
i

Draft of November 27, 2017

1 Introduction 1
1.1 Scope . 1
1.2 Context and overview . 3

2 Principles of circumvention 5
2.1 Collateral damage . 7
2.2 Content obfuscation strategies . 9
2.3 Address blocking resistance strategies . 12
2.4 Spheres of influence and visibility . 14
2.5 Early censorship and circumvention . 16

3 Understanding censors 18

4 Active probing 21
4.1 History of active probing research . 23
4.2 Types of probes . 25
4.3 Probing infrastructure . 27
4.4 Fingerprinting the probers . 28

5 Time delays in censors’ reactions 29

6 Domain fronting 30
6.1 Work related to domain fronting . 32
6.2 A pluggable transport for Tor . 33
6.3 An unvarnished history of meek deployment 34

7 Snowflake 44
7.0.1 Flash proxy . 45

A Summary of censorship measurement studies 47

Bibliography 52

Chapter 1

Introduction

This is a thesis about Internet censorship. In it, I will expand on two threads of research that
have occupied my attention for the past several years: better understanding how censors work,
and fielding systems that circumvent their restrictions. These two threads fuel each other:
better understanding censors enables us to build better circumvention systems that take
into account their strengths and weaknesses; and the deployment of a circumvention system
affords an opportunity to observe how censors themselves react to changing circumstances.
If I am successful, the output of my research is useful models that describe not only how
censors behave today but how they may evolve in the future, and tools for circumvention
that are not only sound in theory but also effective in practice.

1.1 Scope

Censorship is an enormous topic. Even the addition of the “Internet” qualifier hardly reduces
its scope, because almost everything that might be censored touches the Internet in some
way. To deal with the subject in depth, it is necessary to limit the scope. My research is
focused on an important special case of censorship, which I call the “border firewall” case. It
is illustrated in Figure 1.1.

A client resides within a network that is entirely controlled by a censor. Within the
censor’s network, the censor may observe, modify, inject, or block any communication along

Figure 1.1: In the border firewall scenario, a client within a censor-controlled network wants
to reach a destination that lies outside the censor’s control.

1

CHAPTER 1. INTRODUCTION 2

any link. The censor, in particular, tries to prevent some subset of communication with the
wider Internet, for instance by blocking certain keywords, network addresses, or protocols.
The client’s computer, however, is trustworthy and not controlled by the censor. The client’s
goal is to communicate with some destination that lies outside the censor’s network, despite
the censor’s blocks: we call this activity circumvention. Circumvention requires somehow
safely traversing a hostile network, eluding detection and blocking by the censor, in order
to reach a destination. The censor does not control network links outside its own border; it
may of course send messages to the outside world, but it cannot control them after they have
traversed the border.

This abstract model is a good starting point, but the situation in practice is never so
clear-cut. For example, the censor may be weaker than assumed: it may observe only the links
at the border, not those wholly inside; it may not be able to fully inspect every packet that
flows on its network; or there may be deficiencies or dysfunctions in its detection capabilities.
Or the censor may be stronger: perhaps it, while not fully controlling outside networks, may
influence their operators to discourage them from assisting in circumvention. The client may
be limited, for technical or social reasons, in the software and hardware they can use. The
destination may knowingly cooperate with the client’s circumvention, or may not. There is
no limit to the possible complications. Adjusting the basic model to reflect real-world actors’
motivations and capabilities is the heart of threat modeling, one of the main topics of this
thesis. Depending on the situation, we will add to the list of assumptions. In particular,
what makes circumvention possible at all is the censor’s motivation to block only some of the
incoming and outgoing traffic, and allow the rest to pass—this assumption will be a major
focus of the next chapter.

It is not hard to see how the border firewall model relates to censorship in practice.
In a common case, the censor is a national government, and the borders of its controlled
network correspond to the borders of a country. A government typically has the power to
enforce laws and control network infrastructure to act within its own borders, but not outside.
However the boundaries of censorship do not always correspond exactly to the border of a
country. Almost since the study of Internet censorship began, it has been recognized that
content restrictions may vary across geographic locations, even within the same country
(Wright et al. [161] identified some possible causes). In some places a better model is not a
single unified censorship regime, but rather many individual Internet service providers, each
controlling its own network and acting as a mini-censor, perhaps coordinating with others
about what to block and perhaps not. Another important case is that of a university or
corporate network, in which the only outside network access is through a single gateway
router, which tries to enforce a policy on what is acceptable and what is not. These smaller
networks often differ from national- or ISP-level networks in interesting ways, for instance
with regard to the amount of overblocking they are willing to tolerate, or the amount of
computation they can afford to spend on each communication.

Here are some examples of forms of censorship that are in scope:

• blocking IP addresses

• blocking specific network protocols

• blocking DNS resolution for certain domains

CHAPTER 1. INTRODUCTION 3

• blocking keywords in URLs

• dissecting network layers (“deep packet inspection”)

• statistical and probabilistic traffic classification

• connection speed throttling

• active measures by censors to discover the use of circumvention

Other forms of censorship that are not in scope include:

• domain takedowns (that affect all clients globally)

• server-side blocking (servers refusing to serve certain clients)

• anything that takes place entirely within the censor’s network and does not cross the
border

• forum moderation and deletion of social media posts

• deletion-resistant publishing in the vein of the Eternity Service [6] (what Köpsell and
Hillig call “censorship resistant publishing systems” [92 §1]), except insofar as access to
such services may be blocked

Many parts of the abstract model are deliberately left unspecified, to allow for the many
variations that arise in practice. The precise nature of “blocking” can take many forms,
from packet dropping, to injection of false responses, and softer forms of disruption such
as bandwidth throttling. Detection need not be purely passive. The censor is permitted to
do work outside the context of a single connection; for example, it may compute aggregate
statistics over many connections, make lists of suspected IP addresses, and defer some analysis
for offline processing. The client may cooperate with other entities inside and outside the
censor’s network, and indeed almost all circumvention will require the cooperation of a willing
proxy on the outside.

Some have objected to the use of the generic term “Internet censorship” to refer to the
narrow case of the border firewall. I am sensitive to this objection and acknowledge that far
more topics could fit under the umbrella of Internet censorship. Nevertheless, for the purpose
of this thesis, I will continue to use “Internet censorship” without further qualification to
refer to the border firewall case.

1.2 Context and overview

This thesis contains knowledge I have collected and research projects I have taken part in
over the last five years. The next chapter, “Principles of circumvention,” is the thesis of the
thesis, wherein I lay out opinionated general principles of the field. The remaining chapters
are split between the topics of modeling and circumvention: Chapters 3–5 on censor modeling
and Chapters 6 and 7 on circumvention systems.

CHAPTER 1. INTRODUCTION 4

One’s point of view is colored by experience. I will therefore briefly describe the background
to my research. I owe much of my experience to collaboration with the Tor Project, producers
of the Tor anonymity network. Although Tor was not originally intended as a circumvention
system, it has grown into one thanks to pluggable transports, a modularization system
for circumvention implementations. whose anonymity network has been the vehicle for
deployment of my circumvention systems, as well as a common object of research. I know a
lot about Tor and pluggable transports, but I have less experience (especially implementation
experience) with other systems, particularly those that are developed in a language other
than English. And while I have plenty of operational experience—deploying and maintaining
systems with real users—I have not been in a situation where I needed to circumvent regularly,
as a user.

Chapter 2

Principles of circumvention

• Pluggable transports

In order to understand the challenges of circumvention, it helps to put yourself in the
mindset of a censor. A censor has two high-level functions: detection and blocking. Detection
is a classification problem: the censor prefers to permit some communications and deny
others, and so it must have some procedure for deciding which communications fall in which
category. Blocking follows detection. Once the censor detects some prohibited communication,
it must take some action to stop the communication, such as terminating the connection at
a network router. A censor must be able both to detect and to block. (Detection without
blocking would be called surveillance, not censorship.) The flip side of this statement is that
a circumventor succeeds either by eluding detection, or, once detected, somehow resist the
censor’s blocking action.

A censor is, then, essentially a traffic classifier coupled with a blocking mechanism. Though
the design space is large, and many complications are possible, at its heart it must decide, for
each communication, whether to block or allow, and then effect blocks as appropriate. Like
any classifier, a censor is liable to make mistakes. When the censor fails to block something
that it would have preferred to block, it is an error called a false negative; when the censor
accidentally blocks something that it would have preferred to allow, it is a false positive.
Techniques for avoiding detection are often called network protocol “obfuscation,” and the
term is apt. It reflects not an attitude of security through obscurity; but rather a recognition
that avoiding detection is about making the censor’s classification problem more difficult,
and therefore more costly. Forcing the censor to trade false positives for false negatives is the
core of all circumvention that is based on avoiding detection. The costs of misclassifications
cannot be understood in absolute terms: they only have meaning relative to a given censor
and its specific resources and motivations. Understanding the relative importance the censor
assigns to classification errors—knowing what it prefers to allow and to block—is helpful.
Through good modeling, we can make the tradeoffs less favorable for the censor and more
favorable for the circumventor.

The censor may base its detection decision on whatever criteria it find practical. I like to
divide detection techniques into two classes: detection by content and detection by address.
Detection by content is based on the content or topic of the message: keyword filtering and
protocol identification fall into this class. Detection by address is based on the sender or

5

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 6

recipient of the message: IP address blacklists and DNS response tampering fall into this
class. An “address” may be any kind of identifier: an IP address, a domain name, an email
address. Of these two classes, my experience is that detection by address is harder to defeat.
Of course, there is no clear separation between what is content and what is an address. The
layered nature of network protocols means that an address at one layer is content at another.
Nevertheless, I find it useful to think about detection techniques in these terms.

The censor may block the address of the destination, preventing direct access. Any
communication between the client and the destination must therefore be indirect. The
intermediary between client and destination is called a proxy, and it must do two things:
provide an unblocked address for the client to contact; and somehow mask the contents of
the channel and the eventual destination address. Throughout this thesis, I will use the
word “proxy” with an abstract meaning of “one that acts of behalf of another.” A proxy
need not be what is typically understood by the term “proxy server,” a single host accepting
and forwarding connections. A VPN (virtual private network) is also a kind of proxy, as
is the Tor network, as may be a specially configured network router. In Chapter 6 we will
see a network of cloud servers acting as a proxy. In Chapter 7 the proxy will be a pool of
temporary instances of some JavaScript code.

Proxies solve the first-order effects of censorship (detection by content and address), but
they induce a second-order effect: the censor must now seek out and block proxies, in addition
to the contents and addresses that are its primary targets. This is where circumvention
research really begins: not with access to the destination per se, but access to a proxy,
which transitively gives access to the destination. The censor attempts deals with detecting
and blocking communication with proxies using the same tools it would for any other
communication. Just as it may look for forbidden keywords in text, it may look for distinctive
features of proxy protocols; just as it may block politically sensitive web sites, it may block
the addresses of any proxies it can discover. The challenge for the circumventor is to use
proxy addresses and proxy protocols that are difficult for the censor to detect or block.

The way of organizing censorship and circumvention techniques that I have presented is not
the only way. Köpsell and Hillig divide detection into “content” and “circumstances” [92 §4];
their circumstances include addresses and also what I would consider more content-like:
timing, data transfer characteristics, and protocols. Philipp Winter divides circumvention
into three problems: bootstrapping, endpoint blocking, and traffic obfuscation [156 §1.1].
Endpoint blocking and traffic obfuscation correspond to my detection by address and detection
by content; bootstrapping is the challenge of getting a copy of circumvention software and
discovering initial proxy addresses. I tend to fold bootstrapping in with address-based
detection; see Figure 6. Khattak, Elahi, et al., in their 2016 survey and systematization
of circumvention systems, break detection into four aspects: destinations, content, flow
properties, and protocol semantics [90 §2.4]. I think of their “content,” “flow properties,” and
“protocol semantics” as all fitting under the heading of content. Tschantz et al. identify “setup”
and “usage” [143 §V], and Khattak, Elahi, et al. identify “communication establishment” and
“conversation” [90 §3.1], as targets of obfuscation; these mostly correspond to address and
content. What I call “detection” and “blocking,” Khattak, Elahi, et al. call “fingerprinting”
and “direct censorship” [90 §2.3], and Tschantz et al. call “detection” and “action” [143 §II].

A major difficulty in developing circumvention systems is that however much you model
and try to predict the reactions of a censor, real-world stress testing is expensive. If you

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 7

really want to test a design against a censor, not only must you write and deploy an
implementation, integrate it with client-facing software like web browser, and work out details
of distribution—you must also attract enough users to merit a censor’s attention. Any system,
even a fundamentally broken one, will work to circumvent most censors, as long as it is used
only by one or a few clients. The true test arises only after the system has begun to scale
and the censor to fight back. This phenomenon may have contributed to the unfortunate
characterization of censorship and circumvention as a cat-and-mouse game: deploying a weak
circumvention system, watching it get blocked as it becomes popular, and starting over again
with another similarly weak system. In my opinion, the cat-and-mouse game is not inevitable.
It is possible to develop systems that resist blocking—not absolutely, but quantifiably in
terms of costs to the blocker—even after it has become popular. We should think of the
honeymoon period while a system is too small to be worth noticing, not as the beginning
and end of a system’s useful life, but as a time to work out growing pains.

2.1 Collateral damage

What’s to prevent the censor from shutting down all connectivity within its network, trivially
preventing the client from reaching the destination? The answer is that the censor derives
some kind of benefit from allowing network connectivity, other than that which it tries to
censor. Or to put it another way: the censor incurs a cost whenever it commits a false
positive (also called overblocking: inadvertently blocking something it would have preferred
to allow). Because it wants to block some things and allow others, the censor is forced to
run as a classifier. In order to avoid harm to itself, the censor permits some measure of
circumvention traffic.

The cost of false positives is of so central importance to circumvention that researchers
have a special term for it: collateral damage. The term is a bit unfortunate, evoking as it
does negative connotations from other contexts. It helps to focus more on the “collateral”
than the “damage”: collateral damage is any cost experienced by the censor as a result
of incidental blocking done in the course of censorship. It must trade its desire to block
forbidden communications against its desire to avoid harm to itself, balance underblocking
with overblocking. Ideally, we force the censor into a dilemma: unable to distinguish between
circumvention and other traffic, it must choose either to allow circumvention along with
everything else, or else block everything and suffer maximum collateral damage. It is not
necessary to fully reach this ideal before circumvention becomes possible. Better obfuscation
drives up the censor’s error rate and therefore the cost of any blocking. Ideally, the potential
“damage” is never realized, because the censor sees the cost as being too great.

Collateral damage, being an abstract “cost,” can take many forms. It may come in
the form of civil discontent, as people try to access web sites and get annoyed with the
government when unable to do so. It may be reduced productivity, as workers are unable to
access resources they need to to their job. This is the usual explanation for why the Great
Firewall of China has never blocked GitHub for long, despite GitHub’s hosting and distribution when

and
how
long?

when
and
how
long?

of circumvention software: GitHub is so deeply integrated into software development, that
programmers are not able to work when it is blocked.

Collateral damage, as with other aspects of censorship, cannot be understood in isolation,

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 8

but only in relation to a particular censor. Suppose that blocking one web site results in
the collateral blocking of a hundred more. Is that a large amount of collateral damage? It
depends. Are those other sites likely to be visited by clients in the censor’s network? Are
they in the local language? Do professionals and officials rely on them to get their job done?
Is someone in the censorship bureau likely to get fired as a result of their blocking? If the
answers to these question is yes, then yes, the collateral damage is likely to be high. But if
not, then the censor could take or leave those hundred sites—it doesn’t matter.

Censors may take actions to reduce collateral damage while still blocking most of what
they intend to. (Another way to think of it is: reducing false positives without reducing false
negatives.) For example, it has been repeatedly documented—by Clayton et al. [20], Winter
and Lindskog [157], and Fifield and Tsai [70], for example—that the Great Firewall prefers to
block individual ports (or a small range of ports), rather than blocking an entire IP address,
probably in a bid to reduce collateral damage. In Chapter 6 we will see a system whose
blocking resistance is based on widely used web services—the argument is that to block the
circumvention system, the censor would have to block the entire web service. However this
argument requires that the circumvention system’s use of the web service be indistinguishable
from other uses—otherwise the censor may selectively block only the connections used for
circumvention. Local circumstances may serve to reduce collateral damage: for example if a
domestic replacement exists for a foreign service, the censor may block the foreign service
more easily.

The censor’s reluctance to cause collateral damage is what makes circumvention possible
in general. (There are some exceptions, discussed in the next section, where the censor can
detect but is not capable of blocking.) To deploying a circumvention system is to make
a bet: that the censor cannot field a classifier that adequately distinguishes traffic of the
circumvention system from other traffic which, if blocked, would result in collateral damage.
Even steganographic circumvention channels that mimic some other protocol ultimately
derive their blocking resistance from a collateral damage argument: that the censor feels that
to block that other protocol would result in too much damage to be worth it. For example, a
circumvention protocol that imitates HTTP can be blocked by blocking HTTP—the question
then is whether the censor can afford to block HTTP. And that’s in the best case—assuming
the circumvention protocol has no “tell” that enables the censor easily to distinguish it from
the cover protocol it is trying to imitate. Indistinguishability is a necessary but not sufficient
condition for blocking resistance: that which you are trying to be indistinguishable from
must also have sufficient collateral damage. It’s of no use to have a perfect steganographic of
a protocol that the censor doesn’t mind blocking.

In my opinion, collateral damage provides a more productive way to think about the
behavior of censors than do alternatives. It is able to take into account different censors’
differing resources and motivations, and so is more useful for generic modeling. Moreover, it
gets to the heart of what makes traffic resistant to blocking. There have been many other
attempts at defining resistance to blocking. Narain et al. [113] called the essential element
“deniability,” meaning that a user could plausibly claim to have been doing something other
than circumventing when confronted with a log of their network activity. Khattak, Elahi,
et al. [90 §4] also consider “deniability” separately from “unblockability.” Houmansadr
et al. [80, 81, 82] used the term “unobservability,” which I feel fails to convey that the
censor’s essential function is distinguishing, not observation. Brubaker et al. [13] used the

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 9

term “entanglement,” which is closer to the mark and inspired my own thinking. What they
call entanglement I think of as indistinguishability, and keep in mind that that which you
are trying to be indistinguishable with has to be something valued by the censor. Collateral
damage provides a way to make statements about censorship resistance quantifiable, at least
in a loose sense. Rather than saying, “the censor cannot block X,” or even, “the censor is
unwilling to block X,” it is better to say “in order to block X, the censor would have to
do Y ,” where Y is some action bearing a cost for the censor. A statement like this makes
it clear that some censors may be able to afford the cost of doing Y and others may not;
there is no “unblockable” in absolute terms. Now, actually quantifying the value of Y is a
task in itself, by no means a trivial one. The state of research in this field is still far from
being able to assign actual numbers (e.g. in terms of dollars) to costs as perceived by censors.
If a circumvention system becomes blocked, it may simply mean that the circumventor
overestimated the collateral damage or underestimated the censor’s capacity to absorb it.

