 31, 2014–Present. Google Transparency Report.
July 2014. https://www.google.com/transparencyreport/traffic/disruptions/124/
(cit. on p. 55).

[99] Google Cloud Platform. Service Specific Terms. Mar. 2015. https://web.archive.org/
web/20150326000133/https://cloud.google.com/terms/service-terms (cit. on p. 57).

[100] Arthur Gwagwa. A study of Internet-based information controls in Rwanda, with a
particular focus on the period around the 4 August 2017 General Elections. Oct. 2017.
https://www.opentech.fund/sites/default/files/attachments/a study of internet-
based information controls in rwanda-arthur gwagwa final.pdf (cit. on p. 18).

[101] Bennett Haselton. Circumventor. Peacefire. http://peacefire.org/circumventor/ (cit. on
p. 15).

[102] Bennett Haselton. Peacefire Censorware Pages. Peacefire. http://www.peacefire.org/
censorware/ (cit. on p. 15).

[103] Huifeng He. Google breaks through China’s Great Firewall . . . but only for just over
an hour. South China Morning Post. Mar. 2016. http://www.scmp.com/tech/china-
tech/article/1931301/google-breaks-through-chinas-great-firewall-only-just-over-
hour (cit. on p. 40).

[104] hellofwy, Max Lv, Mygod, Rio, and Siyuan Ren. SIP007 - Per-session subkey. Jan.
2017. https://github.com/shadowsocks/shadowsocks-org/issues/42 (cit. on pp. 26,
28).

[105] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. “The Parrot is Dead:
Observing Unobservable Network Communications”. In: Symposium on Security &
Privacy. IEEE, 2013. https://people.cs.umass.edu/∼amir/papers/parrot.pdf (cit. on
pp. 8, 9, 66).

[106] Amir Houmansadr, Giang T. K. Nguyen, Matthew Caesar, and Nikita Borisov. “Cir-
ripede: Circumvention Infrastructure using Router Redirection with Plausible De-
niability”. In: Computer and Communications Security. ACM, 2011, pp. 187–200.
https://hatswitch.org/∼nikita/papers/cirripede-ccs11.pdf (cit. on pp. 8, 49).

[107] Amir Houmansadr, Thomas Riedl, Nikita Borisov, and Andrew Singer. “I want my
voice to be heard: IP over Voice-over-IP for unobservable censorship circumvention”.
In: Network and Distributed System Security. The Internet Society, 2013. https :
//people.cs.umass.edu/∼amir/papers/FreeWave.pdf (cit. on pp. 8, 10).

[108] Amir Houmansadr, Edmund L. Wong, and Vitaly Shmatikov. “No Direction Home: The
True Cost of Routing Around Decoys”. In: Network and Distributed System Security.
The Internet Society, 2014. http://dedis.cs.yale.edu/dissent/papers/nodirection.pdf
(cit. on p. 13).

[109] ICLab. https://iclab.org/ (cit. on p. 22).

[110] Ben Jones, Roya Ensafi, Nick Feamster, Vern Paxson, and Nick Weaver. “Ethical
Concerns for Censorship Measurement”. In: Ethics in Networked Systems Research.
ACM, 2015. https://www.icir.org/vern/papers/censorship-meas.nsethics15.pdf
(cit. on p. 18).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.google.com/transparencyreport/traffic/disruptions/124/
https://web.archive.org/web/20150326000133/https://cloud.google.com/terms/service-terms
https://web.archive.org/web/20150326000133/https://cloud.google.com/terms/service-terms
https://www.opentech.fund/sites/default/files/attachments/a_study_of_internet-based_information_controls_in_rwanda-arthur_gwagwa_final.pdf
https://www.opentech.fund/sites/default/files/attachments/a_study_of_internet-based_information_controls_in_rwanda-arthur_gwagwa_final.pdf
http://peacefire.org/circumventor/
http://www.peacefire.org/censorware/
http://www.peacefire.org/censorware/
http://www.scmp.com/tech/china-tech/article/1931301/google-breaks-through-chinas-great-firewall-only-just-over-hour
http://www.scmp.com/tech/china-tech/article/1931301/google-breaks-through-chinas-great-firewall-only-just-over-hour
http://www.scmp.com/tech/china-tech/article/1931301/google-breaks-through-chinas-great-firewall-only-just-over-hour
https://github.com/shadowsocks/shadowsocks-org/issues/42
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://hatswitch.org/~nikita/papers/cirripede-ccs11.pdf
https://people.cs.umass.edu/~amir/papers/FreeWave.pdf
https://people.cs.umass.edu/~amir/papers/FreeWave.pdf
http://dedis.cs.yale.edu/dissent/papers/nodirection.pdf
https://iclab.org/
https://www.icir.org/vern/papers/censorship-meas.nsethics15.pdf
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 78

[111] Justin. Pluggable Transports and DPI. tor-dev mailing list. May 2016. https://lists.
torproject.org/pipermail/tor-talk/2016-May/040898.html (cit. on p. 59).

[112] George Kadianakis and Nick Mathewson. obfs2 (The Twobfuscator). Jan. 2011. https:
//gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-
protocol-spec.txt (cit. on p. 10).

[113] George Kadianakis and Nick Mathewson. obfs3 (The Threebfuscator). Jan. 2013. https:
//gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-
protocol-spec.txt (cit. on p. 11).

[114] Josh Karlin, Daniel Ellard, Alden W. Jackson, Christine E. Jones, Greg Lauer, David P.
Mankins, and W. Timothy Strayer. “Decoy Routing: Toward Unblockable Internet
Communication”. In: Free and Open Communications on the Internet. USENIX, 2011.
https://www.usenix.org/legacy/events/foci11/tech/final files/Karlin.pdf (cit. on
p. 49).

[115] Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M. Swanson, Steven J.
Murdoch, and Ian Goldberg. “SoK: Making Sense of Censorship Resistance Systems”.
In: Privacy Enhancing Technologies 2016.4 (2016), pp. 37–61. https://www.degruyter.
com/downloadpdf/j/popets.2016.2016.issue-4/popets- 2016-0028/popets-2016-
0028.xml (cit. on pp. 6, 8, 10, 14).

[116] Sheharbano Khattak, Mobin Javed, Philip D. Anderson, and Vern Paxson. “Towards
Illuminating a Censorship Monitor’s Model to Facilitate Evasion”. In: Free and Open
Communications on the Internet. USENIX, 2013. https://censorbib.nymity.ch/pdf/
Khattak2013a.pdf (cit. on pp. 15, 20).

[117] Gary King, Jennifer Pan, and Margaret E. Roberts. “How Censorship in China Allows
Government Criticism but Silences Collective Expression”. In: American Political
Science Review (2012). https://gking.harvard.edu/files/censored.pdf (cit. on p. 34).

[118] Jeffrey Knockel, Lotus Ruan, and Masashi Crete-Nishihata. “Measuring Decentral-
ization of Chinese Keyword Censorship via Mobile Games”. In: Free and Open Com-
munications on the Internet. USENIX, 2017. https://www.usenix.org/system/files/
conference/foci17/foci17-paper-knockel.pdf (cit. on p. 34).

[119] Stefan Köpsell and Ulf Hillig. “How to Achieve Blocking Resistance for Existing
Systems Enabling Anonymous Web Surfing”. In: Workshop on Privacy in the Electronic
Society. ACM, 2004, pp. 47–58. https://censorbib.nymity.ch/pdf/Koepsell2004a.pdf
(cit. on pp. 3, 6, 12, 49).

[120] Lantern. https://getlantern.org/ (cit. on p. 50).

[121] Bruce Leidl. obfuscated-openssh. 2009. https://github.com/brl/obfuscated-openssh
(cit. on p. 10).

[122] Katherine Li. GAEuploader. tor-dev mailing list. Jan. 2017. https://lists.torproject.
org/pipermail/tor-dev/2017-January/011812.html (cit. on p. 60).

[123] Katherine Li. GAEuploader. https://github.com/katherinelitor/GAEuploader (cit. on
p. 60).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://lists.torproject.org/pipermail/tor-talk/2016-May/040898.html
https://lists.torproject.org/pipermail/tor-talk/2016-May/040898.html
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://www.usenix.org/legacy/events/foci11/tech/final_files/Karlin.pdf
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0028/popets-2016-0028.xml
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0028/popets-2016-0028.xml
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0028/popets-2016-0028.xml
https://censorbib.nymity.ch/pdf/Khattak2013a.pdf
https://censorbib.nymity.ch/pdf/Khattak2013a.pdf
https://gking.harvard.edu/files/censored.pdf
https://www.usenix.org/system/files/conference/foci17/foci17-paper-knockel.pdf
https://www.usenix.org/system/files/conference/foci17/foci17-paper-knockel.pdf
https://censorbib.nymity.ch/pdf/Koepsell2004a.pdf
https://getlantern.org/
https://github.com/brl/obfuscated-openssh
https://lists.torproject.org/pipermail/tor-dev/2017-January/011812.html
https://lists.torproject.org/pipermail/tor-dev/2017-January/011812.html
https://github.com/katherinelitor/GAEuploader
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 79

[124] Katherine Li. GAEuploader now supports Windows. tor-dev mailing list. Nov. 2017.
https://lists.torproject.org/pipermail/tor-dev/2017-November/012622.html (cit. on
p. 60).

[125] Karsten Loesing. Counting daily bridge users. Tech. rep. 2012-10-001. The Tor Project,
Oct. 2012. https://research.torproject.org/techreports/counting-daily-bridge-users-
2012-10-24.pdf (cit. on p. 52).

[126] Karsten Loesing and Nick Mathewson. BridgeDB specification. Dec. 2013. https :
//spec.torproject.org/bridgedb-spec (cit. on p. 12).

[127] Graham Lowe, Patrick Winters, and Michael L. Marcus. The Great DNS Wall of China.
Tech. rep. New York University, 2007. https://censorbib.nymity.ch/pdf/Lowe2007a.pdf
(cit. on p. 19).

[128] Max Lv and Rio. AEAD Ciphers. https : / / shadowsocks . org / en / spec / AEAD -
Ciphers.html (cit. on p. 25).

[129] Rohan Mahy, Philip Matthews, and Jonathan Rosenberg. Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN).
IETF, Apr. 2010. https://tools.ietf.org/html/rfc5766 (cit. on p. 66).

[130] Marek Majkowski. Fun with The Great Firewall. July 2013. https://idea.popcount.
org/2013-07-11-fun-with-the-great-firewall/ (cit. on pp. 26, 27).

[131] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah
McKune, Arn Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. “An Analysis
of China’s ‘Great Cannon’”. In: Free and Open Communications on the Internet.
USENIX, 2015. https://www.usenix.org/system/files/conference/foci15/foci15-paper-
marczak.pdf (cit. on pp. 21, 56).

[132] Morgan Marquis-Boire, Jakub Dalek, and Sarah McKune. Planet Blue Coat: Mapping
Global Censorship and Surveillance Tools. Jan. 2013. https://citizenlab.ca/2013/01/
planet-blue-coat-mapping-global-censorship-and-surveillance-tools/ (cit. on p. 18).

[133] James Marshall. CGIProxy. https://jmarshall.com/tools/cgiproxy/ (cit. on p. 15).

[134] David Martin and Andrew Schulman. “Deanonymizing Users of the SafeWeb Anonymiz-
ing Service”. In: USENIX Security Symposium. USENIX, 2002. https://www.usenix.
org/legacy/publications/library/proceedings/sec02/martin.html (cit. on p. 15).

[135] Anuradha Mathrani and Massoud Alipour. “Website Blocking Across Ten Countries:
A Snapshot”. In: PACIS 2010 Proceedings. 2010. http://aisel.aisnet.org/pacis2010/152
(cit. on p. 18).

[136] Srdjan Matic, Carmela Troncoso, and Juan Caballero. “Dissecting Tor Bridges: a
Security Evaluation of Their Private and Public Infrastructures”. In: Network and
Distributed System Security. The Internet Society, 2017. https://software.imdea.org/
∼juanca/papers/torbridges ndss17.pdf (cit. on pp. 13, 25, 33).

[137] Damon McCoy, Jose Andre Morales, and Kirill Levchenko. “Proximax: A Measurement
Based System for Proxies Dissemination”. In: Financial Cryptography and Data
Security. Springer, 2011. https://cseweb.ucsd.edu/∼klevchen/mml-fc11.pdf (cit. on
p. 12).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://lists.torproject.org/pipermail/tor-dev/2017-November/012622.html
https://research.torproject.org/techreports/counting-daily-bridge-users-2012-10-24.pdf
https://research.torproject.org/techreports/counting-daily-bridge-users-2012-10-24.pdf
https://spec.torproject.org/bridgedb-spec
https://spec.torproject.org/bridgedb-spec
https://censorbib.nymity.ch/pdf/Lowe2007a.pdf
https://shadowsocks.org/en/spec/AEAD-Ciphers.html
https://shadowsocks.org/en/spec/AEAD-Ciphers.html
https://tools.ietf.org/html/rfc5766
https://idea.popcount.org/2013-07-11-fun-with-the-great-firewall/
https://idea.popcount.org/2013-07-11-fun-with-the-great-firewall/
https://www.usenix.org/system/files/conference/foci15/foci15-paper-marczak.pdf
https://www.usenix.org/system/files/conference/foci15/foci15-paper-marczak.pdf
https://citizenlab.ca/2013/01/planet-blue-coat-mapping-global-censorship-and-surveillance-tools/
https://citizenlab.ca/2013/01/planet-blue-coat-mapping-global-censorship-and-surveillance-tools/
https://jmarshall.com/tools/cgiproxy/
https://www.usenix.org/legacy/publications/library/proceedings/sec02/martin.html
https://www.usenix.org/legacy/publications/library/proceedings/sec02/martin.html
http://aisel.aisnet.org/pacis2010/152
https://software.imdea.org/~juanca/papers/torbridges_ndss17.pdf
https://software.imdea.org/~juanca/papers/torbridges_ndss17.pdf
https://cseweb.ucsd.edu/~klevchen/mml-fc11.pdf
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 80

[138] David McGrew and Eric Rescorla. Datagram Transport Layer Security (DTLS) Ex-
tension to Establish Keys for the Secure Real-time Transport Protocol (SRTP). IETF,
May 2010. https://tools.ietf.org/html/rfc5764 (cit. on p. 66).