We have observed that the risk of collateral damage is what prevents the censor from shut-
ting down the network completely—and yet, censors do occasionally do complete shutdowns.
In fact the practice is increasing; reported of shutdowns in 2016. This does not necessarily someonesomeone

some
num-
ber

some
num-
ber

contradict the theory of collateral damage. Shutdowns are indeed costly—estimated that

someonesomeone

shutdowns cost . It is just that, in some cases, the calculus works out that the harm caused

some
amount
some
amount

by a shutdown does not outweigh (in the censor’s mind) the benefits of blocking access. As
always, the outcome depends on the specific censor: censors that don’t benefit as much from
the Internet don’t have as much to lose by blocking it. The fact that shutdowns or “curfews”
are limited in duration shows that even censors that can afford to do a total shutdown cannot
afford to do it forever.

Complicating everything is the fact that censors are not bound to act rationally. Like any
other large, complex entity, a censor is prone to err, to act impetuously, to make decisions
that cause more harm than good. One might even say that the very decision to censor is
exactly such an irrational decision, at the greater societal level.

2.2 Content obfuscation strategies

• Sony thing on passive/active detection [136 §5.1]

• relation to website fingerprinting—circumvention is potentially harder because you
can’t just use e.g. constant bitrate

There are two general strategies to counter content-based blocking. The first is to mimic
some content that the censor allows, like HTTP or email. The second is to randomize the
content, to make it dissimilar to anything that the censor specifically blocks.

Tschantz et al. [143] call these two strategies “steganography” and “polymorphism”
respectively. Another way to say it is “look like something” and “look like nothing.” They
are not strict classifications—any real system will incorporate a bit of both—and they reflect
differing conceptions of censors. Steganography works against a “whitelisting” or “default-
deny” censor, one that permits only a set of specifically enumerated protocols and blocks all
others. Polymorphism, on the other hand, falls to a whitelisting censor, but works against

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 10

a “blacklisting” or “default-allow” censor, one that blocks a set of specifically enumerated
protocols and allows all others.

This is not to say that steganography is strictly superior to polymorphism—there are
tradeoffs in both directions. Effective mimicry can be difficult to achieve, and in any case
effectiveness can only be judged against a censor’s specific computations of collateral damage.
Whitelisting, by its nature, tends to cause more collateral damage than blacklisting. And
just as obfuscation protocols are not purely steganographic or polymorphic, real censors
are not purely whitelisting or blacklisting. Houmansadr et al. [80] exhibited weaknesses in
“parrot” circumvention systems that mimic a cover protocol but do not perfectly imitate
it. Mimicking a protocol in every detail, down to its error behavior, is difficult, and any
inconsistency is a potential feature that a censor may exploit. Wang et al. [147] found that
some of Houmansadr et al.’s proposed attacks were impractical, due to high false-positive
rates, but proposed other attacks designed for efficiency and low false positives, against
both steganographic and polymorphic protocols. Geddes et al. [73] showed that even perfect
imitation (achieved via tunneling) may leave vulnerabilities due to mismatches between the
cover protocol and the covert protocol—for instance randomly dropping packets may disrupt
circumvention more than other uses of the cover protocol. It’s worth noting, though, that
apart from active probing and perhaps entropy measurement, most of the attacks proposed
in academic literature have not been used by censors in practice.

Some systematizations (for example those of Brubaker et al. [13 §6]; Wang et al. [147 §2];
and Khattak, Elahi, et al. [90 §6.1]) further subdivide steganographic systems into those based
on mimicry (attempting to replicate the behavior of a cover protocol) and tunneling (sending
through a genuine implementation of the cover protocol). I do not find the distinction useful,
except when speaking of concrete implementation choices; to me, there are various degrees of
fidelity in imitation, and tunneling only tends to offer higher fidelity than mimicry.

I will list some representative circumvention systems that exemplify the steganographic
strategy. Infranet [48], way back in 2002, built a covert channel out of HTTP, encoding
upstream data in special requests and downstream data using standard steganography in
image files. (An aside on the evolution of threat models: the authors of Infranet rejected
the possibility of using TLS (then called SSL), because it was not then common enough
that its wholesale blocking would cause much damage. Today the situation around TLS is
much different, and it is much relied on by circumventors.) StegoTorus [150] (2012) uses
custom encoders to make traffic resemble common HTTP file types, such as PDF, JavaScript,
and Flash. SkypeMorph [110] (2012) mimics a Skype video call. FreeWave [82] (2013)
modulates a data stream into an acoustic signal and transmits it over VoIP. FTE [43] (for
“format-transforming encryption”; 2013) and its followup Marionette [44] (2015) force traffic
to conform to a user-specified syntax: if you can describe it, you can imitate it. Despite
the research attention they have received, steganographic systems have not been as used in
practice: of these listed systems, FTE is the only one that has seen substantial deployment.

There are many examples of the randomized, polymorphic strategy. An important
subclass of these are the so-called look-like-nothing systems that encrypt a stream without
any plaintext header or framing information, so that it appears to be a uniformly random
byte sequence. A pioneering design was the obfuscated-openssh of Bruce Leidl [94], which
aimed to hide the plaintext packet metadata in the SSH protocol. obfuscated-openssh worked,
in essence, by first sending a cryptographic key, then sending ciphertext encrypted with

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 11

that key. The encryption of the obfuscation layer was an additional, independent layer on
top of SSH’s usual encryption. A censor could, in principle, purely passively detect and
deobfuscate the protocol just by recovering the key and using it to decrypt the rest—a
situation partially mitigated by the use of an expensive key derivation function based on
iterated hashing. obfuscated-openssh could optionally incorporate a pre-shared password into
the key derivation function, which would prevent easy identification. Dust [154], a design
by Brandon Wiley, similarly randomized bytes (at least in its v1 version—later versions
permitted fitting to distributions other than uniform). It was not susceptible to passive
deobfuscation, relying on an out-of-band key exchange before each session. Shadowsocks [135]
is a lightweight encryption layer atop a simple proxy protocol.

There is a line of successive look-like-nothing protocols—known by the names obfs2, obfs3,
ScrambleSuit, and obfs4—whose history is interesting, because it illustrates mutual advances
by censors and circumventors over several years. obfs2 [87], which debuted in 2012 in response
to blocking in Iran [30], uses very simple obfuscation inspired by obfuscated-openssh: it
is essentially equivalent to sending an encryption key, followed by the rest of the stream
encrypted by that key. obfs2 is detectable, with no false negatives and negligible false
positives, by even a passive censor who knows how it works; and it is vulnerable to active
probing attacks, where the censor speculatively connects to the proxy to see what protocol
it uses. However, it was sufficient against the keyword- or pattern-based censors of its era.
obfs3 [88]—first available in 2013 but not really released to users until 2014 [122]—was
designed to fix the passive detectability of its predecessor. obfs3 employs a Diffie–Hellman key
exchange that prevents easy passive detection, but it can still be subverted by an active man
in the middle, and remains vulnerable to active probing. (The Great Firewall of China had
begun active-probing for obfs2 by January 2013, and for obfs3 by February 2015, or possibly as
early as July 2013 [46 §5.4].) ScrambleSuit [158], first available to users in 2014 [18], arose in
response to the active-probing of obfs3. Its improvements were the use of an out-of-band secret
to authenticate clients, and traffic shaping techniques to perturb the underlying stream’s
statistical properties. When a client connects to a ScrambleSuit proxy, it must demonstrate
knowledge of the out-of-band secret, or else the server will not respond, preventing active
probing. (Active probing resistance really has more to do with blocking by address than with
blocking by content, but it is only because the randomized transports sufficiently frustrated
content-based detection that active probing became relevant.) obfs4 [165], first available in
2014, is an incremental advancement on ScrambleSuit that uses more efficient cryptography,
and additionally authenticates the key exchange to prevent active man-in-the-middle attacks.

There is an advantage in designing polymorphic protocols, as opposed to steganographic
ones, which is that every proxy can potentially have its own characteristics. ScrambleSuit
and obfs4, in addition to randomizing packet contents, also shape packet lengths and timing
to fit random distributions. Crucially, the chosen distributions are consistent within each
server, not generated afresh for each connection. That means that even if a censor is able to
build a profile for a particular server, it is not necessarily useful for detecting other server
instances.

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 12

2.3 Address blocking resistance strategies

• VPN Gate “collaborative spy detection” [117 §4.3], other ways of fingerprinting censor

• DEFIANCE [97]

The first-order solution for reaching a destination whose address is blocked is to instead
route through a proxy. But a single, static proxy is not much better than direct access, from
a circumvention point of view—a censor can block the proxy just as easily as it can block the
destination. Circumvention systems must come up with ways of addressing this problem.

There are two reasons why resistance to blocking by address is challenging. The first is
due to the nature of network routing: the client must, somehow, encode the address of the
destination into what it sends, where it can be observed by the censor, if the encoding is
sufficiently transparent. The second is the insider attack: legitimate clients must have some
way to discover addresses of, e.g., proxies. By pretending to be a legitimate client, the censor
can learn those addresses in the same way.

Compared to content obfuscation, there are relatively few strategies for resistance to
blocking by address. They are basically five: private proxies shared by only a few clients;
having a large population of secret proxies and distributing them carefully; having a very
large population of proxies and treating them as disposable; proxying through a service with
high collateral damage; and address spoofing.

The simplest proxy infrastructure is no infrastructure at all: require every client to set up
and maintain a proxy for their own personal use, or for a few of their friends. As long as
the use of any single address remains low, it may escape the censor’s notice [36 §4.2]. The
problem with this strategy, of course, is usability and scalability. If it were easy for everyone
to set up their own proxy on an unblocked address, they would do it, and blocking by address
would not be a concern. The challenge is making such techniques general so they are usable
by more than experts. uProxy [145] is now working on just that: automating the process of
setting up a proxy on a server.

What Köpsell and Hillig call the “many access points” model has been adopted in some
form by many circumvention systems. In this model, there are many proxies in operation.
They may be full-fledged general-purpose proxies, or only simple forwarders to a more capable
proxy. They may be operated by volunteers or coordinated centrally. In any case, the
success of the system hinges on being able to sustain a population of proxies, and distribute
information about them to legitimate users, without revealing them all to the censor. Both
of these considerations pose challenges.

Tor’s blocking resistance design [36], based on secret proxies called “bridges,” was of
this kind. Volunteers run bridges, which report themselves to central database called
BridgeDB [142]. Clients contact BridgeDB through some unblocked out-of-band channel
(HTTPS, email, or word of mouth) in order to learn bridge addresses. The BridgeDB server
takes steps to prevent easy enumeration of the entire database [99]. Each request returns
only a small set of bridges, and repeated requests by the same client return the same small
set (keyed by a hash of the client’s IP address prefix or email address). Requests through the
HTTPS interface require the client to solve a captcha, and email requests are permitted only
from the domains of email providers that are known to limit the rate of account creation. The

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 13

population of bridges is partitioned into “pools”—one pool for HTTPS distribution, one for
email, and so on—so that an exploit allowing enumeration of one distribution method does
not affect the others. But even these defenses may not be enough: despite public appeals for
volunteers to run bridges (see for example Dingledine’s initial call in 2007 [31]), there have
never been more than a few thousand of them, and Dingledine reported in 2011 that the
Great Firewall of China had managed to enumerate both the HTTPS and email distribution
pools [32 §1, 33 §1], presumably taking advantage of its greater resources.

Tor relies on BridgeDB to provide address blocking resistance for all its transports that
otherwise only have content obfuscation. And that is a great strength of such a system. It
enables, to some extent, content obfuscation to be developed independently, and rely on
an existing generic proxy distribution mechanism in order to produce an overall plausibly
working system. There is a whole line of research, in fact, on the question of how best to
distribute information about an existing population of proxies, which is known as the “bridge
distribution problem” or “proxy discovery problem.” I will give just a summary of various
proposals. Short

sum-
maries
of
proxy
distri-
bution
papers.

Short
sum-
maries
of
proxy
distri-
bution
papers.

Better
under-
stand-
ing of
Kalei-
do-
scope.

Better
under-
stand-
ing of
Kalei-
do-
scope.

Enemy
at the
Gate-
ways [114]

Enemy
at the
Gate-
ways [114]

A way to make proxy distribution more robust against censors (but at the same time less
usable by clients) is to “poison” the set of proxy addresses with the addresses of important
servers, blocking which would result in high collateral damage. VPN Gate employed this
idea [117 §4.2], mixing into the their public proxy list the addresses of root DNS servers and
Windows Update servers.

Apart from “in-band” discovery of bridges via subversion of a proxy distribution system,
one must also worry about “out-of-band” discovery, for example by mass scanning [33 §6,
36 §9.3]. Durumeric et al. found about 80% of existing (unobfuscated) Tor bridges [42 §4.4]
by scanning all of IPv4 on a handful of common bridge ports. Matic et al. had similar results
in 2017 [106 §V.D], using public search engines in lieu of active scanning. The best solution
to the scanning problem is to do as ScrambleSuit and obfs4 do, and associate with each proxy
a secret, without which a client cannot initiate a connection. The critical part is that the IP
address and port must not constitute the whole of the information needed to connect to the
proxy. Scanning for bridges is closely related to active probing, the topic of Chapter 4.

An alternative way of achieving address blocking resistance is to treat proxies as temporary
and disposable, rather than permanent and valuable. This is the idea underlying flash
proxy [64] and Snowflake [139]. (Snowflake is the topic of Chapter 7.) Even proxy distribution
strategies that take churn into account have in mind proxies that last on the order of at
least days. In contrast, disposable proxies may last only minutes or hours. Setting up a Tor
bridge or even something lighter-weight like a SOCKS proxy still requires installing some
software on a server somewhere. Flash proxy and Snowflake proxies have a low set-up and
tear-down cost: you can run one just by visiting a web page. These designs do not to need a
sophisticated proxy distribution strategy as long as the rate of proxy creation is kept higher
than the censor’s rate of discovery.

The logic behind diffusing many proxies widely is that a censor would have to block large
swaths of the Internet in order to effectively block them. However, it also makes sense to
take the opposite tack: have just one or a few proxies, but choose them to have such high
collateral damage that the censor does not dare block them. Refraction networking [129],
also called decoy routing, puts proxy capability into network routers—in the middle of paths,
rather than at the end. Clients tag certain flows in a way that is invisible to the censor

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 14

but detectable to a refraction-capable router, which redirects from its apparent destination
to some other, covert destination. The censor has to induce routes that avoid the special
routers [133], which is costly [83]. Domain fronting [69] has similar properties. Rather than
a router, it uses another kind of network intermediary: a content delivery network. Using
properties of HTTPS, a client may request one site while appearing (to the censor) to request
another. Domain fronting is the topic of Chapter 6. The big advantage of this general
strategy is that the proxies do not need to be kept secret from the censor.

The final strategy for address blocking resistance is address spoofing. The notable design
in this category is CensorSpoofer [148]. A CensorSpoofer client never communicates directly
with a proxy. It sends upstream data through a low-bandwidth, indirect channel such as email
or instant messaging, and downstream data through a simulated VoIP conversation, spoofed
to appear as if it were coming from some unrelated dummy IP address. The asymmetric
design is feasible because of the nature of web browsing: typical clients send much less than
they receive. The client never even needs to know the actual address of the proxy, meaning
that CensorSpoofer has high resistance to insider attack: even running the same software as a
legitimate client, the censor does not learn enough information to effect a block. The idea of
address spoofing goes back farther; as early as 2001 TriangleBoy [132] employed lighter-weight
intermediate proxies that would simply forward client requests to a long-lived proxy at a static,
easily blockable address. In the downstream direction, the long-lived proxy would, rather
than route back through the intermediate proxy, spoof its responses so they appeared to
originate from the intermediate proxy. TriangleBoy did not match CensorSpoofer’s resistance
to insider attack, because clients still needed to find and communicate directly with a proxy,
so the whole system basically reduced to the proxy discovery problem, despite the use of
address spoofing.

2.4 Spheres of influence and visibility

• Deniable Liaisons [113]

It is usual to assume (conservatively) that whatever the censor can detect, it also can
block. That is, to ignore blocking per se and focus only on the detection problem. We know
from experience, however, that there are cases in practice where a censor’s reach exceeds
its grasp: where it is able to detect circumvention but not block it, Sometimes it is useful
to consider this possibility when modeling. Khattak, Elahi, et al. [90] express it nicely by
subdividing the censor’s network into a sphere of influence within which the censor has active
control, and a potentially larger sphere of visibility within which the censor may only observe,
not act.

A landmark example of this kind of thinking is the 2006 research on “Ignoring the
Great Firewall of China” by Clayton et al. [20]. They found that the firewall would block
connections by injecting phony TCP RST packets (which cause the connection to be torn
down) or SYN/ACK packets (which cause the client to become unsynchronized), and that
simply ignoring the anomalous packets rendered blocking ineffective. (Why then, did the
censor choose to inject its own packets, rather than drop the client’s or server’s? The answer
is probably that injection is technically easier to achieve, highlighting a limit on the censor’s

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 15

power.) One can think of this ignoring as shrinking the censor’s sphere of influence: it
can still technically act within this sphere, but not in a way that actually effects blocking.
Additionally, intensive measurements revealed many failures to block, and blocking rates
that changed over time, suggesting that even when the firewall intends a general policy of
blocking, it does not always succeed.

Another fascinating example of “look, but don’t touch” communication is the “filecasting”
technique used by Toosheh [115], a file distribution service based on satellite TV broadcasts.
Clients tune their satellite receivers to a certain channel and record the broadcast to a USB
flash drive. Later, they run a program on the recording that decodes the information and
extracts a bundle of files. The system is unidirectional: clients can only receive the files
that the Toosheh operators choose to provide. The censor can easily see that Toosheh is in
use—it’s a broadcast, after all—but cannot identify users, or block the signal in any way
short of continuous radio jamming or tearing down satellite dishes.

There are parallels between the study of Internet censorship and that of network intrusion
detection. One is that a censor’s detector may be implemented as a network intrusion
detection system or monitor, a device “on the side” of a communication link that receives
a copy of the packets that flow over the link, but that, unlike a router, is not responsible
for forwarding the packets onward. Another parallel is that censors are susceptible to the
same kinds of evasion and obfuscation attacks that affect network monitors more generally.
In 1998, Ptacek and Newsham [128] and Paxson [121 §5.3] outlined various attacks against
network intrusion detection systems—such as manipulating the IP time-to-live field or sending
overlapping IP fragments—that cause a monitor either to accept what the receiver will reject,
or reject what the receiver will accept. A basic problem is that a monitor’s position in the
middle of the network does not able it to predict exactly how each packet will be interpreted
by the endpoints. Cronin et al. [25] posit that the monitor’s conflicting goals of of sensitivity
(recording all that is relevant) and selectivity (recording only what is relevant) give rise to an
unavoidable “eavesdropper’s dilemma.”

Monitor evasion techniques can be used to reduce a censor’s sphere of visibility—eliminating
certain traffic features from its consideration. Crandall et al. [22] in 2007 suggested using
IP fragmentation to prevent keyword matching (splitting keywords across fragments). In
2008 and 2009, Park and Crandall [120] explicitly characterized the Great Firewall as a
network intrusion detection system and found that a lack of TCP reassembly allowed evading
keyword matching. Winter and Lindskog [157] found that the Great Firewall still did not do
TCP segment reassembly in 2012, in the course of studying the firewall’s proxy-discovery
probes. (Such probes are the subject of Chapter 4.) They released a tool, brdgrd [155], that
by manipulating the TCP window size, prevented the censor’s scanners from receiving a
full response in the first packet, thereby foiling active probing. They reported that the tool
stopped working in 2013. Anderson [5] gave technical information on the implementation of
the Great Firewall as it existed in 2012, and observed that it is implemented as an “on-the-side”
monitor. Khattak et al. [91] applied a wide array of evasion experiments to the Great Firewall
in 2013, identifying classes of working evasions and estimating the cost to counteract them. Your

State
is Not
Mine [149]

Your
State
is Not
Mine [149]

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 16

2.5 Early censorship and circumvention

Internet censorship and circumvention began to rise to importance in the mid-1900s, coincid-
ing with the popularization of the World Wide Web. At that time, online censorship focused
mainly on the web. Computer security companies were developing technology for IP address,
URL, and web page filtering. Even before national-level censorship by governments became
an issue, researchers investigated the blocking policies of personal firewall products—those
intended, for example, for parents to install on the family computer. Meeks and McCul-
lagh [109] reported in 1996 on the secret blocking lists of several programs. Bennett Haselton
and Peacefire [78] found many cases of programs blocking more than they claimed, including
web sites related to politics and health.

Governments were not far behind in building legal and technical structures to control the
flow of information on the web. The term “Great Firewall of China” first appeared in an
article in Wired magazine [9] in 1997. In some cases adapting the same technology originally
developed for personal firewalls. In the wake of the first signs of blocking by ISPs, people
were thinking about how to bypass filters. The circumvention systems of that era were largely
HTML-rewriting web proxies: essentially a form on a web page into which a client would
enter a URL. The server would fetch the desired URL on behalf of the client, and before
returning the response, rewrite all the links and external references in the page to make the
relative to the proxy. CGIProxy [104], SafeWeb [105], Circumventor [77], and the first version
of Psiphon [17] were all of this kind.

These systems were effective against their censors of their day—at least with respect to
destination blocking. And they had the major advantage of requiring no special client-side
software other than a web browser. The difficulty they faced was second-order blocking as
censors discovered and blocked the proxies themselves. Circumvention designers deployed some
countermeasures; for example Circumventor had a mailing list [36 §7.4] which would send out
fresh proxy addresses every few days. A 1996 article by Rich Morin [111] presented a prototype
HTML-rewriting proxy called Rover, which eventually became CGIProxy. The article
predicted the failure of censorship based on URL or IP address, as long as a significant fraction
of web servers ran such proxies. That vision clearly did not come to pass. Accumulating a
sufficient number of proxies and communicating their addresses securely to clients—in short,
the proxy distribution problem—turned out not to follow automatically, but to be a major
sub-problem of its own.

Threat models had to evolve along with censor capabilities. The first censors would be
considered weak by today’s standards, mostly easy to circumvent by simple countermeasures,
such as tweaking a protocol or using an alternative DNS server. (We see the same progression
play out again when countries begin to experiment with censorship, such as in Turkey in
2014, where alternative DNS servers briefly sufficed to circumvent a block of Twitter [24].)
Not only censors were changing—the world around them was changing as well. In this field
that is so heavily affected by concerns about collateral damage, the milieu in which censors
operate is as important as the censors themselves. A good example of this is the paper on
Infranet, the first academic circumvention design I am aware of. Its authors argued, in 2001,
that TLS would not suffice as a cover protocol [48 §3.2], because the relatively few TLS-using
services at that time could all be blocked without much harm. Certainly the circumstances
are different today—domain fronting and all refraction networking schemes require the censor

CHAPTER 2. PRINCIPLES OF CIRCUMVENTION 17

to permit TLS. As long as circumvention remains relevant, it will have to change along with
changing times, just as censors do.

Chapter 3

Understanding censors

here be dragonŊ

A detached view is helpful when taking a longer view. (As long as it is not too detached.)
The main tool we have to build relevant threat models is the natural study of censors.

The study of censors is complicated by difficulty of access: censors are not forthcoming about
their methods. Researchers are obligated to treat censors as a black box, drawing inferences
about their internal workings from their externally visible characteristics. The easiest thing
to learn is the censor’s what—the destinations that are blocked. Somewhat harder is the
investigation into where and how, the specific technical mechanisms used to effect censorship
and where they are deployed in the network. What we are really interested in, and what is
most difficult to infer, is the why, or the motivations and goals that underlie a censorship
apparatus. We posit that censors, far from being unitary entities of focused purpose, are
rather complex organizations of people and machines, with conflicting purposes and economic
rationales, subject to resource limitations. The why gets to the heart of why circumvention is
even possible: a censoring firewall’s duty is not merely to block, but to discriminate between
what is blocked and what is allowed, in support of some other goal. Circumvention systems
confuse this discrimination in order to sneak traffic through the firewall.

Past measurement studies have mostly been short-lived, one-off affairs, focusing deeply
on one region of the world for at most a few months. Thus published knowledge about
censors’ capabilities consists mostly of a series of “spot checks” with blank areas between
them. There have been a few designs proposed to do ongoing measurements of censorship,
such as ConceptDoppler [22] in 2007 and CensMon [134] in 2011, but these have not lasted
long in practice, and for the most part there is an unfortunate lack of longitudinal and
cross-country measurements. Just as in circumvention, in censorship measurement a host
of difficulties arise when running a scalable system for a long time, that do not arise when
doing a one-time operation. The situation is thankfully becoming better, with the increasing
data collection capabilities of measurement systems like OONI [71].

From the survey of measurement studies we may draw some general conclusions. Censors
change over time, sometimes for unknown reasons, and not always in the direction of greater
restrictions. Censorship conditions differ greatly across countries, not only in subject but in
mechanism and motivation. The “Great Firewall” of China has long been the world’s most

18

CHAPTER 3. UNDERSTANDING CENSORS 19

sophisticated censor, but it is in many ways an outlier, and not representative of censors
elsewhere. Most censors are capable of manipulating DNS responses, IP address blocking,
and keyword filtering at some level.

A reasonable set of capabilities, therefore, that a contemporary censor may be assumed
to have is:

• blocking of specific IP addresses and ports,

• control of default DNS servers,

• injection of false DNS responses,

• injection of TCP RSTs,

• throttling of connection,

• keyword filtering

• protocol identification, and

• temporary total shutdown of Internet connections

Not all censors will be able to do all of these. As the amount of traffic to be handled increases,
in-path attacks such as throttling become relatively more expensive. Whether a particular
censoring act even makes sense will depend on a local cost–benefit analysis. Some censors
may be able to tolerate a brief total shutdown, while for others the importance of the Internet
is too great for such a crude measure.

Past measurement studies have done a good job at determining the technical aspects of
censorship, for example where in the network censorship routers are located. There is not so
much known about the inner workings of censors. The anonymous paper on China’s DNS
censorship [7] probably comes closest to the kind of insight I am talking about, with its clever
use of side channels to infer operational characteristics of censor boxes. For example, their
research found that each DNS injection node runs a few hundred independent processes. This
is indirect information, to be sure, but it hints at the level of resources the censor is able to
bring to bear. I am interested in even deeper information, for example how censors make the
decision on what to block, and what bureaucratic and other considerations might cause them
to work less than optimally.

informing our threat models
censors’ capabilities—presumed and actual e.g. ip blocking (reaction time?) active probing
Internet curfews (Gabon), limited time of shutdowns shows sensitivity to collateral damage.
commercial firewalls (Citizen Lab) and bespoke systems
Ongoing, longitudinal measurement of censorship remains a challenge. Studies tend to be

limited to one geographical region and one period of time. Dedicated measurement platforms
such as OONI [71] and ICLab [84] are starting to make a dent in this problem, by providing
regular measurements from many locations worldwide. Even with these, there are challenges
around getting probes into challenging locations and keeping them running.

CHAPTER 3. UNDERSTANDING CENSORS 20

Apart from a few reports of, for example, per annum spending on filtering hardware, not
much is known about how much censorship costs to implement. In general, contemporary
threat models tend to ignore resource limitations on the part of the censor.

Tying questions of ethics to questions about censor behavior, motivation: [161] (also
mentions “organisational requirements, administrative burden”) [85] [21] Censors may come
to conclusions different than what we expect (have a clue or not).

Evaluating the quality of circumvention systems is tricky, whether they are only proposed
or actually deployed. The problem of evaluation is directly tied to threat modeling. Cir-
cumvention is judged according to how well it works under a given model; the evaluation is
therefore meaningful only as far as the threat model reflects reality. Without grounding in
reality, researchers risk running an imaginary arms race that evolves independently of the
real one.

This kind of work is rather different than the direct evaluations of circumvention tools
that have happened before, for example those done by the Berkman Center [130] and Freedom
House [15] in 2011. Rather than testing tools against censors, we evaluated how closely
calibrated designers’ own models were to models derived from actual observations of censors.

This research was partly born out of frustration with some typical assumptions made in
academic research on circumvention, which we felt placed undue emphasis on steganography
and obfuscation of traffic streams, while not paying enough attention to the perhaps more
important problems of bridge distribution and rendezvous. Indeed, in our survey of over 50
circumvention tools, we found that academic designs tended to be concerned with detection
in the steady state after a connection is established, while actually deployed systems cared
more about how the connection is established initially. We wanted to help bridge the gap by
laying out a research agenda to align the incentives of researchers with those of circumventors.
This work was built on extensive surveys of circumvention tools, measurement studies, and
known censorship events against Tor.

This work on evaluation appeared in the 2016 research paper “Towards Grounding
Censorship Circumvention in Empiricism” [143], which I coauthored with Michael Carl
Tschantz, Sadia Afroz, and Vern Paxson.

Do they check the right things?
what’s used and what’s not used

Chapter 4

Active probing

The Great Firewall of China rolled out an innovation in the identification of proxy servers
around 2010: active probing of suspected proxy addresses. In active probing, the censor
pretends to be a legitimate client, making its own connections to suspected addresses to
see whether they speak a proxy protocol. Any addresses that are found to be proxies are
added to a blacklist so that the destination will be blocked in the future. The input to
active probing, a set of suspected addresses, comes from passive observation of the content of
client connections. The censor sees a client connect to a destination. Whenever the censor’s
content classifier is unsure whether an ongoing connection is accessing a proxy, it may pass
the address of the destination to the active prober. The active prober’s connection then
checks—with a low chance of false positives—whether the destination actually is a proxy.
Figure 4.1 illustrates the process.

Active probing makes good sense for the censor, whose main restriction is the risk of
false-positive classifications that result in collateral damage. Any classifier based purely on
passive content inspection must be very precise (have a low rate of false positives). Active
probing increases the precision, by only blocking those servers determined through active
inspection to be proxies. With active probing, the censor can get away with a mediocre
content-based classifier, one that returns a rough superset of actual proxy connections, because
active probes will weed out any false positives it might have had. The content-based classifier
only has to reduce the total connections to a small enough number that the active probing
subsystem can handle them. Another benefit, from the censor’s point of view, is that active
probing can be run as a batch job, separate from the the firewall’s responsibilities that require
a low response time.

Active probing, as I use the term in this chapter, is distinguished by being reactive, driven
by observation of client connections. It is distinct from proactive, wide-scale port scanning,
in which a censor regularly scans likely ports on the Internet to find proxies, independent
of client activity. The potential for the latter kind of scanning has been appreciated for
over a decade. Dingledine and Mathewson [36 §9.3] raised scanning resistance as an issue in
Tor’s initial bridge design document. McLachlan and Hopper [107 §3.2] observed that the
tendency of bridges to run on a handful of popular ports would make them discoverable in
an Internet-wide scan, which they estimated would take weeks. Dingledine [33 §6] mentioned
indiscriminate scanning as one of ten ways to discover Tor bridges—while also bringing up
the possibility of active probing in the sense of the present chapter, then just beginning to

21

CHAPTER 4. ACTIVE PROBING 22

placeholder for figure

Figure 4.1: The censor watches a connection between a client and a destination. If content
inspection does not definitively indicate a circumvention protocol, but also does not definitively
rule it out, the censor passes the destination’s address an active prober, which itself attempts
connections using various proxy protocols. If any of the proxy connections succeeds, the
censor adds the destination to an address blacklist.

be used by the Great Firewall. Durumeric et al. [42 §4.4] demonstrated the effectiveness
of Internet-wide scanning, discovering about 80% of public bridges in a matter of hours,
targeting only two ports, 9001 and 443. Tsyrklevich [144] and Matic et al. [106 §V.D] later
showed how to existing public repositories of Internet scan data could reveal many bridges,
without even the necessity of manually running a new scan.

The Great Firewall of China is the only censor known to employ active probing. Its
sophistication has increased over time, with the addition of new protocols and a reduction in
the delay before new servers get probed. The Great Firewall has the documented ability to
active-probe plain Tor and some of its pluggable transports, certain VPN protocols, as well
as certain HTTPS-based proxies. The probing takes place only seconds or minutes after a
connection by a legitimate client, and the active-probing connections come from a large range
of source IP addresses. The experimental results in this chapter all have to do with China.

Active probing lies somewhere in the middle of the dichotomy, put forward in Chapter 2,
of blocking by content and blocking by address. The censor’s active probing subsystem takes
addresses as input and produces addresses as output (to be added to a blacklist). But it is
content-based classification that produces the list of input addresses. Active probing only
became an issue because content obfuscation had gotten better: if a censor could easily
identify circumvention protocols by passive inspection, it would not go to the extra trouble
of active probing.

Contemporary circumvention systems must be designed to resist active probing attacks.
The look-like-nothing systems ScrambleSuit [158], obfs4 [165], and Shadowsocks [101, 126]
do it by having the proxy authenticate client connections, using a per-proxy password or
private key. Domain fronting (Chapter 6) and Snowflake (Chapter 7) deal with active probing
differently.

CHAPTER 4. ACTIVE PROBING 23

2010 August Nixon notices strange, random-looking connections from China in his
SSH logs [116].

2011 May–June Nixon’s random-looking probes are temporarily replaced by TLS probes
before changing back again [116].

2011 October hrimfaxi reports that Tor bridges are quickly detected by the GFW [28].
2011 November Nixon publishes observations and hypotheses about the strange SSH

connections [116].
2011 December Tim Wilde investigates Tor probing [35, 152, 153]. He finds two kinds

of probe: “garbage” random probes and Tor-specific ones.
2012 February The obfs2 transport becomes available [30]. The Great Firewall is

initially unable to active-probe it.
2012 March Winter and Lindskog investigate Tor probing in detail [157].
2013 January The Great Firewall begins to active-probe obfs2 [34, 46 §4.3]. The obfs3

transport becomes available [52].
2013 June–July Majkowski observes TLS and garbage probes and identifies fingerprint-

able features of the probers [102].
2013 August The Great Firewall begins to active-probe obfs3 [46 Figure 8].
2014 August The ScrambleSuit transport (resistant to active probing) becomes avail-

able [123].
2015 April The obfs4 transport (resistant to active probing) becomes available [124].
2015 August BreakWa11 discovers an active-probing weakness in ShadowSocks [11,

126 §2].
2015 October Ensafi et al. [46] publish results of multi-modal experiments on active

probing.
2017 February Shadowsocks changes its protocol against active probing [79].

Table 4.2: Timeline of active probing research.

4.1 History of active probing research

Active probing research has primarily had to do with Tor and its pluggable transports. There
is also some work on Shadowsocks. Table 4.2 summarizes the research of this section.

Nixon [116] in late 2011 published an analysis of suspicious connections from IP addresses
in China that his servers had been receiving for a year. The connections were to the SSH port,
but did not follow the SSH protocol; rather they contained apparently random bytes, resulting
in error messages in the log file. Nixon discovered a pattern: the random-looking probes
were preceded, at an interval of 5–20 seconds, by a legitimate SSH login from some other
IP address in China. The same pattern was repeated at three other sites. Nixon supposed
that the probes were triggered by legitimate SSH users, as their connections traversed the
firewall; and that the random payloads were a simple form of service identification, sending
non-protocol-conforming data to see how the server would respond. For a few weeks in May
and June 2011, the probes did not look random, but looked like TLS.

In October 2011, Tor user hrimfaxi reported that a newly set up, unpublished Tor bridge
would be blocked within 10 minutes of first being accessed from China [28]. Moving the
bridge’s address to another port on the same IP address would work temporarily, but then be

CHAPTER 4. ACTIVE PROBING 24

blocked again before another 10 minutes. Wilde systematically investigated the phenomenon
and published an extensive analysis of active probing behavior caused by making a connection
from inside China to outside [152, 153]. There were two kinds of probes: “garbage” random
probes like those Nixon had described, and specialized Tor probes that established a TLS
session and inside the session sent the Tor protocol. The garbage probes were sent in
response to TLS connections to port 443 only, and followed the triggering connection within
moments. The Tor probes were sent in response to TLS connections on any port that shared
characteristics with Tor’s client handshake [35], and were not sent immediately, but batched
to the next quarter hour. The probes came from diverse IP addresses in China: 20 different
/8 networks [151]. Bridges using the obfs2 transport were neither probed nor blocked.

Winter and Lindskog revisited the question of Tor probing a few months later in 2012 [157].
They used open proxies and a VPS in China to reach bridges and relays in Russia, Singapore,
and Sweden (configured so that ordinary users would not connect to them by accident). They
confirmed Wilde’s finding that the blocking of one port did not affect other ports on the
same IP address. Blocks expired after 12 hours. By simulating multiple Tor connections,
they collected over 3,000 active probe samples in 17 days During that time, there were about
72 hours which where mysteriously free of active probing. Half of the probes came from a
single IP address, 202.108.181.70; the other half were almost all unique. Reverse-scanning the
source IP addresses of probes after a few minutes sometimes found a live host, though usually
with a different IP TTL than was used during the probing, which the authors suggest may be
a sign of address spoofing by the probing infrastructure. Because probing was triggered by
patterns in the TLS client handshake, they developed a server-side tool, brdgrd [155], that
rewrote the TCP window so that the client’s handshake would be split across packets. The
tool sufficed, at the time, to prevent active probing.