[139] Jon McLachlan and Nicholas Hopper. “On the risks of serving whenever you surf:
Vulnerabilities in Tor’s blocking resistance design”. In: Workshop on Privacy in
the Electronic Society. ACM, 2009. https : / / www - users . cs . umn . edu /∼hopper /
surf and serve.pdf (cit. on p. 24).

[140] meek. Tor Bug Tracker & Wiki. https://trac.torproject.org/projects/tor/wiki/doc/
meek (cit. on pp. 52, 55, 56).

[141] Brock N. Meeks and Declan B. McCullagh. Jacking in from the “Keys to the Kingdom”
Port. CyberWire Dispatch. July 1996. https://cyberwire.com/cwd/cwd.96.07.03.html
(cit. on p. 15).

[142] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Goldberg.
“SkypeMorph: Protocol Obfuscation for Tor Bridges”. In: Computer and Communica-
tions Security. ACM, 2012. https://www.cypherpunks.ca/∼iang/pubs/skypemorph-
ccs.pdf (cit. on p. 10).

[143] Rich Morin. “The Limits of Control”. In: Unix Review Magazine (June 1996). http:
//cfcl.com/rdm/Pubs/tin/P/199606.shtml (cit. on p. 16).

[144] Zubair Nabi. “The Anatomy of Web Censorship in Pakistan”. In: Free and Open
Communications on the Internet. USENIX, 2013. https://censorbib.nymity.ch/pdf/
Nabi2013a.pdf (cit. on p. 21).

[145] NetFreedom Pioneers. Toosheh. https://www.toosheh.org/en.html (cit. on p. 14).

[146] Leif Nixon. Some observations on the Great Firewall of China. Nov. 2011. https:
//www.nsc.liu.se/∼nixon/sshprobes.html (cit. on p. 26).

[147] Daiyuu Nobori and Yasushi Shinjo. “VPN Gate: A Volunteer-Organized Public VPN
Relay System with Blocking Resistance for Bypassing Government Censorship Fire-
walls”. In: Networked Systems Design and Implementation. USENIX, 2014. https:
//www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-nobori.pdf (cit. on
pp. 13, 29, 30, 34).

[148] OpenNet Initiative. Internet Filtering in China in 2004-2005: A Country Study.
https://opennet.net/studies/china (cit. on p. 21).

[149] Jong Chun Park and Jedidiah R. Crandall. “Empirical Study of a National-Scale
Distributed Intrusion Detection System: Backbone-Level Filtering of HTML Responses
in China”. In: Distributed Computing Systems. IEEE, 2010, pp. 315–326. https :
//www.cs.unm.edu/∼crandall/icdcs2010.pdf (cit. on pp. 15, 20).

[150] Vern Paxson. “Bro: A System for Detecting Network Intruders in Real-Time”. In:
Computer Networks 31.23-24 (Dec. 1999), pp. 2435–2463. https://www.icir.org/vern/
papers/bro-CN99.pdf (cit. on p. 14).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://tools.ietf.org/html/rfc5764
https://www-users.cs.umn.edu/~hopper/surf_and_serve.pdf
https://www-users.cs.umn.edu/~hopper/surf_and_serve.pdf
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://cyberwire.com/cwd/cwd.96.07.03.html
https://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
https://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
http://cfcl.com/rdm/Pubs/tin/P/199606.shtml
http://cfcl.com/rdm/Pubs/tin/P/199606.shtml
https://censorbib.nymity.ch/pdf/Nabi2013a.pdf
https://censorbib.nymity.ch/pdf/Nabi2013a.pdf
https://www.toosheh.org/en.html
https://www.nsc.liu.se/~nixon/sshprobes.html
https://www.nsc.liu.se/~nixon/sshprobes.html
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-nobori.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-nobori.pdf
https://opennet.net/studies/china
https://www.cs.unm.edu/~crandall/icdcs2010.pdf
https://www.cs.unm.edu/~crandall/icdcs2010.pdf
https://www.icir.org/vern/papers/bro-CN99.pdf
https://www.icir.org/vern/papers/bro-CN99.pdf
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 81

[151] Paul Pearce, Roya Ensafi, Frank Li, Nick Feamster, and Vern Paxson. “Augur: Internet-
Wide Detection of Connectivity Disruptions”. In: Symposium on Security & Privacy.
IEEE, 2017. https://www.ieee-security.org/TC/SP2017/papers/586.pdf (cit. on
p. 23).

[152] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver, and
Vern Paxson. “Global Measurement of DNS Manipulation”. In: USENIX Security
Symposium. USENIX, 2017. https ://www.usenix .org/system/files/conference/
usenixsecurity17/sec17-pearce.pdf (cit. on p. 23).

[153] Mike Perry. Tor Browser 3.6 is released. The Tor Blog. Apr. 2014. https://blog.
torproject.org/tor-browser-36-released (cit. on p. 11).

[154] Mike Perry. Tor Browser 4.0 is released. The Tor Blog. Oct. 2014. https://blog.
torproject.org/tor-browser-40-released (cit. on pp. 26, 28, 51, 55).

[155] Mike Perry. Tor Browser 4.5 is released. The Tor Blog. Apr. 2015. https://blog.
torproject.org/tor-browser-45-released (cit. on pp. 11, 26, 28).

[156] Matthew Prince. “Thanks for the feedback. . . . ” Hacker News. Mar. 2015. https:
//news.ycombinator.com/item?id=9234367 (cit. on p. 56).

[157] printempw. 为何 shadowsocks 要弃用一次性验证 (OTA). Blessing Studio. Feb. 2017.
https://blessing.studio/why-do-shadowsocks-deprecate-ota/. English synopsis at
https://groups.google.com/d/msg/traffic-obf/CWO0peBJLGc/Py-clLSTBwAJ
(cit. on pp. 25, 26, 28).

[158] Psiphon. https://psiphon.ca/ (cit. on p. 50).

[159] Thomas H. Ptacek and Timothy N. Newsham. Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection. Tech. rep. Secure Networks, Inc., Jan.
1998. https://www.icir.org/vern/Ptacek-Newsham-Evasion-98.pdf (cit. on p. 14).

[160] Refraction Networking. https://refraction.network/ (cit. on p. 13).

[161] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security Version
1.2. IETF, Jan. 2012. https://tools.ietf.org/html/rfc6347 (cit. on p. 66).

[162] Hal Roberts, Ethan Zuckerman, and John Palfrey. 2011 Circumvention Tool Evaluation.
Tech. rep. Berkman Center for Internet and Society, Aug. 2011. https://cyber.law.
harvard.edu/publications/2011/2011 Circumvention Tool Evaluation (cit. on p. 23).

[163] David Robinson, Harlan Yu, and Anne An. Collateral Freedom: A Snapshot of Chinese
Internet Users Circumventing Censorship. Apr. 2013. https://www.opentech.fund/
article/collateral-freedom-snapshot-chinese-users-circumventing-censorship (cit. on
p. 53).

[164] Jonathan Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer Protocols. IETF, Apr.
2010. https://tools.ietf.org/html/rfc5245 (cit. on pp. 62, 66).