The obfs2 pluggable transport, first available in February 2012 [30], worked against active
probing for about a year. The first report of its active probing arrived in March 2013 [34].
By analyzing the logs of my web server, I found evidence for an even earlier onset: Jan-
uary 2013 [46 §4.3]. At about the same time, the obfs3 pluggable transport became avail-
able [52]. It was as vulnerable to active probing as obfs2 was, but the firewall did not gain
the ability to active-probe it until August 2013 [46 Figure 8].

Majkowski [102] observed a change in active-probing behavior between June and July 2013.
In June, he reproduced the observations of Winter and Lindskog, eliciting pairs of TLS probes,
one from 202.108.181.70 and one from another IP address. He also provided TLS fingerprints
for the probers, which were distinct from the fingerprints of ordinary Tor clients. In July, he
began to see pairs of probes with apparently random contents, like the garbage probes Wilde
described. The TLS fingerprints of probes in July differed from those seen earlier, but were
still identifiable.

The ScrambleSuit transport, designed to be immune to active-probing attacks, first
shipped with Tor Browser 4.0 in October 2014 [123]. The successor transport obfs4, similarly
immune, shipped in Tor Browser 4.5 in April 2015 [124].

In August 2015, developer BreakWa11 described an active-probing vulnerability in the
Shadowsocks protocol [11, 126 §2]. The flaw had to do with a lack of authentication of
ciphertext, allowing a prober to introduce errors and watch how the server responds. The
Shadowsocks developers deployed a modified protocol, a stopgap measure that proved to
have its own vulnerabilities to probing. Shadowsocks deployed another protocol change in

CHAPTER 4. ACTIVE PROBING 25

February 2017 fixing the problem [79]. Despite the long window of vulnerability, there is no
evidence that the Great Firewall tried to active-probe Shadowsocks servers [119].

Ensafi et al. (including me) [46] did the largest controlled study of active probing to date
throughout early 2015. We collected data from a variety of sources: a private network of our
own bridges, isolated so that only we and active probers would connect to them; induced
intensive probing of a single bridge over a short time period, in the manner of Winter and
Lindskog; analysis of server log files going back to 2010; and back-scanning active prober
source IP addresses using tools such as ping, traceroute, and Nmap. Using these sources
of data, we investigated many aspects of active probing, such as the types of probes the
firewall is capable of sending, the probers’ source addresses, and potentially fingerprintable
peculiarities of the probers’ implementation of protocols. Observations from this research
project appear in the remaining sections of this chapter.

4.2 Types of probes

Our experiments confirmed the existence of certain probe types that had been documented in
previous research, and other types that had not been previously documented. Of the probe
types that had been documented before, our observations were mostly consistent, with some
differences in the details. Our research found, at varying times, these kinds of probes:

Tor We expected to find probing for Tor, and so we did. The probes we observed in 2015,
however, differed from those Wilde described in 2011: ours had a lighter-weight check
inside the TLS layer that did not require building a circuit. Also, in contrast to what
Winter and Lindskog found in 2012, our Tor probes were sent seconds after a connection,
no longer batched to a multiple of 15 minutes.

obfs2 The obfs2 protocol has a weakness that makes it trivial to identify, passively or
retroactively, as long as you have at least the first 20 bytes sent by the client. We
turned the weakness to our advantage. The ready identifiability of obfs2 allowed us to
distinguish it from other random-looking contents and isolate a set of connections that
could only belong to legitimate circumventors or active probers.

obfs3 Unlike obfs2, the obfs3 protocol is not easily identified passively, except by general
characteristics like its random payloads and certain bounds on message sizes during the
initial handshake. In certain of our experiments, we were running an obfs3 server that
was able to participate in the handshake and so confirm that what was being sent was
really obfs3. In others, such as the passive log analysis, we called “obfs3” those probes
that looked random and were not obfs2.

SoftEther We were initially only looking for Tor-related active probing, but in the process
we inadvertently found other kinds of probes. One of these was an HTTPS request,
“POST /vpnsvc/connect.cgi HTTP/1.1”, which resembles the client handshake of the
SoftEther VPN software that underlies the VPN Gate circumvention system [117].

AppSpot This type of probe is an HTTPS request,

CHAPTER 4. ACTIVE PROBING 26

obfs2

short

empty

TLS

obfs3

SoftEther

AppSpot

HTTP

urllib

O N D J
2013

F M A M J J A S O N D J
2014

F M A M J J A S O N D J
2015

F M A M J J A S O N D J
2016

F M A M J J A S O N D J
2017

F M A M J J A S O

probes
per day
1
5
15

30

Figure 4.3: Active probes received at my web server over five years. This is an updated
version of Figure 8 from the paper “Examining How the Great Firewall Discovers Hidden
Circumvention Servers” [46]; the vertical blue stripe divides old and new data. The “short”
probes are those that looked random but did not provide enough data (20 bytes) for the
obfs2 test; it is likely that they, along with the “empty” probes, are really obfs2, obfs3, or
Tor probes that were truncated at the first ‘\0’ or ‘\n’ byte.

urllib

Active probing activity—at least against this server—has subsided since 2016.

GET / HTTP/1.1

Host: webncsproxyXX.appspot.com

where the ‘XX’ is a number that varies. The intent of this probe seems to be the discovery
of servers that are capable of domain-fronting for Google services. (See Chapter 6
for more on domain fronting.) At one time, there were simple proxies running at
webncsproxyXX.appspot.com.

urllib
describe; this one is new since the 2015 paper

This is not an exhaustive list of the Great Firewall’s active probing capability; these are just
the probes we were able to document comprehensively. The purpose of the random “garbage”
probes that Nixon and Wilde had described is still not known; they were not obfs2 and were
too early to be obfs3, so they must have been something else.

Most of our experiments were designed around exploring known Tor-related probe types:
plain Tor (without pluggable transports), obfs2, and obfs3. The server log analysis, however,
unexpectedly turned up the other probe types. The server log data set consisted of application-
layer logs from my personal web/mail server, which was also a Tor bridge. Application-layer
logs lack much of the fidelity you would want in a measurement experiment; they do not have
precise timestamps or transport-layer headers, for example, and web server logs truncate
the client’s payload at a ‘\0’ or ‘\n’ byte. But they make up for all that with time coverage.
Section 4.3 shows the history of probes received at my server since 2013 (there were no probes
before that, though the logs go back to 2010). We started by searching the logs for likely

CHAPTER 4. ACTIVE PROBING 27

0

2 31

2 32

Dec Jan
2015

Feb Mar Apr May Jun

TS
va

l
probe type

empty

short

obfs2

obfs3

TLS

SoftEther

AppSpot

Figure 4.4: TCP timestamp values from active probes. Depicted are 4,239 probes from 3,797
distinct source IP addresses, sharing however only a few TCP timestamp sequences. The
shaded area marks a gap in packet capture.

probes: those that passed the obfs2 test or otherwise looked like random garbage. Then we
looked at what else appeared in the logs for the IP addresses that had sent the certain probes.
In a small fraction of cases, the other logs lines appeared to be genuine HTTP requests from
legitimate clients; but usually they were other probe-like payloads. We continued this process,
adding new classifiers for likely probes, until reaching a fixed point.

4.3 Probing infrastructure

The most salient feature of active probes, when considered all together, is the large number
of source addresses from which they are sent. The 13,089 probes received by the HTTP and
HTTPS ports of my server came from 11,907 distinct IP addresses, 96% of them appearing
only once. There is one extreme outlier, the address 202.108.181.70, which by itself accounted
for 2% of the probes. Among the address ranges are ones belonging to residential ISPs.

Despite these many source addresses, the sending of probes seems to be controlled by
only a few underlying processes. The evidence for this lies in shared metadata patterns:
TCP initial sequence numbers and TCP timestamps. Figure 4.4 shows patterns in TCP
timestamps from about six months during which we ran a full packet capture on the web
server, in addition to application-layer logging.

Wilde, and Winter and Lindskog, had found that random “garbage” probes were sent
immediately after the client activity that triggered them, while Tor probes were batched and
sent only every 15 minutes. The Tor probing behavior had changed by 2015, so that Tor
probes were also sent immediately.

We tried connecting back to the source address of probes. Immediately after receiving a
probe, the probing IP address was completely unresponsive to any stimulus we could think
to apply. In some cases though, within an hour the address would become responsive. The
responsive hosts looked like what you would expect to find if you scanned such address ranges:
a variety of operating systems and open ports.

CHAPTER 4. ACTIVE PROBING 28

4.4 Fingerprinting the probers

A potential countermeasure against active probing is to have each proxy, when it receives
a connection, somehow decide whether the connection come from a legitimate client or a
prober, Of course, the right way to distinguish legitimate clients is with proper cryptographic
authentication, whether at the transport layer (like BridgeSPA [138]) or at the application
layer (like ScrambleSuit, obfs4, and Shadowsocks). Failing that, one might hope to distinguish
probers by their fingerprints, idiosyncrasies in their implementation that make them stand
out from legitimate clients. In the case of the Great Firewall, source IP address alone does not
suffice because—apart from the special address 202.108.181.70—the probers’ source addresses
come from many networks, including those where we might expect legitimate clients to reside.
There are, however, certain fingerprints at the application layer. While none of the ones
we found were robust enough to effectively exclude active probers, they do hint at how the
probing is implemented.

The active probers have an unusual TLS fingerprint, TLSv1.0 with a peculiar list of
ciphersuites. Tor probes sent only a VERSIONS cell [37 §4.1], waited for a response, then
closed the connection. The VERSIONS cell corresponded to a “v2” Tor handshake that
had been superseded since 2011 (though one that was still in use by a small number of real
clients). The Tor probes described by Wilde in 2011 went further into the protocol. It hints
at the possibility that at one time, the active probers used a (possibly modified) Tor client,
and later switched to a lighter-weight custom implementation.

The obfs2 probes were conformant with the protocol and unremarkable except for the fact
that sometimes payloads were duplicated. obfs2 clients are supposed to use fresh randomness
for each connection, but a small fraction, about 0.65%, of obfs2 probes shared an identical
payload with another probe. The two probes in a pair came from different source IP addresses
and arrived within a second of each other. The apparently separate probers therefore share
some state or a pseudorandom number generator.

The obfs3 protocol calls for the client to send random padding, the amount of padding
being randomly distributed. The active probers’ implementation of obfs3 protocol gets the
distribution wrong, half the time sending too much padding. This feature would be difficult
to exploit for detection, though, because it would rely on the application-layer proxy code
being able to infer TCP segment boundaries.

The SoftEther probes seemed to have been based on an earlier version of the official
SoftEther probe than was current at the time, lacking an HTTP Host header. They also
differed from the official client in that they were not preceded by a GET request. The TLS
fingerprint of the official client is much different from that of the probers, again hinting at a
custom implementation.

The AppSpot probes have a User-Agent header that claims to be a specific version of
Chromium; however the rest of the header, and the TLS fingerprint are inconsistent with
Chromium.

Chapter 5

Time delays in censors’ reactions

here be dragonŊ

I am interested in understanding censors at a deeper level. To that end, I am working
on a project to measure how long censors take to react to sudden changes in circumvention.
So far, our technique has been to monitor the reachability of newly added Tor Browser
bridges, to see how long after they are introduced they get blocked. Portions of this work
have already appeared in the 2016 research paper “Censors’ Delay in Blocking Circumvention
Proxies” [70], which I coauthored with Lynn Tsai. We discovered some interesting, previously
undocumented behaviors of the Great Firewall of China. While the firewall, through active
probing, is able to detect some bridges dynamically within seconds or minutes, it lags in
detecting Tor Browser’s newly added bridges, taking days or weeks to block them. It seems
that bridges are first blocked only at certain times of day, perhaps reflecting an automated
batch operation.

I am now continuing to work on this project along with Lynn Tsai and Qi Zhong. We
plan to run targeted experiments to find out more about how censors extract bridge addresses
from public information, for example, by adding bridges with different attributes and seeing
whether they are blocked differently. Our first experiment used measurement sites only
in China and Iran, but we hope to expand to many more countries by collaborating with
measurement platforms such as OONI [71] and ICLab [84]. We hope to solicit other kinds of
censor delays from other circumvention projects, in order to build a more all-encompassing
picture of censors’ priorities with respect to circumvention.

29

Chapter 6

Domain fronting

Domain fronting is a general-purpose circumvention technique based on HTTPS. It disguises
the true destination of a client’s messages by routing them through a large web server or
content delivery network that hosts many web sites. The messages appear to go not to their
actual destination but to some front domain, one whose blocking would result in high collateral
damage. Because (with certain caveats) the censor cannot distinguish domain-fronted HTTPS
requests from ordinary HTTPS requests, it cannot block circumvention without blocking
the front domain. Active probing primarily addresses the problem of detection by address,
but also deals with detection by content and active probing. Domain fronting is today an
important component of many circumvention systems.

The core idea of domain fronting is the use of different domain names at different protocol
layers. When you make an HTTPS request, the domain name of the server you’re trying to
access normally appears in three places that are visible to the censor:

• the DNS query

• the client’s TLS Server Name Indication (SNI) extension [45 §3]

• the server’s TLS certificate [29 §7.4.2]

and in one place that is not visible to the censor, because it is encrypted:

• the HTTP Host header [49 §5.4]

In a normal request, the same domain name appears in all four places, and all of them
except for the Host header afford the censor an easy basis for blocking by address. The only
difference in a domain-fronted request is that the domain name that appears in the Host
header, on the “inside” of the request, is not the same as the domain that appears in the
other places, on the “outside.” Figure 6.1 illustrates.

The SNI extension and the Host header serve similar purposes: they both enable virtual
hosting, where one server handles requests for multiple domains. Both fields allow the client
to inform the server of which domain it wants to access. The SNI works at the TLS layer,
telling the server which certificate to send; and the Host header works at the HTTP layer,
telling the server what contents to serve. It is something of an accident that these partially
redundant fields both exist. Before TLS, virtual hosting only required the Host header.

30

CHAPTER 6. DOMAIN FRONTING 31

Figure 6.1: Domain fronting uses different names at different protocol layers. The forbidden
destination domain is hidden under ordinary TLS encryption. The censor only sees a front
domain, one chosen to be expensive to block.

When HTTP is combined with TLS, the client cannot send the Host header until the TLS
handshake is complete, and the TLS handshake cannot complete without the server knowing
which certificate to send. The SNI extension resolves the deadlock by sending the domain
name in plaintext at the beginning of the handshake. Domain fronting takes advantage of
decoupling the two normally coupled values. It relies on the server decrypting the TLS layer
and throwing it away, then routing requests internally string according to the Host header.

Virtual hosting, in the form of content delivery networks (CDNs), is now common. A CDN
works by placing an “edge server” between the client and the destination, called an “origin
server” in this context. When an edge server receives a request, it forwards the request to the
origin server according to the Host header. The edge server receives the response, optionally
caches it, and forwards it back to the client. The edge server is effectively a proxy: the client
never contacts the destination directly. The contents of the client’s messages, as well as their
true destination, are protected by TLS encryption. If the censor active-probes the server, all
it gets is whatever the edge server would return normally. The censor may block edge servers
or the front domain, but only at the cost of blocking all other, non-circumvention-related
traffic to the CDN or domain, with the collateral damage that entails.

Domain fronting may be an atypical use of HTTPS, but it is not a way to get free CDN
service. The CDN will not forward requests to arbitrary destinations, only to the domains of
its customers. Setting up domain fronting requires paying for CDN service—and the costs
can be high, as Section 6.3 shows.

It might seem at first that domain fronting is only useful for accessing HTTPS resources,
and only when they are hosted on a service that supports fronting. But extending to general-
purpose circumvention only requires a minor extra step: host an HTTP-based tunneling
proxy on the web service in question. Domain fronting shields the address of the proxy,
which then provides access to arbitrary destinations. HTTP tunneling underlies meek, a
circumvention system based on domain fronting, discussed further in Section 6.2.

One of the best features of domain fronting is that it does not require any secret information,
completely bypassing the proxy distribution problem (). The address of the CDN edge server,
the address of the proxy hidden behind it, the fact that some fraction of traffic to the edge
server is circumventing—all of these may be known by the censor. This is not to say, of
course, that domain fronting is impossible to block—as always, a censor’s capacity to block
depends on its tolerance for collateral damage. But the lack of secrecy makes the censor’s

CHAPTER 6. DOMAIN FRONTING 32

choice especially stark: either allow circumvention, or block a domain. This is how we should
think of all circumvention: not “can it be blocked,” but “what does it cost to block.”

6.1 Work related to domain fronting

Neither I nor my coauthors invented the technique of domain fronting. We did, however, give
it a name, popularize its use, and produce an important implementation. As far as I know,
the first implementation of domain fronting in a circumvention system was in GoAgent circa
2012. GoAgent employed a variant where the SNI is omitted completely, rather than being
faked. Earlier in 2012, Bryce Boe wrote a blog post [10] outlining how to use Google App
Engine as a proxy, and suggested that sending a false SNI could bypass SNI whitelisting.
Way back in 2004, in an era when HTTPS and CDNs were less common than they are today,
Köpsell and Hillig foresaw the possibilities [92 §5.2]: “Imagine that all web pages of the
United States are only retrievable (from abroad) by sending encrypted requests to one and
only one special node. Clearly this idea belongs to the ‘all or nothing’ concept because a
blocker has to block all requests to this node.”

Refraction networking is the name for a class of circumvention techniques, similar in
spirit to domain fronting. The idea was introduced in 2011 with the designs Cirripede [81],
CurveBall [89], and Telex [162]. In refraction networking, it is network routers that act as
proxies, lying at the middle of network paths rather than at the ends. The client “tags” its
messages in a way that the censor cannot detect (analogously to the way the Host header is
encrypted in domain fronting). When the router finds a tagged message, it shunts the message
away from its nominal destination and towards some other, covert destination. Refraction
networking derives its blocking resistance from the collateral damage that would result
from blocking the cover channel (typically TLS) or the refraction-capable network routers.
Refraction networking has the potential to be the basis of exceptionally high-performance
circumvention, as a test deployment in Spring 2017 demonstrated [72].

CloudTransport [13], proposed in 2014, is similar to domain fronting in many respects. It
uses HTTPS to a shared server (in this case a cloud storage server). The specific storage
area being accessed—what the censor would like to know—is encrypted, so the censor cannot
block CloudTransport without blocking the storage service completely.

In 2015 I published a paper on domain fronting [69] with Chang Lan, Rod Hynes, Percy
Wegmann, and Vern Paxson. In it, we described the experience of deploying domain fronting
on Tor, Lantern [93], and Psiphon [127], and began an investigation of the side channels,
such as packet size and timing, that a censor might use to detect domain fronting. The Tor
deployment, called meek, is the subject of Sections 6.2 and 6.3.