[165] Jonathan Rosenberg, Rohan Mahy, Philip Matthews, and Dan Wing. Session Traversal
Utilities for NAT (STUN). IETF, Oct. 2008. https://tools.ietf.org/html/rfc5389
(cit. on p. 66).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.ieee-security.org/TC/SP2017/papers/586.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-pearce.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-pearce.pdf
https://blog.torproject.org/tor-browser-36-released
https://blog.torproject.org/tor-browser-36-released
https://blog.torproject.org/tor-browser-40-released
https://blog.torproject.org/tor-browser-40-released
https://blog.torproject.org/tor-browser-45-released
https://blog.torproject.org/tor-browser-45-released
https://news.ycombinator.com/item?id=9234367
https://news.ycombinator.com/item?id=9234367
https://blessing.studio/why-do-shadowsocks-deprecate-ota/
https://groups.google.com/d/msg/traffic-obf/CWO0peBJLGc/Py-clLSTBwAJ
https://psiphon.ca/
https://www.icir.org/vern/Ptacek-Newsham-Evasion-98.pdf
https://refraction.network/
https://tools.ietf.org/html/rfc6347
https://cyber.law.harvard.edu/publications/2011/2011_Circumvention_Tool_Evaluation
https://cyber.law.harvard.edu/publications/2011/2011_Circumvention_Tool_Evaluation
https://www.opentech.fund/article/collateral-freedom-snapshot-chinese-users-circumventing-censorship
https://www.opentech.fund/article/collateral-freedom-snapshot-chinese-users-circumventing-censorship
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc5389
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 82

[166] Jonathan Rosenberg and Henning Schulzrinne. An Offer/Answer Model with the
Session Description Protocol (SDP). IETF, June 2002. https://tools.ietf.org/html/
rfc3264 (cit. on p. 64).

[167] SafeWeb. TriangleBoy Whitepaper. http://www.webrant.com/safeweb site/html/
www/tboy whitepaper.html (cit. on p. 13).

[168] Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper. “Routing
Around Decoys”. In: Computer and Communications Security. ACM, 2012. https:
//www-users.cs.umn.edu/∼hopper/decoy-ccs12.pdf (cit. on p. 13).

[169] Andreas Sfakianakis, Elias Athanasopoulos, and Sotiris Ioannidis. “CensMon: A Web
Censorship Monitor”. In: Free and Open Communications on the Internet. USENIX,
2011. https://www.usenix.org/legacy/events/foci11/tech/final files/Sfakianakis.pdf
(cit. on pp. 18, 22).

[170] Shadowsocks. https://shadowsocks.org/en/ (cit. on pp. 10, 13).

[171] Charlie Smith. We are under attack. GreatFire. Mar. 2015. https://en.greatfire.org/
blog/2015/mar/we-are-under-attack (cit. on p. 56).

[172] Rob Smits, Divam Jain, Sarah Pidcock, Ian Goldberg, and Urs Hengartner. “BridgeSPA:
Improving Tor Bridges with Single Packet Authorization”. In: Workshop on Privacy
in the Electronic Society. ACM, 2011. https://www.cypherpunks.ca/∼iang/pubs/
bridgespa-wpes.pdf (cit. on p. 32).

[173] Snowflake. Tor Bug Tracker & Wiki. https://trac.torproject.org/projects/tor/wiki/
doc/Snowflake (cit. on p. 62).

[174] Qingfeng Tan, Jinqiao Shi, Binxing Fang, Li Guo, Wentao Zhang, Xuebin Wang,
and Bingjie Wei. “Towards Measuring Unobservability in Anonymous Communcation
Systems”. In: Journal of Computer Research and Development 52.10 (Oct. 2015).
http://crad.ict.ac.cn/EN/10.7544/issn1000-1239.2015.20150562 (cit. on pp. 50, 57).

[175] Tokachu. “The Not-So-Great Firewall of China”. In: 2600 23.4 (2006) (cit. on p. 19).

[176] Tor Metrics. Bridge users by transport. Nov. 2017. https://metrics.torproject.org/
userstats-bridge-transport.html?start=2017-06-01&end=2017-11-30&transport=
obfs3&transport=obfs4&transport=meek&transport=%3COR%3E (cit. on p. 51).

[177] Tor Metrics. Bridge users by transport from Brazil. Nov. 2017. https : //metrics .
torproject.org/userstats-bridge-combined.html?start=2016-06-01&end=2017-11-
30&country=br (cit. on pp. 59, 61).

[178] Tor Metrics. Bridge users from Iran. Nov. 2017. https://metrics.torproject.org/
userstats-bridge-country.html?start=2014-01-01&end=2017-11-30&country=ir
(cit. on p. 44).

[179] Tor Metrics. Bridge users using Flash proxy/websocket. Dec. 2016. https://metrics.
torproject.org/userstats-bridge-transport.html?start=2013-01-01&end=2016-12-
31&transport=websocket (cit. on p. 62).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://tools.ietf.org/html/rfc3264
https://tools.ietf.org/html/rfc3264
http://www.webrant.com/safeweb_site/html/www/tboy_whitepaper.html
http://www.webrant.com/safeweb_site/html/www/tboy_whitepaper.html
https://www-users.cs.umn.edu/~hopper/decoy-ccs12.pdf
https://www-users.cs.umn.edu/~hopper/decoy-ccs12.pdf
https://www.usenix.org/legacy/events/foci11/tech/final_files/Sfakianakis.pdf
https://shadowsocks.org/en/
https://en.greatfire.org/blog/2015/mar/we-are-under-attack
https://en.greatfire.org/blog/2015/mar/we-are-under-attack
https://www.cypherpunks.ca/~iang/pubs/bridgespa-wpes.pdf
https://www.cypherpunks.ca/~iang/pubs/bridgespa-wpes.pdf
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
http://crad.ict.ac.cn/EN/10.7544/issn1000-1239.2015.20150562
https://metrics.torproject.org/userstats-bridge-transport.html?start=2017-06-01&end=2017-11-30&transport=obfs3&transport=obfs4&transport=meek&transport=%3COR%3E
https://metrics.torproject.org/userstats-bridge-transport.html?start=2017-06-01&end=2017-11-30&transport=obfs3&transport=obfs4&transport=meek&transport=%3COR%3E
https://metrics.torproject.org/userstats-bridge-transport.html?start=2017-06-01&end=2017-11-30&transport=obfs3&transport=obfs4&transport=meek&transport=%3COR%3E
https://metrics.torproject.org/userstats-bridge-combined.html?start=2016-06-01&end=2017-11-30&country=br
https://metrics.torproject.org/userstats-bridge-combined.html?start=2016-06-01&end=2017-11-30&country=br
https://metrics.torproject.org/userstats-bridge-combined.html?start=2016-06-01&end=2017-11-30&country=br
https://metrics.torproject.org/userstats-bridge-country.html?start=2014-01-01&end=2017-11-30&country=ir
https://metrics.torproject.org/userstats-bridge-country.html?start=2014-01-01&end=2017-11-30&country=ir
https://metrics.torproject.org/userstats-bridge-transport.html?start=2013-01-01&end=2016-12-31&transport=websocket
https://metrics.torproject.org/userstats-bridge-transport.html?start=2013-01-01&end=2016-12-31&transport=websocket
https://metrics.torproject.org/userstats-bridge-transport.html?start=2013-01-01&end=2016-12-31&transport=websocket
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 83

[180] Tor Metrics. Tor Browser downloads and updates. Nov. 2017. https://metrics.torproject.
org/webstats-tb.html?start=2017-09-01&end=2017-11-30. Source data that gives
relative number of stable and alpha downloads is available from https://metrics.
torproject.org/stats.html#webstats (cit. on p. 36).