Later in 2015 there were a couple of papers on the detection of circumvention transports,
including meek. Tan et al. [140] measured the Kullback–Leibler divergence between the
distributions of packet size and packet timing in different protocols. (The paper is written in
Chinese and my understanding of it is based on an imperfect translation.) Wang et al. [147]
built classifiers for meek among other protocols using entropy, timing, and transport-layer
features. They emphasized practical classifiers and tested their false-classification rates
against real traffic traces.

CHAPTER 6. DOMAIN FRONTING 33

Figure 6.2: Putting it together: domain fronting as the basic tool in a circumvention system.
The CDN acts as a limited sort of proxy, capable of proxying only to destinations within its
own network (one of which we control). The node we control is a Tor bridge, equipped with
a plugin to interface between the HTTP tunnel and the Tor protocol. The bridge acts as a
general-purpose proxy, granting access to any destination.

6.2 A pluggable transport for Tor

I am the main author and maintainer of meek, a pluggable transport for Tor based on domain
fronting. meek uses domain-fronted HTTP POST requests as the primitive operation to
send or receive chunks of data up to a few kilobytes in size. The intermediate CDN forwards
requests to a bridge. Auxiliary programs on the client and the bridge convert between a
sequence of HTTP requests and the byte stream expected by Tor. The Tor processes at
either end are oblivious to the domain-fronted transport between them. Figure 6.2 shows
how the components and protocol layers interact.

When the client has something to send, it issues a POST request with the data in the
body. Because in HTTP/1.1 there is no way for an HTTP server to preemptively push data
to a client, the meek server buffers data waiting to be sent until it receives a client’s request,
then includes the buffered data in the body of the HTTP response. The client must poll the
server periodically, even when it has nothing to send, to enable the server to send whatever
buffered data it may have. The meek server must handle multiple simultaneous clients. Each
client, at the beginning of a session, generates a random session identifier string, and includes
it with its requests in a special X-Session-Id HTTP header. The server maintains separate
connections to the local Tor process for each session identifier. Figure 6.3 shows a pattern of
request–response pairs.

Even with domain fronting to hide the destination request, a censor may try to distinguish
circumventing HTTPS connections by their TLS fingerprint. TLS implementations have a lot
of latitude in composing their handshake messages, enough that it is possible to distinguish
different TLS implementations through passive observation. For example, the Great Firewall
had used Tor’s TLS fingerprint for detection [35]. For this reason, meek strives to make its
TLS fingerprint look like that of a browser. It does this by relaying its HTTPS requests
through a local headless browser (which is completely separate from the browser that the
user interacts with).

meek first appeared in Tor Browser in October 2014, and continues to be used to the
present. It is Tor’s second-most-used transport behind obfs4. The next section is a detailed

CHAPTER 6. DOMAIN FRONTING 34

meek client meek server

POST / HTTP/1.1

Host: forbidden.example

X-Session-Id: cbIzfhx1Hn+

Content-Length: 517

\x16\x03\x01\x02...

→

←
HTTP/1.1 200 OK

Content-Length: 739

\x16\x03\x03\x00...

POST / HTTP/1.1

Host: forbidden.example

X-Session-Id: cbIzfhx1Hn+

Content-Length: 0

→

←
HTTP/1.1 200 OK

Content-Length: 75

\x14\x03\x03\x00...

Figure 6.3: The HTTP-based framing protocol of meek. Each request and response is
domain-fronted. The second POST is an example of an empty polling request, sent only to
give the server an opportunity to send data downstream.

history of deployment.

6.3 An unvarnished history of meek deployment

• First release of Orbot that had meek?

• Funding/grant timespans

• origin of the name

• “Research and Realization of Tor Anonymous Communication Identification Method
Based on Meek”? 2016 http://cdmd.cnki.com.cn/Article/CDMD-10004-1016120870.
htm

Fielding a circumvention and keeping it running is full of unexpected challenges. At the
time of the publication of the domain fronting paper [69] in 2015, meek had been deployed
only a year and a half. Here I will recount the entire history of the deployment project, from
inception to the present, a period of over three years. I have been the main developer and
project leader of meek over its entire existence. I hope to share the benefit of my experience by
commentating the history with surprises and lessons learned. Figure 6.4 shows the estimated
concurrent number of users of meek over its entire existence. The counts come from Tor
Metrics [98].

http://cdmd.cnki.com.cn/Article/CDMD-10004-1016120870.htm
http://cdmd.cnki.com.cn/Article/CDMD-10004-1016120870.htm

CHAPTER 6. DOMAIN FRONTING 35

first alpha release
first stable release

meek-azure performance improvement
rate-limited meek-google and meek-amazon

meek-azure outage
meek-azure restored

rate-limited meek-azure
relaxed rate limits

meek-google suspended

Orbot problems
Orbot fixed

rate-limited meek-amazon
rate-limited meek-azure

started new meek-azure

meek-amazon outage
meek-amazon restored

first announcement
0

5,000

10,000

15,000

D J
2014

F M A M J J A S O N D J
2015

F M A M J J A S O N D J
2016

F M A M J J A S O N D J
2017

F M A M J J A S O N

Figure 6.4: Estimated mean number of concurrent users of the meek pluggable transport,
with selected events. This graph is an updated version of Figure 5 from the 2015 paper
“Blocking-resistant communication through domain fronting” [69].

Google Amazon Azure total

2014 Jan $0.00 — — $0.00
Feb $0.09 — — $0.09
Mar $0.00 — — $0.00
Apr $0.73 — — $0.73
May $0.69 — — $0.69
Jun $0.65 — — $0.65
Jul $0.56 $0.00 — $0.56
Aug $1.56 $3.10 — $4.66
Sep $4.02 $4.59 $0.00 $8.61
Oct $40.85 $130.29 $0.00 $171.14
Nov $224.67 $362.60 $0.00 $587.27
Dec $326.81 $417.31 $0.00 $744.12

2014 total $600.63 $917.89 $0.00 $1,518.52

Google Amazon Azure total

2015 Jan $464.37 $669.02 $0.00 $1,133.39
Feb $650.53 $604.83 $0.00 $1,255.36
Mar $690.29 $815.68 $0.00 $1,505.97
Apr $886.43 $785.37 $0.00 $1,671.80
May $871.64 $896.39 $0.00 $1,768.03
Jun $601.83 $820.00 $0.00 $1,421.83
Jul $732.01 $837.08 $0.00 $1,569.09
Aug $656.76 $819.59 $154.89 $1,631.24
Sep $617.08 $710.75 $490.58 $1,818.41
Oct $672.01 $110.72 $300.64 $1,083.37
Nov $602.35 $474.13 $174.18 $1,250.66
Dec $561.29 $603.27 $172.60 $1,337.16

2015 total $8,006.59 $8,146.83 $1,292.89 $17,446.31

Google Amazon Azure total

2016 Jan $771.17 $1,581.88 $329.10 $2,682.15
Feb $986.39 $977.85 $445.83 $2,410.07
Mar $1,079.49 $865.06 $534.71 $2,479.26
Apr $1,169.23 $1,074.25 $508.93 $2,752.41
May $525.46 $1,097.46 $513.56 $2,136.48
Jun — $1,117.67 $575.50 $1,693.17
Jul — $1,121.71 $592.47 $1,714.18
Aug — $1,038.62 $607.13 $1,645.75
Sep — $932.22 $592.92 $1,525.14
Oct — $1,259.19 $646.00 $1,905.19
Nov — $1,613.00 $597.76 $2,210.76
Dec — $1,569.84 $1,416.10 $2,985.94

2016 total $4,531.74 $14,248.75 $7,360.01 $26,140.50

Google Amazon Azure total

2017 Jan — $1,550.19 $1,196.28 $2,746.47
Feb — $1,454.68 $960.01 $2,414.69
Mar — $2,298.75 ? $2,298.75+

Apr — ? ? ?
May — ? ? ?
Jun — ? ? ?
Jul — ? ? ?
Aug — ? ? ?
Sep — ? ? ?
Oct — ? ? ?
Nov — ? ? ?

2017 total — $5,303.62+ $2,156.29+ $7,459.91+

grand total $13,138.96 $28,617.09+$10,809.19+$52,565.24+

Table 6.5: Costs for running meek, compiled from my monthly reports [108 §Costs]. (The
reference has minor arithmetic errors that are corrected here.) meek ran on three different
web services: Google App Engine, Amazon CloudFront, and Microsoft Azure. The notation
‘—’ means meek wasn’t deployed on that service in that month; for example, we stopped
using Google after May 2016 following the suspension of the service (see discussion on p. 41).
The notation ‘?’ marks the months after I stopped handling the invoices personally. I don’t
know the costs for those months, so certain totals are marked with ‘+’ to indicate that they
are higher than what is shown, but I don’t know by how much.

CHAPTER 6. DOMAIN FRONTING 36

2013: Precursors; prototypes

The prehistory of meek begins in 2013 with flash proxy. Flash proxy clients need a secure
way to register their address to a central facilitator, in order that flash proxies can connect
back to them. Initially we had only two means of registration: flashproxy-reg-http, sending
client registrations directly over HTTP; and flashproxy-reg-email, sending client registrations
to a special email address. We knew that flashproxy-reg-http was easily blockable; flashproxy-
reg-email had good blocking resistance but was somewhat slow and complicated, requiring a
server to poll for new messages. At some point, Jacob Appelbaum showed me an example
of using domain fronting—though we didn’t have a name for it then—to access a simple
HTTP-rewriting proxy on App Engine. I eventually realized that the same trick would work
for flash proxy rendezvous. I proposed a design [12] in May 2013 and within a month Arlo
Breault had written flashproxy-reg-appspot, which worked just like flashproxy-reg-http, but
fronted through www.google.com rather than contacting the registration server directly. The
fronting-based registration became flash proxy’s preferred method, being faster and simpler
than the email-based one.

The development into a full-fledged bidirectional transport seems slow, in retrospect. All
the pieces were there; it was only a matter of putting them together. I did not appreciate the
potential of domain fronting when I saw it for the first time. Even after the introduction
of flashproxy-reg-appspot, months passed before the beginning of meek. The whole idea
behind flash proxy registration was that the registration channel could be of low quality—
unidirectional, low-bandwidth, and high-latency—because it was only used to bootstrap
into a more capable channel (WebSocket). Email fits well into this model: not good for
a general-purpose channel, just good enough for rendezvous. The fronting-based HTTP
channel, however, was much more capable, bidirectional with reasonably high performance.
Rather than handing off the client to a flash proxy, it should be possible to carry all the
client’s traffic through the same domain-fronted channel. It was during this time that I first
became aware of GoAgent through the “Collateral Freedom” report of Robinson et al. [131].
According to the report, GoAgent, which used a less secure form of domain fronting than
what meek would have, was the most used circumvention tool among a group of users in
China. I read the source code of GoAgent in October 2013 and wrote ideas about writing a
similar pluggable transport [55] which would become meek.

I lost time in premature optimization of meek’s network performance. I was thinking about
the request–response nature of HTTP, and how requests and responses could conceivably
arrive out of order (even if reordering was unlikely to occur in practice, because of the keepalive
connections and HTTP pipelining). I made several attempts at a TCP-like reliability and
sequencing layer, none of which were satisfactory. I wrote a simplified experimental prototype
called “meeker,” which simply prepended an HTTP header before the client and server streams,
but meeker only worked for direct connections, not through an HTTP-aware intermediary like
App Engine. When I explained these difficulties to George Kadianakis in December 2013, he
advised me to forget the complexity and implement the simplest thing that could work, which
was good advice. I started working on a version that strictly serialized request–response pairs,
which architecture meek still uses today.

CHAPTER 6. DOMAIN FRONTING 37

2014: Development; collaboration; deployment

According to the Git revision history, I started working on the source code of meek proper
on January 26, 2014. I made the first public announcement on January 31, 2014, in a post
to the tor-dev mailing list titled “A simple HTTP transport and big ideas” [50]. (If the
development time seems short, it’s only because months of prototypes and false starts.) In
the post, I linked to the source code, described the protocol, and explained how to try it,
using an App Engine instance I had set up shortly before. At this time there was no web
browser TLS camouflage, and only App Engine was supported. I was not yet using the term
“domain fronting.” The “big ideas” of the title were as follows: we could run one big public
bridge rather than relying on multiple smaller bridges as other transports did; a web server
with a PHP “reflector” script could do the same forwarding as a CDN, providing a diversity
of access points even without domain fronting; we could combine meek with authentication
and serve a 404 to unauthenticated users; and Cloudflare and other CDNs are alternatives
to App Engine. We did end up running a public bridge for public benefit (and worrying
over how to pay for it), and deploying on platforms other than App Engine (with Tor we
never used Cloudflare specifically, but did others). Arlo Breault would write a PHP reflector,
though there was never a repository of public meek reflectors as there were for other types of
Tor bridge. Combining meek with authentication never happened; it was never needed for
our public domain-fronted instances because active probing doesn’t help the censor in those
cases anyway.

During the spring 2014 semester (January–May) I was enrolled in Vern Paxson’s Inter-
net/Network Security course along with fellow student Chang Lan. We made the development
and security evaluation of meek our course project. During this time we built browser TLS
camouflage extensions, tested and polished the code, and ran performance tests. Our final
report, “Blocking-resistant communication through high-value web services,” was the kernel
of our later paper on domain fronting.

I began the process of getting meek integrated into Tor Browser in February 2014 [65].
The initial integration would be completed in August 2014. In the intervening time, along
with much testing and debugging, Chang Lan and I wrote browser extensions for Chrome
and Firefox in order to hide the TLS fingerprint of the base meek client. I placed meek’s
code in the public domain (Creative Commons CC0 [23]) on February 8, 2014. The choice of
(non-)license was a strategic decision to encourage adoption by projects other than Tor.

In March 2014, I met some developers of Lantern at a one-day hackathon sponsored
by OpenITP [14]. Lantern developer Percy Wegmann and I realized that the meek code I
had been working on could act as a glue layer between Tor and the HTTP proxy exposed
by Lantern, in effect allowing you to use Lantern as a pluggable transport for Tor. We
worked out a prototype and wrote a summary of the process [57]. Even though our specific
application that day did not use domain fronting, the early contact with other circumvention
developers was valuable.

June 2014 brought a surprise: the Great Firewall of China blocked all Google services [2,
74]. It would be hubris to think that it was in response to the nascent deployment of meek
on App Engine; a more likely cause was Google’s decision to start using HTTPS for web
searches, which would foil URL keyword filtering. Nevertheless, the blocking cast doubt
on the feasibility of domain fronting: I had believed that blocking all of Google would be

CHAPTER 6. DOMAIN FRONTING 38

too costly in terms of collateral damage to be sustained for long by any censor, even the
Great Firewall, and that belief was wrong. At least, we now needed fronts other than Google
in order to have any claim of effective circumvention in China. For that reason, I set up
additional backends: Amazon CloudFront and Microsoft Azure. When meek made its debut
in Tor Browser, it would offer three modes: meek-google, meek-amazon, and meek azure.

Google sponsored a summit of circumvention researchers in June 2014. I presented domain
fronting there. (By this time I had started using the term “domain fronting,” realizing that
what I had been working on needed a specific name. I tried to separate the idea “domain
fronting” from the implementation “meek,” but the terms have sometimes gotten confused in
discourse.) Developers from Lantern and Psiphon where there—I was pleased to learn that
Psiphon had already implemented and deployed domain fronting, after reading my mailing
list posts. The meeting started a fruitful collaboration: Percy Wegmann from Lantern and
Rod Hynes from Psiphon would later be among my coauthors on the paper on domain
fronting [69].

Chang, Vern, and I submitted a paper on domain fronting to the Network and Distributed
System Security Symposium (NDSS) in August 2014, whence it was rejected.

The first public release of Tor Browser that had a built-in easy-to-use meek client was
version 4.0-alpha-1 on August 12, 2014 [18]. This was an alpha release, used by fewer users
than the stable release. I made a blog post explaining how to use it a few days later [56].
The release and blog post had a positive effect on the number of users, however the absolute
numbers are uncertain, because of a configuration error I had made on the meek bridge. I
was running the meek bridge and the flash proxy bridge on the same instance of Tor; and
because of how Tor’s statistics are aggregated, the counts were spuriously correlated [60]. I
switched the meek bridge to a separate instance of Tor on September 15; numbers after that
date are more trustworthy. In any case, the usage before this first release was tiny: the App
Engine bill ($0.12/GB, with one GB free each day) was less than $1.00 per month for the
first seven months of 2014 [108 §Costs]. In August, the cost started to be nonzero every day,
and would continue to rise from there. See Table 6.5 for a history of monthly costs.

Tor Browser 4.0 [123] was released on October 15, 2014. It was the first stable (not alpha)
release to have meek, and it had an immediate effect on the number of users: the estimate
jumped from 50 to 500 within a week. (The increase was partially conflated with a failure of
the meek-amazon bridge to publish statistics before that date, but the other bridge, servicing
meek-google and meek-azure, individually showed the same increase.) It was a lesson in user
behavior: although there had been a working implementation in the alpha release for two
months already, evidently a large number of users did not know of it or chose not to try it.
At that time, the other transports available were obfs3, FTE, ScrambleSuit, and flash proxy.

2015: Growth; restraints; outages

Through the first part of 2015, the estimated number of simultaneous users continued to
grow, reaching about 2,000, as we fixed bugs and Tor Browser had further releases.

We submitted a revised version of the domain fronting [69], now with contributions from
Psiphon and Lantern, to the Privacy Enhancing Technologies Symposium, where it was
accepted and appeared on June 30 at the symposium.

The increasing use of domain fronting by various circumvention tools began to attract

CHAPTER 6. DOMAIN FRONTING 39

more attention. A March 2015 article by Eva Dou and Alistair Barr in the Wall Street
Journal [39] described domain fronting and “collateral freedom” in general, depicting cloud
service providers as being caught in the crossfire between censors and circumventors. The
journalists had contacted me but I declined to be interviewed. The CEO of CloudFlare,
through whose service Lantern had been fronting, said that recently they had altered their
systems to prevent domain fronting by enforcing a match between SNI and Host header [125].
GreatFire, an anticensorship organization that had also been mentioned, shortly thereafter
experienced a new type of denial-of-service attack [137], caused by a Chinese network attack
system later called the “Great Cannon” [103]. They blamed the attack on the attention
brought by the news article.

Since initial deployment, the Azure backend had been slower, with fewer users, than the
other two options, App Engine and CloudFront. For months I had chalked it up to limitations
of the platform. In April 2015, though, I found the real source of the problem: the code
I had written to run on Azure, the code that receives domain-fronted HTTP requests and
forwards them to the meek bridge, was not reusing TCP connections. For every outgoing
request, the Azure code was doing a fresh TCP and TLS handshake—causing a bottleneck
at the CPU of the bridge, coping with all the incoming TLS. When I fixed the Azure code
to reuse connections [51], the number of users (overall, not only for Azure) had a sudden
jump, reaching 6,000 in less than a week. Evidently, we had been leaving users on the table
by having one of the backends not run as fast as possible.