[181] The Tor Project. BridgeDB. https://bridges.torproject.org/ (cit. on pp. 12, 36).

[182] Michael Carl Tschantz, Sadia Afroz, Anonymous, and Vern Paxson. “SoK: Towards
Grounding Censorship Circumvention in Empiricism”. In: Symposium on Security &
Privacy. IEEE, 2016. https://internet-freedom-science.org/circumvention-survey/
sp2016/ (cit. on pp. 6, 9, 18, 23).

[183] Vladislav Tsyrklevich. Internet-wide scanning for bridges. tor-dev mailing list. Dec.
2014. https://lists.torproject.org/pipermail/tor-dev/2014-December/007957.html
(cit. on p. 25).

[184] uProxy. https://www.uproxy.org/ (cit. on pp. 12, 62).

[185] John-Paul Verkamp and Minaxi Gupta. “Inferring Mechanics of Web Censorship
Around the World”. In: Free and Open Communications on the Internet. USENIX,
2012. https://www.usenix.org/system/files/conference/foci12/foci12-final1.pdf
(cit. on p. 22).

[186] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas Ristenpart, and Thomas Shrimp-
ton. “Seeing through Network-Protocol Obfuscation”. In: Computer and Commu-
nications Security. ACM, 2015. http://pages.cs.wisc.edu/∼liangw/pub/ccsfp653-
wangA.pdf (cit. on pp. 10, 50, 57).

[187] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita Borisov.
“CensorSpoofer: Asymmetric Communication using IP Spoofing for Censorship-Resistant
Web Browsing”. In: Computer and Communications Security. ACM, 2012. https:
//hatswitch.org/∼nikita/papers/censorspoofer.pdf (cit. on p. 13).

[188] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas J. Hopper. “rBridge: User Reputation
based Tor Bridge Distribution with Privacy Preservation”. In: Network and Distributed
System Security. The Internet Society, 2013. https://www-users.cs.umn.edu/∼hopper/
rbridge ndss13.pdf (cit. on p. 12).

[189] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishnamurthy.
“Your State is Not Mine: A Closer Look at Evading Stateful Internet Censorship”. In:
Internet Measurement Conference. ACM, 2017. http://www.cs.ucr.edu/∼krish/imc17.
pdf (cit. on p. 15).

[190] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven
Cheung, Frank Wang, and Dan Boneh. “StegoTorus: A Camouflage Proxy for the
Tor Anonymity System”. In: Computer and Communications Security. ACM, 2012.
https://www.frankwang.org/files/papers/ccs2012.pdf (cit. on p. 10).

[191] Darrell M. West. Internet shutdowns cost countries $2.4 billion last year. Oct. 2016.
https://www.brookings.edu/wp-content/uploads/2016/10/intenet-shutdowns-v-
3.pdf (cit. on p. 9).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://metrics.torproject.org/webstats-tb.html?start=2017-09-01&end=2017-11-30
https://metrics.torproject.org/webstats-tb.html?start=2017-09-01&end=2017-11-30
https://metrics.torproject.org/stats.html#webstats
https://metrics.torproject.org/stats.html#webstats
https://bridges.torproject.org/
https://internet-freedom-science.org/circumvention-survey/sp2016/
https://internet-freedom-science.org/circumvention-survey/sp2016/
https://lists.torproject.org/pipermail/tor-dev/2014-December/007957.html
https://www.uproxy.org/
https://www.usenix.org/system/files/conference/foci12/foci12-final1.pdf
http://pages.cs.wisc.edu/~liangw/pub/ccsfp653-wangA.pdf
http://pages.cs.wisc.edu/~liangw/pub/ccsfp653-wangA.pdf
https://hatswitch.org/~nikita/papers/censorspoofer.pdf
https://hatswitch.org/~nikita/papers/censorspoofer.pdf
https://www-users.cs.umn.edu/~hopper/rbridge_ndss13.pdf
https://www-users.cs.umn.edu/~hopper/rbridge_ndss13.pdf
http://www.cs.ucr.edu/~krish/imc17.pdf
http://www.cs.ucr.edu/~krish/imc17.pdf
https://www.frankwang.org/files/papers/ccs2012.pdf
https://www.brookings.edu/wp-content/uploads/2016/10/intenet-shutdowns-v-3.pdf
https://www.brookings.edu/wp-content/uploads/2016/10/intenet-shutdowns-v-3.pdf
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 84

[192] Tim Wilde. CN Prober IPs. Dec. 2011. https://gist.github.com/twilde/4320b75d398f
2e1f074d (cit. on p. 27).

[193] Tim Wilde. Great Firewall Tor Probing Circa 09 DEC 2011. Jan. 2012. https://gist.
github.com/twilde/da3c7a9af01d74cd7de7 (cit. on pp. 26, 27).

[194] Tim Wilde. Knock Knock Knockin’ on Bridges’ Doors. The Tor Blog. Jan. 2012.
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors (cit. on pp. 26,
27).

[195] Brandon Wiley. Dust: A Blocking-Resistant Internet Transport Protocol. Tech. rep.
University of Texas at Austin, 2011. http://blanu.net/Dust.pdf (cit. on p. 10).

[196] Philipp Winter. brdgrd. 2012. https://github.com/NullHypothesis/brdgrd (cit. on
pp. 15, 27).

[197] Philipp Winter. How the Great Firewall of China is Blocking Tor. https://www.cs.
kau.se/philwint/static/gfc/ (cit. on p. 27).

[198] Philipp Winter. “Measuring and circumventing Internet censorship”. PhD thesis.
Karlstad University, 2014. https://nymity.ch/papers/pdf/winter2014b.pdf (cit. on
p. 6).

[199] Philipp Winter and Stefan Lindskog. “How the Great Firewall of China is Blocking
Tor”. In: Free and Open Communications on the Internet. USENIX, 2012. https:
//www.usenix.org/system/files/conference/foci12/foci12-final2.pdf (cit. on pp. 8, 15,
20, 26, 27, 31, 34, 37).

[200] Philipp Winter, Tobias Pulls, and Juergen Fuss. “ScrambleSuit: A Polymorphic Net-
work Protocol to Circumvent Censorship”. In: Workshop on Privacy in the Electronic
Society. ACM, 2013. https://censorbib.nymity.ch/pdf/Winter2013b.pdf (cit. on pp. 11,
13, 25).

[201] Sebastian Wolfgarten. Investigating large-scale Internet content filtering. Tech. rep.
Dublin City University, 2006. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.133.5778&rep=rep1&type=pdf (cit. on p. 19).

[202] Joss Wright. Regional Variation in Chinese Internet Filtering. Tech. rep. University
of Oxford, 2012. https://papers.ssrn.com/sol3/Delivery.cfm/SSRN ID2265775
code1448244.pdf?abstractid=2265775&mirid=3 (cit. on p. 18).

[203] Joss Wright, Tulio de Souza, and Ian Brown. “Fine-Grained Censorship Mapping:
Information Sources, Legality and Ethics”. In: Free and Open Communications on
the Internet. USENIX, 2011. https://www.usenix.org/legacy/events/foci11/tech/
final files/Wright.pdf (cit. on pp. 2, 18, 34).