The deployment of domain fronting was being partly supported by a $500/month grant
from Google. Already the February 2015, the monthly cost for App Engine alone began to
exceed that amount [108 §Costs]. In an effort to control costs, in May 2015 we began to
rate-limit the App Engine and CloudFront bridges, deliberately slowing the service so that
fewer would use it. Until October 2015, the Azure bridge was on a research grant provided
by Microsoft, so we allowed it to run as fast as possible, but when the grant expired, we
rate-limited the Azure bridge as well. The rate-limiting explains the relative flatness of the
user graph from May to the end of 2015.

Google changed the terms of service governing App Engine in 2015, adding a paragraph
that seemed to prohibit running a proxy service [75]:

Networking. Customer will not, and will not allow third parties under its control
to: (i) use the Services to provide a service, Application, or functionality of
network transport or transmission (including, but not limited to, IP transit,
virtual private networks, or content delivery networks); or (ii) sell bandwidth
from the Services.

This was an uncomfortable time: we seemed to have the support of Google, but the terms
of service said otherwise. I contacted Google and asked for clarification or guidance, in the
meantime leaving meek-google running; however I never got an answer to my questions. The
point became moot a year later, when Google shut down our App Engine project, for another
reason altogether.

By this time we had not received any reports of any type of blocking of domain fronting.
We did, however, suffer a few accidental outages (which look just like blocking, from a user’s
point of view). Between July 20 and August 14, an account transition error left the Azure
configuration broken [59]. I set up another configuration on Azure and published instructions

CHAPTER 6. DOMAIN FRONTING 40

on how to use it, but it would not be available to the majority of users until the next release
of Tor Browser, which happened on August 11. Between September 30 and October 9, the
CloudFront-fronted bridge was effectively down because of an expired TLS certificate. When
it rebooted on October 9, an administrative oversight caused its Tor relay identity fingerprint
to change—meaning that clients expecting the former fingerprint would refuse to connect to
it [67]. The situation was not fully resolved until November 4 with the next release of Tor
Browser: cascading failures led to over a month of downtime.

In October 2015 there appeared a couple of research papers that investigated meek’s
susceptibility to detection via side channels. Tan et al. [140] (including Binxing Fang, the
“father of the Great Firewall”) used Kullback–Leibler divergence to quantify the differences
between protocols, with respect to packet size and interarrival time distributions. Their
paper is written in Chinese, so I had to read it in machine translation. Wang et al. [147]
published a more comprehensive report on detecting meek (and other protocols), emphasizing
practicality and precision. They showed that some previously proposed detections would
have untenable false-positive rates, and constructed a classifier for meek based on entropy
and timing features. It’s worth noting that since the first reported efforts to block meek in
2016, censors have not used techniques like those described in these papers, as far as we can
tell.

One of the benefits of building a circumvention system for Tor is the easy integration with
Tor Metrics—the source of the user number estimates in this section. Since the beginning
of meek’s deployment, we had known about a problem with the way it integrates with
Tor Metrics’ data collection. Tor pluggable transports geolocate the client’s IP address in
order to aggregate statistics by country. But when a meek bridge receives a connection, the
“client IP address” it sees is not that of the true client, but rather is some cloud server, the
intermediary through which the domain-fronted traffic passes. So the total counts were fine,
but the per-country counts were meaningless. For example, because App Engine’s servers
were located in the U.S., every meek-google connection was being counted in the U.S. bucket.
By the end of 2015, meek users were a large enough fraction (about 20%) of all bridge users,
that they were really starting to skew the overall per-country counts. I wrote a patch to have
the client’s true IP address forwarded through the network intermediary in a special HTTP
header, which fixed the per-country counts from then on.

2016: Taking off the reins; misuse; blocking efforts

In mid-January 2016 the Tor Project asked me to raise the rate limits on the meek bridges,
in anticipation of rumored attempts to block Tor in Egypt. (The blocking attempts were in
turn rumored to be caused by Facebook’s integration of Tor into their mobile application.) I
had the bridge operators raise the rate limits from approximately 1 MB/s to 3 MB/s. The
effect of the relaxed rate limits was immediate: the count shot up as high 15,000 simultaneous
users, briefly becoming Tor’s most-used pluggable transport, before settling in around 10,000.

The first action that may have been a deliberate attempt to block domain fronting came
on January 29, 2016, when the Great Firewall of China blocked one of the edge servers of the
Azure CDN. The blocking was by IP address, a severe method: not only the domain name we
were using for domain fronting, but also thousands of other names, became inaccessible. The
block lasted about four days. On February 2, the server changed its IP address, incrementing

CHAPTER 6. DOMAIN FRONTING 41

the final octet from .200 to .201, causing it to become unblocked. I am aware of no similar
incidents before or since.

The next surprise was on May 13, 2016. meek’s App Engine backend stopped working
and I got a notice:

We’ve recently detected some activity on your Google Cloud Platform/API Project
ID meek-reflect that appears to violate our Terms of Service. Please take a moment
to review the Google Cloud Platform Terms of Service or the applicable Terms of
Service for the specific Google API you are using.

Your project is being suspended for committing a general terms of service violation.

We will delete your project unless you correct the violation by filling in the appeals
form available on the project page of Developers Console to get in touch with our
team so that we can provide you with more details.

My first thought was that it had to do with the changes to the terms of service that had
happened the previous year—but the true cause was unexpected. I tried repeatedly to contact
Google and learn the nature of the “general” violation, but was stonewalled. None of my
inquiries received so much as an acknowledgement. It as not until June 18 that I got some
insight as to what happened, through an unofficial channel. Some botnet had apparently been
misusing meek for command and control purposes; and its operators hadn’t even bothered to
set up their own App Engine project. They were using the service that we had been operating
for the public. Although we may have been able to reinstate the meek-google service, seeing
as the suspension was the result of someone else’s botnet, with the already uncertain standing
with regard to the terms of service I didn’t have the heart to pursue it. meek-google remained
off and users migrated to meek-amazon or meek-azure. It turned out, later, that it had been
no common botnet misusing meek-google, but an organized political hacker group, known as
Cozy Bear or APT29. Matthew Dunwoody presented observations to that effect in a FireEye
blog post [40] in March 2017. He and Nick Carr had presented those findings at DerbyCon in
September 2016 [41], but I was not aware of them until the blog post. Malware would install
a backdoor that operated over a Tor onion service, and used meek for camouflage.

The year 2016 brought the first reports of efforts to block meek. These efforts all had
in common that they used TLS fingerprinting in conjunction with SNI inspection. In
May, a Tor user reported that Cyberoam, a firewall company, had released an update
that enabled detection and blocking of meek, among other Tor pluggable transports [86].
Through experiments we determined that the firewall was detecting meek whenever it saw a
combination of two features: a specific client TLS fingerprint, and an SNI containing any of
our three front domains: www.google.com, a0.awsstatic.com, or ajax.aspnetcdn.com [53]. We
verified that changing either the TLS fingerprint or the front domain was sufficient to escape
detection. Requiring both features to be present was a clever move by the firewall to limit
collateral damage: it did not block those domains for all clients, but only the subset having a
particular TLS fingerprint. I admit that I had not considered the possibility of using TLS
and SNI together to make a more precise classifier. We had known since the beginning of the
possibility of TLS fingerprinting, which is why we spent the time to implement browser-based
TLS camouflage. And there was no error in the camouflage: even an ordinary Firefox 38 (the
base for Tor Browser, and what meek camouflaged itself as) was blocked by the firewall when

CHAPTER 6. DOMAIN FRONTING 42

accessing one of the three front domains. However, Firefox 38 was by that time a year old. I
found a source saying that it made up only 0.38% of desktop browsers, compared to 10.69%
for the then-latest Firefox 45 [53]. My guess is that the firewall makers considered the small
amount of collateral blocking of Firefox 38 users to be acceptable.

In July I received a report of similar behavior by a FortiGuard firewall [54] from Tor
user Kanwaljeet Singh Channey. The situation was virtually the same: the firewall would
block connections having a specific TLS fingerprint and a specific SNI. This time, the TLS
fingerprint was that of Firefox 45 (which by then Tor Browser had upgraded to); and the
specific SNIs were only two, omitting www.google.com. (This meant that meek-google would
have worked, had it not been deactivated back in May.) As in the Cyberoam case, changing
either the TLS fingerprint or the front domain was sufficient to get through the firewall.

For reasons not directly related to domain fronting or meek, I had been interested in the
blocking situation in Kazakhstan, ever since Tor Metrics reported a sudden drop of Tor users
in that country in June 2016 [68]. I worked with an anonymous collaborator, who reported
that meek was blocked in the country since October 2016 or earlier. According to them,
changing the front domain would evade the block, but changing the TLS fingerprint didn’t
help. I did not independently confirm these reports. Kazakhstan remains the only case of
country-level meek blocking that I am aware of.

Starting in July 2016, there was a months-long increase in the number of meek users
reported from Brazil [141]. The estimated count went from around 100 to almost 5,000,
peaking in September 2016 before declining again. During parts of this time, over half of all
reported meek users were from Brazil. We never got to the bottom of why there should be so
many users reported from Brazil in particular. The explanation may be some kind of anomaly;
for instance some third-party software that happened to use meek, or a malware infection
like the one that caused the shutdown of meek-google. The count dropped suddenly, from
1,500 almost to zero, on March 3, 2017, which happened also to be the day that meek-azure
was shut down pending a migration to new infrastructure. The count would remain low until
rising again in June 2017.

In September 2016, I began mentoring Katherine Li in making her program GAE-
uploader [96], which aims to simplify and automate the process of setting up domain fronting.
The program automatically uploads the necessary code to Google App Engine, then outputs
a bridge line ready to be pasted into Tor Browser or Orbot. We hoped also that the code
would be useful to other projects, like XX-Net [164], that provide documentation on the
complicated process of uploading code to App Engine. GAEuploader had a beta release in
January 2017 [95]; however the effect on the number of users was not substantial.

Between October 19 and November 10, 2016, the number of meek users decreased globally
by about a third [66]. Initially I suspected a censorship event, but the other details didn’t add
up: the numbers were depressed and later recovered simultaneously across many countries,
including ones not known for censorship. Discussion with other developers revealed the likely
cause: a botched release of Orbot that left some users unable to use the program [61]. Once a
fixed release was available, user numbers recovered. An unanticipated effect of this occurrence
was that we learned that a majority of meek users were using Orbot rather than Tor Browser.

CHAPTER 6. DOMAIN FRONTING 43

2017: Long-term support

In January 2017, the grant I had been using to pay meek-azure’s bandwidth bills ran out.
Lacking the means to keep it running, I announced my intention to shut it down [58]. Shortly
thereafter, Team Cymru offered to stand up their own instances and pay the CDN fees, and
so we made plans to migrate meek-azure to the new setup in the next releases. For cost
reasons, though, I still had to shut down the old configuration before the new release of
Tor Browser was ready. I shut down my configuration on March 3. The next release of Tor
Browser was on March 7, and the next release of Orbot was on March 22: so there was a
period of days or weeks during which meek-azure was completely non-functional for users. It
would have been better to allow the two configurations to run concurrently for a time, so
that users of the old would be able to transparently upgrade to the new—but in this case it
wasn’t possible. Perhaps not coincidentally, the surge of users from Brazil, which had started
in July 2016, ceased on March 3, the same day I shut down meek-azure before its migration.
Handing over control of the infrastructure was a relief to me. I had managed to make sure
the monthly bills got paid, but it took more care and attention than I liked. A negative side
effect of the migration was that I stopped writing monthly summaries of costs, because I was
no longer receiving bills.

Also in January 2017, I became aware of the firewall company Allot Communications,
thanks to my anonymous collaborator in the Kazakhstan work. Allot’s marketing materials
advertised support for detection of a wide variety of circumvention protocols, including Tor
pluggable transports, Psiphon, and various VPN services [62]. They claimed support for
“Psiphon CDN (Meek mode)” going back to January 2015, and for “TOR (CDN meek)” going
back to April 2015. We did not have any Allot devices to experiment with, and I do not
know how (or how well) their detectors worked.

In June 2017, the estimated user count from Brazil began to increase again, similarly to
how it had between July 2016 and March 2017. Just as before, we did not find an explanation
for the increase.

Between July 29 and August 17, meek-amazon had another outage due to an expired
TLS certificate.
Blocking of look-like-nothing, and success of domain fronting during the 19th Chinese
Communist Party Congress

Chapter 7

Snowflake

here be dragonŊ

Flash proxy revisited
WebRTC fingerprinting
Engineering challenges
I am working on a new circumvention system, a transport for Tor called Snowflake.

Snowflake is the successor to flash proxy. It keeps the basic idea of in-browser proxies
while fixing the usability problems that hampered the adoption of flash proxy. My main
collaborators in this project are Arlo Breault, Serene Han, Mia Gil Epner, and Hooman
Mohajeri.

The key difference between flash proxy and Snowflake is the basic communications protocol
between client and browser proxy. Flash proxy used the TCP-based WebSocket protocol,
which required users to configure their personal firewall to allow incoming connections.
Snowflake instead uses WebRTC, a UDP-based protocol that enables peer-to-peer connections
without manual configuration. The most similar existing system is uProxy [145], which in
one of its operating modes uses WebRTC to connect through a friend’s computer. Snowflake
differs because it does not require prior coordination with a friend before connecting. Instead,

Figure 7.1: Diagram of Snowflake.

44

CHAPTER 7. SNOWFLAKE 45

it pulls its proxies from a pool of web users who are running the Snowflake code. Beyond the
changed protocol, we hope to build in performance and efficiency improvements.

Snowflake will afford interesting research opportunities. One, of course, is the design of
the system itself—no circumvention system of its nature has previously been deployed at a
large scale. Another opportunity is observing how censors react to a new challenge.

Most of the available documentation on Snowflake is linked from the project’s wiki
page [139]. Mia Gil Epner and I wrote a technical report on the fingerprinting hazards of
WebRTC [63].

7.0.1 Flash proxy

I began working on censorship circumvention with flash proxy in 2011. Flash proxy is targeted
at the difficult problem of proxy address blocking: it is designed against a censor model in
which the censor can block any IP address it chooses, but only on a relatively slow timeline
of several hours.

Flash proxy works by running tiny JavaScript proxies in ordinary users’ web browsers.
The mini-proxies serve as temporary stepping stones to a full-fledged proxy, such as a Tor
relay. The idea is that the flash proxies are too numerous, diverse, and quickly changing to
block effectively. A censored user may use a particular proxy for only seconds or minutes
before switching to another. If the censor manages to block the IP address of one proxy,
there is little harm, because many other temporary proxies are ready to take its place.

The flash proxy system was designed under interesting constraints imposed by being
partly implemented in JavaScript in the browser. The proxies sent and received data using
the WebSocket protocol, which allows for socket-like persistent TCP connections in browsers,
but with a catch: the browser can only make outgoing connections, not receive incoming ones
as a traditional proxy would. The censored client must somehow inform the system of its own
public address, and then the proxy connects back to the client. This architectural constraint
was probably the biggest impediment to the usability of flash proxy, because it required users
to configure their local router to permit incoming connections. (Removing this impediment
is the main reason for the development of Snowflake, described later.) Flash proxy does not
itself try to obfuscate patterns in the underlying traffic; it only provides address diversity.

For the initial “rendezvous” step in which a client advertises its address and a request for
proxy service, flash proxy uses a neat idea: a low-capacity, but highly covert channel bootstraps
the high-capacity, general-purpose WebSocket channel. For example, we implemented an
automated email-based rendezvous, in which the client would send its address in an encrypted
email to a special address. While it is difficult to build a useful low-latency bidirectional
channel on top of email, email is difficult to block and it is only needed once, at the beginning
of a session. We later replaced the email-based rendezvous with one based on domain fronting,
which would later inspire meek, described below.

I was the leader of the flash proxy project and the main developer of its code. Flash
proxy was among the first circumvention systems built for Tor—only obfs2 is older. It was
first deployed in Tor Browser in January 2013, and was later retired in January 2016 after it
ceased to see appreciable use. Its spirit lives on in Snowflake, now under development.

Flash proxy appeared in the 2012 research paper “Evading Censorship with Browser-Based
Proxies” [64], which I coauthored with Nate Hardison, Jonathan Ellithorpe, Emily Stark,

CHAPTER 7. SNOWFLAKE 46

Roger Dingledine, Phil Porras, and Dan Boneh.

Appendix A

Summary of censorship measurement
studies

Here I survey past measurement studies which have helped to build models about censor
behavior in general. The objects of the survey are based on those in an evaluation study
done by me and others in 2016 [143 §IV.A].

One of the earliest technical studies of censorship occurred not in some illiberal place,
but in the German state of North Rhein-Westphalia. In 2003, Dornseif [38] tested ISPs’
implementation of a controversial legal order to block two Nazi web sites. While there were
many possible ways to implement the block, none were trivial to implement, nor free of
overblocking side effects. The most popular implementation used DNS tampering, simply
returning (or injecting) false responses to DNS requests for the domain names of the blocked
sites. An in-depth survey of DNS tampering found a variety of implementations, some
blocking more and some blocking less than required by the order.

Clayton [19] in 2006 studied a “hybrid” blocking system, called “CleanFeed” by the British
ISP BT, that aimed for a better balance of costs and benefits: a “fast path” IP address and
port matcher acted as a prefilter for the “slow path,” a full HTTP proxy. The system, in use
since 2004, was designed to block access to any of a secret list of pedophile web sites compiled
by a third party. The author identifies ways to circumvent or attack such a system: use a
proxy, use source routing to evade the blocking router, obfuscate requested URLs, use an
alternate IP address or port, return false DNS results to put third parties on the “bad” list.
They demonstrate that the two-level nature of the blocking system unintentionally makes it
an oracle that can reveal the IP addresses of sites in the secret blocking list.

[27]
For a decade, the OpenNet Initiative produced reports on Internet filtering and surveillance

in dozens of countries, until it ceased operation in 2014. For example, their 2005 report
on Internet filtering in China [118] studied the problem from many perspectives, political,
technical, and legal. They translated and interpreted Chinese laws relating to the Internet,
which provide strong legal justifications for filtering. The laws regulate both Internet users
and service providers, including cybercafes. They prohibit the transfer of information that is
indecent, subversive, false, criminal, or that reveals state secrets. The OpenNet Initiative
tested the extent of filtering of web sites, search engines, blogs, and email. They found
a number of blocked web sites, some related to news and politics, and some on sensitive

47

APPENDIX A. SUMMARY OF CENSORSHIP MEASUREMENT STUDIES 48

subjects such as Tibet and Taiwan. In some cases, entire sites (domains) were blocked; in
others, only specific pages within a larger site were blocked. In a small number of cases, sites
were accessible by IP address but not by domain name. There were cases of overblocking:
apparently inadvertently blocked sites that simply shared an IP address or URL keyword
with an intentionally blocked site. On seeing a prohibited keyword, the firewall blocked
connections by injecting a TCP RST packet to tear down the connection, then injecting a
zero-sized TCP window, which would prevent any communication with the same server for a
short time. Using technical tricks, the authors inferred that Chinese search engines index
blocked sites (perhaps having a special exemption from the general firewall policy), but do
not return them in search results. The firewall blocks access searches for certain keywords on
Google as well as the Google Cache—but the latter could be worked around by tweaking the
format of the URL. Censorship of blogs comprised keyword blocking by domestic blogging
services, and blocking of external domains such as blogspot.com. Email filtering is done by
the email providers themselves, not by an independent network firewall. Email providers seem
to implement their filtering rules independently and inconsistently: messages were blocked by
some providers and not others.

In 2006, Clayton, Murdoch, and Watson [20] further studied the technical aspects of the
Great Firewall of China. They relied on an observation that the firewall was symmetric,
treating incoming and outgoing traffic equally. By sending web requests from outside the
firewall to a web server inside, they could provoke the same blocking behavior that someone on
the inside would see. They sent HTTP requests containing forbidden keywords (e.g., “falun”)
caused the firewall to inject RST packets towards both the client and server. Simply ignoring
RST packets (on both ends) rendered the blocking mostly ineffective. The injected packets
had inconsistent TTLs and other anomalies that enabled their identification. Rudimentary
countermeasures such as splitting keywords across packets were also effective in avoiding
blocking. The authors of this paper bring up an important point that would become a major
theme of future censorship modeling: censors are forced to trade blocking effectiveness against
performance. In order to cope with high load at a reasonable costs, censors may choose
the architecture of a network monitor or intrusion detection system, one that can passively
monitor and inject packets, but cannot delay or drop them.

A nearly contemporary study by Wolfgarten [159] reproduced many of the results of
Clayton, Murdoch, and Watson. Using a rented server in China, the author found cases
of DNS tampering, search engine filtering, and RST injection caused by keyword sniffing.
Not much later, in 2007, Lowe, Winters, and Marcus [100] did detailed experiments on DNS
tampering in China. They tested about 1,600 recursive DNS servers in China against a list
of about 950 likely-censored domains. For about 400 domains, responses came back with
bogus IP addresses, chosen from a set of about 20 distinct IP addresses. Eight of the bogus
addresses were used more than the others: a whois lookup placed them in Australia, Canada,
China, Hong Kong, and the U.S. By manipulating TTLs, the authors found that the false
responses were injected by an intermediate router: the authentic response would be received
as well, only later. A more comprehensive survey [7] of DNS tampering and injection occurred
in 2014, giving remarkable insight into the internal structure of the censorship machines.
DNS injection happens only at border routers. IP ID and TTL analysis show that each node
is a cluster of several hundred processes that collectively inject censored responses. They
found 174 bogus IP addresses, more than previously documented. They extracted a blacklist

APPENDIX A. SUMMARY OF CENSORSHIP MEASUREMENT STUDIES 49

of about 15,000 keywords.
[160]
The Great Firewall, because of its unusual sophistication, has been an enduring object

of study. Part of what makes it interesting is its many blocking modalities, both active
and passive, proactive and reactive. The ConceptDoppler project of Crandall et al. [22]
measured keyword filtering by the Great Firewall and showed how to discover new keywords
automatically by latent semantic analysis, using the Chinese-language Wikipedia as a corpus.
They found limited statefulness in the firewall: sending a naked HTTP request without a
preceding SYN resulted in no blocking. In 2008 and 2009, Park and Crandall [120] further
tested keyword filtering of HTTP responses. Injecting RST packets into responses is more
difficult than doing the same to requests, because of the greater uncertainty in predicting
TCP sequence numbers once a session is well underway. In fact, RST injection into responses
was hit or miss, succeeding only 51% of the time, with some, apparently diurnal, variation.
They also found inconsistencies in the statefulness of the firewall. Two of ten injection
servers would react to a naked HTTP request; that it, one sent outside of an established
TCP connection. The remaining eight of ten required an established TCP connection. Xu
et al. [163] continued the theme of keyword filtering in 2011, with the goal of discovering
where filters are located at the IP and AS levels. Most filtering is done at border networks
(autonomous systems with at least one non-Chinese peer). In their measurements, the firewall
was fully stateful: blocking was never triggered by an HTTP request outside an established
TCP connection. Much filtering occurs at smaller regional providers, rather than on the
network backbone.

Winter and Lindskog [157] did a formal investigation into active probing, a reported
capability of the Great Firewall since around October 2011. They focused on the firewall’s
probing of Tor relays. Using private Tor relays in Singapore, Sweden, and Russia, they
provoked active probes by simulating Tor connections, collecting 3295 firewall scans over 17
days. Over half the scan came from a single IP address in China; the remainder seemingly
came from ISP pools. Active probing is initiated every 15 minutes and each burst lasts for
about 10 minutes.

Sfakianakis et al. [134] built CensMon, a system for testing web censorship using PlanetLab
nodes as distributed measurement points. They ran the system for for 14 days in 2011 across
33 countries, testing about 5,000 unique URLs. They found 193 blocked domain–country
pairs, 176 of them in China. CensMon reports the mechanism of blocking. Across all nodes,
it was 18.2% DNS tampering, 33.3% IP address blocking, and 48.5% HTTP keyword filtering.
The system was not run on a continuing basis. Verkamp and Gupta [146] did a separate study
in 11 countries, using a combination of PlanetLab nodes and the computers of volunteers.
Censorship techniques vary across countries; for example, some show overt block pages and
others do not. China was the only stateful censor of the 11.

PlanetLab is a system that was not originally designed for censorship measurement,
that was later adapted for that purpose. Another recent example is RIPE Atlas, a globally
distributed Internet measurement network consisting of physical probes hosted by volunteers,
Atlas allows 4 types of measurements: ping, traceroute, DNS resolution, and X.509 certificate
fetching. Anderson et al. [4] used Atlas to examine two case studies of censorship: Turkey’s
ban on social media sites in March 2014 and Russia’s blocking of certain LiveJournal blogs
in March 2014. In Turkey, they found at least six shifts in policy during two weeks of site

APPENDIX A. SUMMARY OF CENSORSHIP MEASUREMENT STUDIES 50

blocking. They observed an escalation in blocking in Turkey: the authorities first poisoned
DNS for twitter.com, then blocked the IP addresses of the Google public DNS servers, then
finally blocked Twitter’s IP addresses directly. In Russia, they found ten unique bogus IP
addresses used to poison DNS.

Most research on censors has focused on the blocking of specific web sites and HTTP
keywords. A few studies have looked at less discriminating forms of censorship: outright
shutdowns and throttling without fully blocking. Dainotti et al. [26] reported on the total
Internet shutdowns that took place in Egypt and Libya in the early months of 2011. They used
multiple measurements to document the outages as they occurred: BGP data, a large network
telescope, and active traceroutes. During outages, there was a drop in scanning traffic (mainly
from the Conficker botnet) to their telescope. By comparing these different measurements,
they showed that the shutdown in Libya was accomplished in more that one way, both by
altering network routes and by firewalls dropping packets. Anderson [3] documented network
throttling in Iran, which occurred over two major periods between 2011 and 2012. Throttling
degrades network access without totally blocking it, and is harder to detect than blocking.
The author argues that a hallmark of throttling is a decrease in network throughput without
an accompanying increase in latency and packet loss, distinguishing throttling from ordinary
network congestion. Academic institutions were affected by throttling, but less so than
other networks. Aryan et al. [8] tested censorship in Iran during the two months before
the June 2013 presidential election. They found multiple blocking methods: HTTP request
keyword filtering, DNS tampering, and throttling. The most usual method was HTTP request
filtering. DNS tampering (directing to a blackhole IP address) affected only three domains:
facebook.com, youtube.com, and plus.google.com. SSH connections were throttled down to
about 15% of the link capacity, while randomized protocols were throttled almost down to
zero 60 seconds into a connection’s lifetime. Throttling seemed to be achieved by dropping
packets, thereby forcing TCP’s usual recovery.

Khattak et al. [91] evaluated the Great Firewall from the perspective that it works like
an intrusion detection system or network monitor, and applied existing technique for evading
a monitor the the problem of circumvention. They looked particularly for ways to evade
detection that are expensive for the censor to remedy. They found that the firewall is stateful,
but only in the client-to-server direction. The firewall is vulnerable to a variety of TCP- and
HTTP-based evasion techniques, such as overlapping fragments, TTL-limited packets, and
URL encodings.

Nabi [112] investigated web censorship in Pakistan in 2013, using a publicly known list of
banned web sites. They tested on 5 different networks in Pakistan. Over half of the sites on
the list were blocked by DNS tampering; less than 2% were additionally blocked by HTTP
filtering (an injected redirection before April 2013, or a static block page after that). They
conducted a small survey to find the most commonly used circumvention methods in Pakistan.
The most used method was public VPNs, at 45% of respondents.

Ensafi et al. [47] employed an intriguing technique to measure censorship from many
locations in China—a “hybrid idle scan.” The hybrid idle scan allows one to test TCP
connectivity between two Internet hosts, without needing to control either one. They
selected roughly uniformly geographically distributed sites in China from which to measure
connectivity to Tor relays, Tor directory authorities, and the web servers of popular Chinese
web sites. There were frequent failures of the firewall resulting in temporary connectivity,

APPENDIX A. SUMMARY OF CENSORSHIP MEASUREMENT STUDIES 51

typically lasting in bursts of hours.
In 2015, Marczak et al. [103] investigated an innovation in the capabilities of the border

routers of China, an attack tool dubbed the “Great Cannon.” The cannon was responsible
for denial-of-service attacks on Amazon CloudFront and GitHub. The unwitting participants
in the attack were web browsers located outside of China, who began their attack when the
cannon injected malicious JavaScript into certain HTTP responses originating in China. The
new attack tool is noteworthy because it demonstrated previously unseen in-path behavior,
such as packet dropping.

Not every censor is China, with its sophisticated homegrown firewall. A major aspect
of censor modeling is that many censors use commercial firewall hardware. A case in point
is the analysis by Chaabane et al. [16] of 600 GB of leaked logs from Blue Coat proxies
used for censorship in Syria. The logs cover 9 days in July and August 2011, and contain
an entry for every HTTP request. The authors of the study found evidence of IP address
blocking, domain name blocking, and HTTP request keyword blocking, and also of users
circumventing censorship by downloading circumvention software or using the Google cache.
All subdomains of .il, the top-level domain for Israel, were blocked, as were many IP address
ranges in Israel. Blocked URL keywords included “proxy”, “hotspotshield”, “israel”, and
“ultrasurf” (resulting in collateral damage to the Google Toolbar and Facebook Like button
because they have “proxy” in HTTP requests). Tor was only lightly censored—only one of
several proxies blocked it, and only sporadically.

[76] and other OONI.
Analyzing Internet Censorship in Pakistan[1]

Bibliography

[1] Giuseppe Aceto, Alessio Botta, Antonio Pescapè, M. Faheem Awan, Tahir Ahmad,
and Saad Qaisar. “Analyzing Internet Censorship in Pakistan”. In: Research and
Technologies for Society and Industry. IEEE, 2016. http://wpage.unina.it/giuseppe.
aceto/pub/aceto2016analyzing.pdf (cit. on p. 51).

[2] Percy Alpha. Google disrupted prior to Tiananmen Anniversary; Mirror sites enable
uncensored access to information. June 2014. https://en.greatfire.org/blog/2014/jun/
google-disrupted-prior-tiananmen-anniversary-mirror-sites-enable-uncensored-access
(cit. on p. 37).

[3] Collin Anderson. Dimming the Internet: Detecting Throttling as a Mechanism of
Censorship in Iran. Tech. rep. University of Pennsylvania, 2013. https://arxiv.org/
abs/1306.4361v1 (cit. on p. 50).

[4] Collin Anderson, Philipp Winter, and Roya. “Global Network Interference Detection
over the RIPE Atlas Network”. In: Free and Open Communications on the Internet.
USENIX, 2014. https://www.usenix.org/system/files/conference/foci14/foci14-
anderson.pdf (cit. on p. 49).

[5] Daniel Anderson. “Splinternet Behind the Great Firewall of China”. In: ACM Queue
10.11 (2012), p. 40. https://queue.acm.org/detail.cfm?id=2405036 (cit. on p. 15).

[6] Ross J. Anderson. “The Eternity Service”. In: Theory and Applications of Cryptology.
CTU Publishing House, 1996, pp. 242–253. https://www.cl.cam.ac.uk/∼rja14/Papers/
eternity.pdf (cit. on p. 3).

[7] Anonymous. “Towards a Comprehensive Picture of the Great Firewall’s DNS Cen-
sorship”. In: Free and Open Communications on the Internet. USENIX, 2014. https:
//www.usenix.org/system/files/conference/foci14/foci14-anonymous.pdf (cit. on
pp. 19, 48).

[8] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. “Internet Censorship in Iran:
A First Look”. In: Free and Open Communications on the Internet. USENIX, 2013.
https://censorbib.nymity.ch/pdf/Aryan2013a.pdf (cit. on p. 50).

[9] Geremie R. Barme and Ye Sang. “The Great Firewall of China”. In: Wired (June
1997). https://archive.wired.com/wired/archive/5.06/china pr.html (cit. on p. 16).

[10] Bryce Boe. Bypassing Gogo’s Inflight Internet Authentication. Mar. 2012. http://
bryceboe.com/2012/03/12/bypassing-gogos-inflight-internet-authentication/ (cit. on
p. 32).

52

http://wpage.unina.it/giuseppe.aceto/pub/aceto2016analyzing.pdf
http://wpage.unina.it/giuseppe.aceto/pub/aceto2016analyzing.pdf
https://en.greatfire.org/blog/2014/jun/google-disrupted-prior-tiananmen-anniversary-mirror-sites-enable-uncensored-access
https://en.greatfire.org/blog/2014/jun/google-disrupted-prior-tiananmen-anniversary-mirror-sites-enable-uncensored-access
https://arxiv.org/abs/1306.4361v1
https://arxiv.org/abs/1306.4361v1
https://www.usenix.org/system/files/conference/foci14/foci14-anderson.pdf
https://www.usenix.org/system/files/conference/foci14/foci14-anderson.pdf
https://queue.acm.org/detail.cfm?id=2405036
https://www.cl.cam.ac.uk/~rja14/Papers/eternity.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/eternity.pdf
https://www.usenix.org/system/files/conference/foci14/foci14-anonymous.pdf
https://www.usenix.org/system/files/conference/foci14/foci14-anonymous.pdf
https://censorbib.nymity.ch/pdf/Aryan2013a.pdf
https://archive.wired.com/wired/archive/5.06/china_pr.html
http://bryceboe.com/2012/03/12/bypassing-gogos-inflight-internet-authentication/
http://bryceboe.com/2012/03/12/bypassing-gogos-inflight-internet-authentication/

BIBLIOGRAPHY 53

[11] BreakWa11. ShadowSocks协议的弱点分析和改进. Aug. 2015. https://web.archive.org/
web/20160829052958/https://github.com/breakwa11/shadowsocks-rss/issues/38
(cit. on pp. 23, 24).

[12] Arlo Breault, David Fifield, and George Kadianakis. Registration over App Engine.
May 2013. https://bugs.torproject.org/8860 (cit. on p. 36).

[13] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. “CloudTransport: Using
Cloud Storage for Censorship-Resistant Networking”. In: Privacy Enhancing Technolo-
gies Symposium. Springer, 2014. https://petsymposium.org/2014/papers/paper 68.pdf
(cit. on pp. 8, 10, 32).

[14] Willow Brugh. San Francisco Hackathon/DiscoTech (+ RightsCon + Responsible Data
Forum). Mar. 2014. http://codesign.mit.edu/2014/03/sfdiscotech/ (cit. on p. 37).

[15] Cormac Callanan, Hein Dries-Ziekenheiner, Alberto Escudero-Pascual, and Robert
Guerra. Leaping Over the Firewall: A Review of Censorship Circumvention Tools. Tech.
rep. Freedom House, 2011. https://freedomhouse.org/report/special-reports/leaping-
over-firewall-review-censorship-circumvention-tools (cit. on p. 20).

[16] Abdelberi Chaabane, Terence Chen, Mathieu Cunche, Emiliano De Cristofaro, Arik
Friedman, and Mohamed Ali Kaafar. “Censorship in the Wild: Analyzing Inter-
net Filtering in Syria”. In: Internet Measurement Conference. ACM, 2014. http :
//conferences2.sigcomm.org/imc/2014/papers/p285.pdf (cit. on p. 51).

[17] The Citizen Lab. Psiphon. Oct. 2006. https://web.archive.org/web/20061026081356/
http://psiphon.civisec.org/ (cit. on p. 16).

[18] Erinn Clark. Tor Browser 3.6.4 and 4.0-alpha-1 are released. The Tor Blog. Aug. 2014.
https://blog.torproject.org/tor-browser-364-and-40-alpha-1-are-released (cit. on
pp. 11, 38).

[19] Richard Clayton. “Failures in a Hybrid Content Blocking System”. In: Privacy En-
hancing Technologies. Springer, 2006, pp. 78–92. https://www.cl.cam.ac.uk/∼rnc1/
cleanfeed.pdf (cit. on p. 47).

[20] Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. “Ignoring the Great
Firewall of China”. In: Privacy Enhancing Technologies. Springer, 2006, pp. 20–35.
https://www.cl.cam.ac.uk/∼rnc1/ignoring.pdf (cit. on pp. 8, 14, 48).

[21] Jedidiah R. Crandall, Masashi Crete-Nishihata, and Jeffrey Knockel. “Forgive Us
our SYNs: Technical and Ethical Considerations for Measuring Internet Filtering”.
In: Ethics in Networked Systems Research. ACM, 2015. http://ensr.oii.ox.ac.uk/
wp - content/ uploads /2015 / 07/ Forgive - Us - Our - SYNs - Technical - and - Ethical -
Considerations-for-Measuring-Internet-Censorship.pdf (cit. on p. 20).

[22] Jedidiah R. Crandall, Daniel Zinn, Michael Byrd, Earl Barr, and Rich East. “Con-
ceptDoppler: A Weather Tracker for Internet Censorship”. In: Computer and Commu-
nications Security. ACM, 2007, pp. 352–365. http://www.csd.uoc.gr/∼hy558/papers/
conceptdoppler.pdf (cit. on pp. 15, 18, 49).