[204] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. “Telex: Anticen-
sorship in the Network Infrastructure”. In: USENIX Security Symposium. USENIX,
2011. https://www.usenix.org/event/sec11/tech/full papers/Wustrow.pdf (cit. on
p. 49).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://gist.github.com/twilde/4320b75d398f2e1f074d
https://gist.github.com/twilde/4320b75d398f2e1f074d
https://gist.github.com/twilde/da3c7a9af01d74cd7de7
https://gist.github.com/twilde/da3c7a9af01d74cd7de7
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
http://blanu.net/Dust.pdf
https://github.com/NullHypothesis/brdgrd
https://www.cs.kau.se/philwint/static/gfc/
https://www.cs.kau.se/philwint/static/gfc/
https://nymity.ch/papers/pdf/winter2014b.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://censorbib.nymity.ch/pdf/Winter2013b.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.5778&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.5778&rep=rep1&type=pdf
https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2265775_code1448244.pdf?abstractid=2265775&mirid=3
https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2265775_code1448244.pdf?abstractid=2265775&mirid=3
https://www.usenix.org/legacy/events/foci11/tech/final_files/Wright.pdf
https://www.usenix.org/legacy/events/foci11/tech/final_files/Wright.pdf
https://www.usenix.org/event/sec11/tech/full_papers/Wustrow.pdf
https://www.bamsoftware.com/papers/thesis/

BIBLIOGRAPHY 85

[205] Xueyang Xu, Z. Morley Mao, and J. Alex Halderman. “Internet Censorship in China:
Where Does the Filtering Occur?” In: Passive and Active Measurement Conference.
Springer, 2011, pp. 133–142. https://web.eecs.umich.edu/∼zmao/Papers/china-
censorship-pam11.pdf (cit. on p. 20).

[206] XX-Net. https://github.com/XX-net/XX-Net (cit. on p. 60).

[207] Yawning Angel and Philipp Winter. obfs4 (The obfourscator). May 2014. https :
//gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt
(cit. on pp. 11, 13, 25, 35).

[208] Tao Zhu, David Phipps, Adam Pridgen, Jedidiah R. Crandall, and Dan S. Wallach.
“The Velocity of Censorship: High-Fidelity Detection of Microblog Post Deletions”. In:
USENIX Security Symposium. USENIX, 2013. https://www.cs.unm.edu/∼crandall/
usenix13.pdf (cit. on p. 34).

[209] Jonathan Zittrain and Benjamin G. Edelman. “Internet filtering in China”. In: IEEE
Internet Computing 7.2 (Mar. 2003), pp. 70–77. https://dash.harvard.edu/bitstream/
handle/1/9696319/Zittrain InternetFilteringinChina.pdf (cit. on p. 18).

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://web.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf
https://web.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf
https://github.com/XX-net/XX-Net
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt
https://www.cs.unm.edu/~crandall/usenix13.pdf
https://www.cs.unm.edu/~crandall/usenix13.pdf
https://dash.harvard.edu/bitstream/handle/1/9696319/Zittrain_InternetFilteringinChina.pdf
https://dash.harvard.edu/bitstream/handle/1/9696319/Zittrain_InternetFilteringinChina.pdf
https://www.bamsoftware.com/papers/thesis/

Index

here be dragonŊ

200 (HTTP status code), 51, 65
202.108.181.70 (active prober), 27, 31
404 (HTTP status code), 54

a0.awsstatic.com, 59
Accept (HTTP header), 29
Accept-Encoding (HTTP header), 29, 30
ACK (TCP flag), 14
active probing, 10, 11, 15, 24–32, 47

reactive vs. proactive, 24–25
address, 6
address spoofing, 12–14
Afroz, Sadia, 6, 9
ajax.aspnetcdn.com, 59
Akella, Aditya, 10, 50, 57
Allot Communications, 60
Amazon CloudFront, 52, 55, 56

see also meek-amazon
An, Anne, 53
Anderson, Daniel, 15
Anderson, Philip D., 15
Android, 35
Anonymous, 6, 9, 59
App Engine, see Google App Engine
Appelbaum, Jacob, 53
appspot.com, see Google App Engine
APT29, see Cozy Bear
arms race, 23
AS, see autonomous system
Australia, 19
authentication, 10, 11, 25, 32, 54
autonomous system, 31

Azadi (Tor bridge), 36, 38, 44
Azure, see Microsoft Azure

Balakrishnan, Hari, 10
Balazinska, Magdalena, 10
Barr, Alistair, 56
Barr, Earl, 15
blacklist, 5, 9
Blaze, Matt, 15
blocking, 5, 58, 59

by address, 2, 13, 24, 25, 47–50, 58, 59
by content, 2, 3, 59
versus detection, 5, 14

Boe, Bryce, 49
Boneh, Dan, 10
border firewall, 1–2
Borisov, Nikita, 10
botnet, 58
Brazil, 59–61
brdgrd, 15, 27
BreakWa11, 26, 28
Breault, Arlo, 53, 54, 63
BridgeDB, 12, 36, 43
BridgeSPA, 32
Briesemeister, Linda, 10
broker, see Snowflake, broker
Brown, Ian, 2
Brubaker, Chad, 8–10
BT, 19
Burnett, Sam, 8
Byrd, Michael, 15

Caballero, Juan, 13, 25

86

INDEX 87

Canada, 19
Cao, Yue, 15
captcha, 12
Carr, Nick, 59
cat-and-mouse game, 7
CC0, 54
CDN, see content delivery network
censor, 1
CensorSpoofer, 13, 14
certificate, 47, 48, 57
CGIProxy, 15, 16
Chang, Lan, 55
Channey, Kanwaljeet Singh, 59
Cheung, Steven, 10
China, 18, 19, 25–27, 33, 35, 37–43, 45, 53,

55, 56, 61
see also Great Firewall of China

Chinese, 50, 57
Chrome web browser, 29, 32, 54
ciphersuite, see TLS, fingerprinting
circumvention, 2
Circumventor, 15, 16
Cirripede, 49
classification, 5, 7, 8
Clayton, Richard, 8, 14
CleanFeed, 19
client, 1
Cloudflare, 54, 56
CloudFront, see Amazon CloudFront
CloudTransport, 49
CN, see China; common name (X.509)
collateral damage, 7–9, 9, 11, 13, 16, 24,

26, 32, 47–49, 59
“collateral freedom”, 53, 56
command and control, 58
common name (X.509), 47, 48, 67
Connection (HTTP header), 29, 30
content, 5
content delivery network, 47–50, 54, 56–58,

60
content delivery networks, 54
Content-Length (HTTP header), 29, 51
Content-Type (HTTP header), 29
costs, 5, 7, 9

of censorship, 9

Coull, Scott E., 10
Cozy Bear, 58
Crandall, Jedidiah R., 15
Creative Commons, 54
Cronin, Eric, 15
CurveBall, 49
Cyberoam, 59
cymrubridge31 (Tor bridge), 36, 46
cymrubridge33 (Tor bridge), 36, 46

dead-parrot attacks, 9, 66
decoy routing, see refraction networking
deep packet inspection, 3
default Tor bridge, see Tor Bridge, default
Deloitte, 9
deniability, 8
denial of service, 56
Derakhshani, Mohammad, 10
DerbyCon, 59
destination, 2
detection, 5, 50, 59

by address, 5, 6, 11–14, 16, 25, 47
by content, 5, 6, 9–11, 24, 25, 28, 47,

55
versus blocking, 5, 14

Diffie–Hellman key exchange, 11
Dingledine, Roger, 12, 24
distinguishability, 7, 8, 28, 32, 47, 51, 66
DNS, 13, 16, 17, 19, 22, 23, 47

blocking, 2, 16, 17
poisoning, 5, 17, 19–23

domain fronting, 13, 16, 26, 29, 47–61
as rendezvous for Snowflake, 64, 65
costs of, 48, 52
see also front domain
see also meek

Domain Name System, see DNS
Dou, Eva, 56
DPI, see deep packet inspection
Dunwoody, Matthew, 59
Durumeric, Zakir, 13, 24
Dust, 10
Dyer, Kevin P., 10, 50, 57

East, Rich, 15

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

INDEX 88

eavesdropper’s dilemma, 15
edge server, 48, 49, 58
Egypt, 58
Elahi, Tariq, 6, 10, 14
email, 6, 9, 12, 13, 30, 53
encryption, 48
encryption+, 10
end-to-middle proxying, see refraction net-

working
English, 4
Ensafi, Roya, 26, 28
entanglement, 8
entropy, 50, 57

see also Kullback–Leibler divergence
Eternity Service, The, 3

false negative, 5, 7, 8, 11
false negatives, 5, 50
false positive, 5, 7, 8, 10, 11
false positives, 5, 24, 50, 57

see also collateral damage
Fang, Binxing, 50, 57
fdctorbridge01 (Tor bridge), 36, 38, 44, 46
Feamster, Nick, 8, 10, 26, 28
Fifield, David, 26, 28, 50, 55, 56
filecasting, 14
fingerprinting, 28, 31–32
Firefox web browser, 54, 59
flash proxy, 13, 53, 55, 56

facilitator, 53
rendezvous, 53

flashproxy-reg-appspot, 53
flashproxy-reg-email, 53
flashproxy-reg-http, 53
format-transforming encryption, see FTE
FortiGuard, 59
fragmentation, 14, 15, 27
FreeWave, 10
front domain, 47, 48, 59
FTE, 10, 36, 56

GAEuploader, 60
garbage probes, 26–28, 30
Geddes, John, 10
geolocation, 57

GET (HTTP method), 29, 30, 32, 65
GFW, see Great Firewall of China
GIF, 29
Gil Epner, Mia, 63
Git, 54
GitHub, 7, 21
GoAgent, 49, 53
GoHost.kz, 45
Goldberg, Ian, 6, 10, 14
Google, 29, 55–58
Google App Engine, 29, 48, 49, 52–58, 60

see also meek-google
Google Cloud Platform, 58
Great Cannon, 56
Great Firewall of China, 7, 8, 11, 12, 14,

15, 18, 24–28, 30, 32, 51, 55, 58
GreatFire, 56
GreenBelt (Tor bridge), 36, 38, 44, 46
Guo, Li, 50, 57

Halderman, J. Alex, 13, 24
Han, Serene, 63
Harfst, Greg, 10
Haselton, Bennett, 15
Hillig, Ulf, 3, 6, 12, 49
Hong Kong, 19
Hopper, Nicholas, 10, 24
Host (HTTP header), 29, 30, 32, 47–51, 56
Houmansadr, Amir, 8–10
hrimfaxi, 26, 27
HTML-rewriting proxy, 15, 16, 53
HTTP, 8–10, 29–31, 47, 48, 50, 51, 53–56,

58, 65
proxy, 6

HTTPS, 12, 13, 25, 29–31, 47–49, 51, 55
Hynes, Rod, 50, 56
Hypertext Transfer Protocol, see HTTP

Infranet, 10, 16
injection, see packet injection
insider attack, 11, 13, 14
instant messaging, 13
integrity, 28
“Internet censorship”, 3
Internet service provider, 15, 19, 31

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

INDEX 89

Internet/Network Security, 54
intrusion detection, 14–15, 20
Iran, 10, 33, 35, 44
ISP, see Internet service provider

JavaScript, 10
Javed, Mobin, 15
JonbesheSabz (Tor bridge), 36, 38, 44
JPEG, 29

Kadianakis, George, 54
Karger, David, 10
Kazakhstan, 33, 35, 44–46, 59, 60
keywords, 5, 6, 11, 15, 55
Khattak, Sheharbano, 6, 10, 14, 15
Krishnamurthy, Srikanth V., 15
Kullback–Leibler divergence, 50, 57
Köpsell, Stefan, 3, 6, 12, 49

Lan, Chang, 50, 54, 56
Lantern, 50, 55, 56
Leidl, Bruce, 10
LeifEricson (Tor bridge), 36, 38, 44, 46
Li, Baiyu, 10
Li, Katherine, 60
Lindskog, Stefan, 8, 15, 26–28
Lisbeth (Tor bridge), 36, 38, 46
look-like-nothing transport, 10, 25
look-like-nothing transports, 28, 29

MaBishomarim (Tor bridge), 36, 38, 44
Majkowski, Marek, 26, 27
man in the middle, 11
Mathewson, Nick, 24
Matic, Srdjan, 13, 25
McCullagh, Declan B., 15
McLachlan, Jon, 24
meek, 49–53

costs of, 52, 55, 60
history of, 51–61
meek-amazon, 55
meek-azure, 55
meek-google, 55

meek-amazon, 56–58
meek-azure, 56–58, 60
meek-google, 56–58, 60

meeker, 54
Meeks, Brock N., 15
Microsoft, 56
Microsoft Azure, 52, 55, 56, 58

see also meek-azure
MITM, see man in the middle
modeling, 8
models, 2, 3, 5, 6
Moghaddam, Hooman Mohajeri, 10, 63
Morin, Rich, 16
Mosaddegh (Tor bridge), 36, 38, 44, 46
Murdoch, Steven J., 6, 8, 10, 14

National Congress (Communist Party of
China), 61

ndnop3 (Tor bridge), 35, 36, 38, 44, 46
ndnop4 (Tor bridge), 36, 38, 44, 46
ndnop5 (Tor bridge), 36, 38, 44, 46
NDSS, see Network and Distributed System

Security Symposium
Network and Distributed System Security

Symposium, 55
network intrusion detection system, see in-

trusion detection
network monitor, 14, 15, 19, 20
Newsham, Timothy N., 14
nickname (Tor bridges), 35
NIDS, see intrusion detection
Nixon, Leif, 26
Nmap, 28
noether (Tor bridge), 36, 38, 44
NX01 (Tor bridge), 36, 38, 46

obfs2, 10, 26–30, 32
obfs3, 11, 26, 27, 29, 30, 32, 35, 56
obfs4, 11, 13, 25, 26, 28, 32, 35, 36, 51
obfuscated-openssh, 10
obfuscation, 5, 6, 9
onion service, 59
open proxy, 27
OpenITP, 55
OpenSSH, see obfuscated-openssh
Orbot, 35, 36, 56, 60
origin server, 48
overblocking, see false positive

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

INDEX 90

packet dropping, 3
packet dropping+, 14
packet injection, 3, 14
packet injection+, 19
packet size and timing, 6, 11, 50, 55, 57
Park, Jong Chun, 15
Paxson, Vern, 6, 9, 14, 15, 26, 28, 50, 54–56
Peacefire, 15
PETS, see Privacy Enhancing Technologies

Symposium
PHP, 54
ping, 28
pluggable transports, 4, 20, 25, 26, 50, 55,

57–60
see also flash proxy; FTE; meek;

obfs2; obfs3; obfs4; ScrambleSuit;
Snowflake

polymorphism, 9–10
port scanning, 13, 24–25, 31

see also active probing
POST (HTTP method), 29, 32, 50, 51, 65
precision, see false positives
Privacy Enhancing Technologies Sympo-

sium, 56
Proximax, 12
proxy, 6, 57
proxy discovery problem, see proxy distri-

bution problem, 35
proxy distribution, 11
proxy distribution problem, 12, 14, 16, 49
Psiphon, 15, 50, 55, 56, 60
Ptacek, Thomas H., 14
public domain, 54
Python, 30

Qian, Zhiyun, 15

radio jamming, 14
randomization+, 10
randomness, 10
randomness+, 10, 11
rate limiting, 56, 58
rBridge, 12
recall, see false negatives
refraction networking, 13, 16, 49

relative entropy, see Kullback–Leibler di-
vergence

reset, see RST
Riedl, Thomas, 10
riemann (Tor bridge), 36, 38, 44
Ristenpart, Thomas, 10, 50, 57
Robinson, David, 53
Rover, 16
RST (TCP flag), 14, 17, 19, 20, 22, 34
Russia, 27

Safari web browser, 29
SafeWeb, 15
Salmon, 12
satellite television, 14
Schuchard, Max, 10
ScrambleSuit, 11, 13, 25, 26, 28, 32, 56
Secure Shell, see SSH
Secure Sockets Layer, see TLS
security through obscurity, 5
Server Name Indication (SNI), 47–50, 56,

59
Shadowsocks, 10, 13, 25, 26, 28, 32
Sherr, Micah, 15
Shi, Jinqiao, 50, 57
Shmatikov, Vitaly, 8–10
Shrimpton, Thomas, 10, 50, 57
shutdown, 7, 9
Simon, Laurent, 6, 10, 14
Singapore, 27
Singer, Andrew, 10
Skype, 10
SkypeMorph, 10
SNI, see Server Name Indication
Snowflake, 13, 26, 62–67

broker, 26
rendezvous, 26, 64, 65

SOCKS, 6, 13
SoftEther VPN, 29, 32
Song, Chengyu, 15
Souza, Tulio de, 2
spheres of influence/visibility, 14–15
SSH, 10, 26
SSL, see TLS
steganography, 8–11

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

INDEX 91

StegoTorus, 10
Swanson, Colleen M., 6, 10, 14
Sweden, 27
SYN (TCP flag), 14, 20
SYN/ACK (TCP flags), 14

Tan, Qingfeng, 50, 57
TCP, 14, 17, 20–22, 31, 32, 35, 38, 44–46,

54, 56, 62
flags, see ACK; SYN; RST
reassembly, 15
timestamps, 31
window size, 15, 22, 27

Team Cymru, 60
television, 14
Telex, 49
terms of service, 57, 58
threat modeling, 2
throttling, 3
time to live, see TTL
TLS, 16, 26–28, 32, 47–49, 56, 57, 59

fingerprint, 59
fingerprinting, 27, 28, 32, 51, 54, 59

Toosheh, 14
Tor, 4, 28, 32, 50, 51, 55, 57, 58, 60

protocol, 25–28, 30, 32
Tor Blog, 36
Tor bridge, 12, 13, 30, 50, 55–57

default, 36
see also Azadi, cymrubridge31, cymru-

bridge33, fdctorbridge01, Green-
Belt, JonbesheSabz, LeifEricson,
Lisbeth, MaBishomarim, Mosad-
degh, ndnop3, ndnop4, ndnop5,
noether, NX01, riemann

Tor bridges, 24–27, 35, 54
nicknames, 35

Tor Browser, 28, 35, 36, 51, 54–57, 59, 60,
63

alpha release, 55, 56
releases, 36
stable release, 55, 56

Tor Metrics, 36, 52, 57, 59
Tor Project, 35
Tor Project, The, 4, 58

tor-dev mailing list, 54
tor-qa mailing list, 36
traceroute, 28
Transmission Control Protocol, see TCP
Transport Layer Security, see TLS
TriangleBoy, 13, 14
Troncoso, Carmela, 13, 25
Tschantz, Michael Carl, 6, 9
Tsyrklevich, Vladislav, 25
TTL, 14, 19, 27
tunneling, 10
Turkey, 16
Twitter, 16, 23
type I error, see false positive
type II error, see false negative

U.S., see United States of America
UDP, 62
unblockability, 8, 9, 49
Uniform Resource Locator, see URL
United States of America, 19, 35, 40, 46,

49, 58
unobservability, 8
uProxy, 12
URL, 3, 15, 55
urllib, 30
usability, 12
User Datagram Protocol, see UDP
User-Agent (HTTP header), 29, 30, 32

Vempala, Santosh, 8
VERSIONS (Tor cell), 32
virtual hosting, 47, 48
virtual private network, see VPN
VoIP, see voice over IP, 10, 13
VPN, 6, 25, 57, 60
VPN Gate, 12, 29, 30

Wall Street Journal, The, 56
Wang, Frank, 10
Wang, Jeffrey, 10
Wang, Liang, 10, 50, 57
Wang, Xuebin, 50, 57
Wang, Zhongjie, 15
Watson, Robert N. M., 8, 14
Weaver, Nicholas, 26, 28

Draft of December 13, 2017 https://www.bamsoftware.com/papers/thesis/

https://www.bamsoftware.com/papers/thesis/

INDEX 92

web browser+, 15
WebRTC, 62–67

fingerprinting, 65–67
media channel versus data channel, 66
signaling, 66

WebSocket, 53, 62, 64
Wegmann, Percy, 50, 55, 56
Wei, Bingjie, 50, 57
Weinberg, Zachary, 10
West, Darrell M., 9
whitelist, 9
whitelisting, 49
Wilde, Tim, 26–28, 32
Windows Update, 13
Winter, Philipp, 6, 8, 15, 26–28

Wired, 15
World Wide Web, 15

see also HTTP; HTTPS
Wright, Joss, 2
Wustrow, Eric, 13, 24
www.google.com, 53, 59

X-Session-Id (HTTP header), 51
XX-Net, 60

Yegneswaran, Vinod, 10
Yu, Harlan, 53

Zhang, Wentao, 50, 57
Zinn, Daniel, 15

	Introduction
	Scope
	My background

	Principles of circumvention
	Collateral damage
	Content obfuscation strategies
	Address blocking resistance strategies
	Spheres of influence and visibility
	Early censorship and circumvention

	Understanding censors
	Censorship measurement studies
	The evaluation of circumvention systems

	Active probing
	History of active probing research
	Types of probes
	Probing infrastructure
	Fingerprinting the probers

	Time delays in censors' reactions
	The experiment
	Results from China
	Results from Iran
	Results from Kazakhstan

	Domain fronting
	Work related to domain fronting
	A pluggable transport for Tor
	An unvarnished history of meek deployment

	Snowflake
	Design
	WebRTC fingerprinting

	Don't call it a conclusion
	Bibliography
	Index