[23] Creative Commons. CC0 1.0 Universal. https://creativecommons.org/publicdomain/
zero/1.0/ (cit. on p. 37).

https://web.archive.org/web/20160829052958/https://github.com/breakwa11/shadowsocks-rss/issues/38
https://web.archive.org/web/20160829052958/https://github.com/breakwa11/shadowsocks-rss/issues/38
https://bugs.torproject.org/8860
https://petsymposium.org/2014/papers/paper_68.pdf
http://codesign.mit.edu/2014/03/sfdiscotech/
https://freedomhouse.org/report/special-reports/leaping-over-firewall-review-censorship-circumvention-tools
https://freedomhouse.org/report/special-reports/leaping-over-firewall-review-censorship-circumvention-tools
http://conferences2.sigcomm.org/imc/2014/papers/p285.pdf
http://conferences2.sigcomm.org/imc/2014/papers/p285.pdf
https://web.archive.org/web/20061026081356/http://psiphon.civisec.org/
https://web.archive.org/web/20061026081356/http://psiphon.civisec.org/
https://blog.torproject.org/tor-browser-364-and-40-alpha-1-are-released
https://www.cl.cam.ac.uk/~rnc1/cleanfeed.pdf
https://www.cl.cam.ac.uk/~rnc1/cleanfeed.pdf
https://www.cl.cam.ac.uk/~rnc1/ignoring.pdf
http://ensr.oii.ox.ac.uk/wp-content/uploads/2015/07/Forgive-Us-Our-SYNs-Technical-and-Ethical-Considerations-for-Measuring-Internet-Censorship.pdf
http://ensr.oii.ox.ac.uk/wp-content/uploads/2015/07/Forgive-Us-Our-SYNs-Technical-and-Ethical-Considerations-for-Measuring-Internet-Censorship.pdf
http://ensr.oii.ox.ac.uk/wp-content/uploads/2015/07/Forgive-Us-Our-SYNs-Technical-and-Ethical-Considerations-for-Measuring-Internet-Censorship.pdf
http://www.csd.uoc.gr/~hy558/papers/conceptdoppler.pdf
http://www.csd.uoc.gr/~hy558/papers/conceptdoppler.pdf
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

BIBLIOGRAPHY 54

[24] Elena Cresci. “How to get around Turkey’s Twitter ban”. In: The Guardian (Mar.
2014). https://www.theguardian.com/world/2014/mar/21/how-to-get-around-
turkeys-twitter-ban (cit. on p. 16).

[25] Eric Cronin, Micah Sherr, and Matt Blaze. The Eavesdropper’s Dilemma. Tech. rep.
MS-CIS-05-24. Department of Computer and Information Science, University of
Pennsylvania, 2005. http://www.crypto.com/papers/internet-tap.pdf (cit. on p. 15).

[26] Alberto Dainotti, Claudio Squarcella, Emile Aben, Kimberly C. Claffy, Marco Chiesa,
Michele Russo, and Antonio Pescapé. “Analysis of Country-wide Internet Outages
Caused by Censorship”. In: Internet Measurement Conference. ACM, 2011, pp. 1–18.
http://conferences.sigcomm.org/imc/2011/docs/p1.pdf (cit. on p. 50).

[27] Ronald Deibert, John Palfrey, Rafal Rohozinski, and Jonathan Zittrain, eds. Access
denied: the practice and policy of global Internet filtering. Cambridge, Mass: MIT Press,
2008. isbn: 978-0-262-54196-1. http://access.opennet.net/?page id=61 (cit. on p. 47).

[28] denverroot, Roger Dingledine, Aaron Gibson, hrimfaxi, George Kadianakis, Andrew
Lewman, OlgieD, Mike Perry, Fabio Pietrosanti, and quick-dudley. Bridge easily
detected by GFW. Oct. 2011. https://bugs.torproject.org/4185 (cit. on p. 23).

[29] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. IETF, Aug. 2008. https://tools.ietf.org/html/rfc5246 (cit. on p. 30).

[30] Roger Dingledine. Obfsproxy: the next step in the censorship arms race. The Tor Blog.
Feb. 2012. https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race
(cit. on pp. 11, 23, 24).

[31] Roger Dingledine. Please run a bridge relay! (was Re: Tor 0.2.0.13-alpha is out).
tor-talk mailing list. Dec. 2007. https://lists.torproject.org/pipermail/tor-talk/2007-
December/003854.html (cit. on p. 13).

[32] Roger Dingledine. Strategies for getting more bridge addresses. Tech. rep. 2011-05-001.
The Tor Project, May 2011. https://research.torproject.org/techreports/strategies-
getting-more-bridge-addresses-2011-05-13.pdf (cit. on p. 13).

[33] Roger Dingledine. Ten ways to discover Tor bridges. Tech. rep. 2011-10-002. The Tor
Project, Oct. 2011. https://research.torproject.org/techreports/ten-ways-discover-tor-
bridges-2011-10-31.pdf (cit. on pp. 13, 21).

[34] Roger Dingledine, David Fifield, George Kadianakis, Lunar, Runa Sandvik, and Philipp
Winter. GFW actively probes obfs2 bridges. Mar. 2013. https://bugs.torproject.org/
8591 (cit. on pp. 23, 24).

[35] Roger Dingledine, Arturo Filastò, George Kadianakis, Nick Mathewson, and Philipp
Winter. GFW probes based on Tor’s SSL cipher list. Dec. 2011. https://bugs.torproject.
org/4744 (cit. on pp. 23, 24, 33).

[36] Roger Dingledine and Nick Mathewson. Design of a blocking-resistant anonymity
system. Tech. rep. 2006-11-001. The Tor Project, Nov. 2006. https://research.torproject.
org/techreports/blocking-2006-11.pdf (cit. on pp. 12, 13, 16, 21).

[37] Roger Dingledine and Nick Mathewson. Tor Protocol Specification. Sept. 2017. https:
//spec.torproject.org/tor-spec (cit. on p. 28).

https://www.theguardian.com/world/2014/mar/21/how-to-get-around-turkeys-twitter-ban
https://www.theguardian.com/world/2014/mar/21/how-to-get-around-turkeys-twitter-ban
http://www.crypto.com/papers/internet-tap.pdf
http://conferences.sigcomm.org/imc/2011/docs/p1.pdf
http://access.opennet.net/?page_id=61
https://bugs.torproject.org/4185
https://tools.ietf.org/html/rfc5246
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race
https://lists.torproject.org/pipermail/tor-talk/2007-December/003854.html
https://lists.torproject.org/pipermail/tor-talk/2007-December/003854.html
https://research.torproject.org/techreports/strategies-getting-more-bridge-addresses-2011-05-13.pdf
https://research.torproject.org/techreports/strategies-getting-more-bridge-addresses-2011-05-13.pdf
https://research.torproject.org/techreports/ten-ways-discover-tor-bridges-2011-10-31.pdf
https://research.torproject.org/techreports/ten-ways-discover-tor-bridges-2011-10-31.pdf
https://bugs.torproject.org/8591
https://bugs.torproject.org/8591
https://bugs.torproject.org/4744
https://bugs.torproject.org/4744
https://research.torproject.org/techreports/blocking-2006-11.pdf
https://research.torproject.org/techreports/blocking-2006-11.pdf
https://spec.torproject.org/tor-spec
https://spec.torproject.org/tor-spec

BIBLIOGRAPHY 55

[38] Maximillian Dornseif. “Government mandated blocking of foreign Web content”. In:
DFN-Arbeitstagung über Kommunikationsnetze. Gesellschaft für Informatik, 2003,
pp. 617–647. https://censorbib.nymity.ch/pdf/Dornseif2003a.pdf (cit. on p. 47).

[39] Eva Dou and Alistair Barr. U.S. Cloud Providers Face Backlash From China’s Censors.
Wall Street Journal. Mar. 2015. https://www.wsj.com/articles/u-s-cloud-providers-
face-backlash-from-chinas-censors-1426541126 (cit. on p. 39).

[40] Matthew Dunwoody. APT29 Domain Fronting With TOR. FireEye Threat Research
Blog. Mar. 2017. https://www.fireeye.com/blog/threat-research/2017/03/apt29
domain frontin.html (cit. on p. 41).

[41] Matthew Dunwoody and Nick Carr. No Easy Breach. DerbyCon. Sept. 2016. https:
//www.slideshare.net/MatthewDunwoody1/no-easy-breach-derby-con-2016 (cit. on
p. 41).

[42] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. “ZMap: Fast Internet-Wide
Scanning and its Security Applications”. In: USENIX Security Symposium. USENIX,
2013. https://zmap.io/paper.pdf (cit. on pp. 13, 22).

[43] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. “Protocol
Misidentification Made Easy with Format-Transforming Encryption”. In: Computer
and Communications Security. ACM, 2013. https://eprint.iacr.org/2012/494.pdf
(cit. on p. 10).

[44] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. “Marionette: A Programmable
Network-Traffic Obfuscation System”. In: USENIX Security Symposium. USENIX,
2015. https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-
dyer.pdf (cit. on p. 10).

[45] Don Eastlake. Transport Layer Security (TLS) Extensions: Extension Definitions.
IETF, Jan. 2011. https://tools.ietf.org/html/rfc6066 (cit. on p. 30).

[46] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and
Vern Paxson. “Examining How the Great Firewall Discovers Hidden Circumvention
Servers”. In: Internet Measurement Conference. ACM, 2015. http://conferences2.
sigcomm.org/imc/2015/papers/p445.pdf (cit. on pp. 11, 23–26).

[47] Roya Ensafi, Philipp Winter, Abdullah Mueen, and Jedidiah R. Crandall. “Analyzing
the Great Firewall of China Over Space and Time”. In: Privacy Enhancing Technologies
2015.1 (2015). https://censorbib.nymity.ch/pdf/Ensafi2015a.pdf (cit. on p. 50).

[48] Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David
Karger. “Infranet: Circumventing Web Censorship and Surveillance”. In: USENIX
Security Symposium. USENIX, 2002. http://wind.lcs.mit.edu/papers/usenixsec2002.
pdf (cit. on pp. 10, 16).

[49] Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. IETF, June 2014. https://tools.ietf.org/html/rfc7230 (cit. on
p. 30).

https://censorbib.nymity.ch/pdf/Dornseif2003a.pdf
https://www.wsj.com/articles/u-s-cloud-providers-face-backlash-from-chinas-censors-1426541126
https://www.wsj.com/articles/u-s-cloud-providers-face-backlash-from-chinas-censors-1426541126
https://www.fireeye.com/blog/threat-research/2017/03/apt29_domain_frontin.html
https://www.fireeye.com/blog/threat-research/2017/03/apt29_domain_frontin.html
https://www.slideshare.net/MatthewDunwoody1/no-easy-breach-derby-con-2016
https://www.slideshare.net/MatthewDunwoody1/no-easy-breach-derby-con-2016
https://zmap.io/paper.pdf
https://eprint.iacr.org/2012/494.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-dyer.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-dyer.pdf
https://tools.ietf.org/html/rfc6066
http://conferences2.sigcomm.org/imc/2015/papers/p445.pdf
http://conferences2.sigcomm.org/imc/2015/papers/p445.pdf
https://censorbib.nymity.ch/pdf/Ensafi2015a.pdf
http://wind.lcs.mit.edu/papers/usenixsec2002.pdf
http://wind.lcs.mit.edu/papers/usenixsec2002.pdf
https://tools.ietf.org/html/rfc7230

BIBLIOGRAPHY 56

[50] David Fifield. A simple HTTP transport and big ideas. tor-dev mailing list. Jan. 2014.
https://lists.torproject.org/pipermail/tor-dev/2014-January/006159.html (cit. on
p. 37).

[51] David Fifield. Big performance improvement for meek-azure. tor-dev mailing list. Apr.
2015. https://lists.torproject.org/pipermail/tor-dev/2015-April/008637.html (cit. on
p. 39).

[52] David Fifield. Combined flash proxy + pyobfsproxy browser bundles. The Tor Blog. Jan.
2013. https://blog.torproject.org/combined-flash-proxy-pyobfsproxy-browser-bundles
(cit. on pp. 23, 24).

[53] David Fifield. Cyberoam firewall blocks meek by TLS signature. Network Traffic Ob-
fuscation mailing list. May 2016. https : / / groups . google . com / d / topic / traffic -
obf/BpFSCVgi5rs (cit. on pp. 41, 42).

[54] David Fifield. FortiGuard firewall blocks meek by TLS signature. Network Traffic
Obfuscation mailing list. July 2016. https://groups.google.com/d/topic/traffic-
obf/fwAN-WWz2Bk (cit. on p. 42).

[55] David Fifield. GoAgent: Further notes on App Engine and speculation about a pluggable
transport. Tor Bug Tracker & Wiki. Oct. 2013. https://trac.torproject.org/projects/
tor/wiki/doc/GoAgent?action=diff&version=2&old version=1 (cit. on p. 36).

[56] David Fifield. How to use the “meek” pluggable transport. The Tor Blog. Aug. 2015.
https://blog.torproject.org/how-use-meek-pluggable-transport (cit. on p. 38).

[57] David Fifield. HOWTO use Lantern as a pluggable transport. tor-dev mailing list. Mar.
2014. https://lists.torproject.org/pipermail/tor-dev/2014-March/006356.html (cit. on
p. 37).

[58] David Fifield. meek-azure funding has run out. tor-dev mailing list. Jan. 2017. https:
//lists.torproject.org/pipermail/tor-project/2017-January/000881.html (cit. on p. 43).

[59] David Fifield. Outage of meek-azure. tor-dev mailing list. Aug. 2015. https://lists.
torproject.org/pipermail/tor-talk/2015-August/038780.html (cit. on p. 39).

[60] David Fifield. Why the seeming correlation between flash proxy and meek on metrics
graphs? tor-dev mailing list. Sept. 2014. https://lists.torproject.org/pipermail/tor-
dev/2014-September/007484.html (cit. on p. 38).

[61] David Fifield, Adam Fisk, Nathan Freitas, and Percy Wegmann. meek seems blocked
in China since 2016-10-19. Network Traffic Obfuscation mailing list. Oct. 2016. https:
//groups.google.com/d/topic/traffic-obf/CSJLt3t- OI (cit. on p. 42).

[62] David Fifield, Vinicius Fortuna, Philipp Winter, and Eric Wustrow. Allot Communi-
cations. Network Traffic Obfuscation mailing list. Jan. 2017. https://groups.google.
com/d/topic/traffic-obf/yzxlLpFyXLI (cit. on p. 43).

[63] David Fifield and Mia Gil Epner. Fingerprintability of WebRTC. Tech. rep. May 2016.
https://arxiv.org/abs/1605.08805v1 (cit. on p. 45).

https://lists.torproject.org/pipermail/tor-dev/2014-January/006159.html
https://lists.torproject.org/pipermail/tor-dev/2015-April/008637.html
https://blog.torproject.org/combined-flash-proxy-pyobfsproxy-browser-bundles
https://groups.google.com/d/topic/traffic-obf/BpFSCVgi5rs
https://groups.google.com/d/topic/traffic-obf/BpFSCVgi5rs
https://groups.google.com/d/topic/traffic-obf/fwAN-WWz2Bk
https://groups.google.com/d/topic/traffic-obf/fwAN-WWz2Bk
https://trac.torproject.org/projects/tor/wiki/doc/GoAgent?action=diff&version=2&old_version=1
https://trac.torproject.org/projects/tor/wiki/doc/GoAgent?action=diff&version=2&old_version=1
https://blog.torproject.org/how-use-meek-pluggable-transport
https://lists.torproject.org/pipermail/tor-dev/2014-March/006356.html
https://lists.torproject.org/pipermail/tor-project/2017-January/000881.html
https://lists.torproject.org/pipermail/tor-project/2017-January/000881.html
https://lists.torproject.org/pipermail/tor-talk/2015-August/038780.html
https://lists.torproject.org/pipermail/tor-talk/2015-August/038780.html
https://lists.torproject.org/pipermail/tor-dev/2014-September/007484.html
https://lists.torproject.org/pipermail/tor-dev/2014-September/007484.html
https://groups.google.com/d/topic/traffic-obf/CSJLt3t-_OI
https://groups.google.com/d/topic/traffic-obf/CSJLt3t-_OI
https://groups.google.com/d/topic/traffic-obf/yzxlLpFyXLI
https://groups.google.com/d/topic/traffic-obf/yzxlLpFyXLI
https://arxiv.org/abs/1605.08805v1

BIBLIOGRAPHY 57

[64] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Roger Dingledine,
Phil Porras, and Dan Boneh. “Evading Censorship with Browser-Based Proxies”.
In: Privacy Enhancing Technologies Symposium. Springer, 2012, pp. 239–258. https:
//www.bamsoftware.com/papers/flashproxy.pdf (cit. on pp. 13, 45).

[65] David Fifield, George Kadianakis, Georg Koppen, and Mark Smith. Make bundles
featuring meek. Feb. 2014. https://bugs.torproject.org/10935 (cit. on p. 37).

[66] David Fifield and Georg Koppen. Unexplained drop in meek users, 2016-10-19 to
2016-11-10. Oct. 2016. https://bugs.torproject.org/20495 (cit. on p. 42).

[67] David Fifield, Georg Koppen, and Klaus Layer. Update the meek-amazon fingerprint to
B9E7141C594AF25699E0079C1F0146F409495296. Oct. 2015. https://bugs.torproject.
org/17473 (cit. on p. 40).

[68] David Fifield and kzblocked. Kazakhstan 2016–2017. OONI Censorship Wiki. June
2017. https://trac.torproject.org/projects/tor/wiki/doc/OONI/censorshipwiki/
CensorshipByCountry/Kazakhstan#a20348 (cit. on p. 42).

[69] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. “Blocking-
resistant communication through domain fronting”. In: Privacy Enhancing Technolo-
gies 2015.2 (2015). https://www.bamsoftware.com/papers/fronting/ (cit. on pp. 14,
32, 34, 35, 38).

[70] David Fifield and Lynn Tsai. “Censors’ Delay in Blocking Circumvention Proxies”. In:
Free and Open Communications on the Internet. USENIX, 2016. https://www.usenix.
org/conference/foci16/workshop-program/presentation/fifield (cit. on pp. 8, 29).

[71] Arturo Filastò and Jacob Appelbaum. “OONI: Open Observatory of Network In-
terference”. In: Free and Open Communications on the Internet. USENIX, 2012.
https://www.usenix.org/system/files/conference/foci12/foci12-final12.pdf (cit. on
pp. 18, 19, 29).

[72] Sergey Frolov, Fred Douglas, Will Scott, Allison McDonald, Benjamin VanderSloot,
Rod Hynes, Adam Kruger, Michalis Kallitsis, David G. Robinson, Steve Schultze,
Nikita Borisov, Alex Halderman, and Eric Wustrow. “An ISP-Scale Deployment of
TapDance”. In: Free and Open Communications on the Internet. USENIX, 2017.
https://www.usenix.org/system/files/conference/foci17/foci17-paper-frolov 0.pdf
(cit. on p. 32).

[73] John Geddes, Max Schuchard, and Nicholas Hopper. “Cover Your ACKs: Pitfalls
of Covert Channel Censorship Circumvention”. In: Computer and Communications
Security. ACM, 2013. https://www-users.cs.umn.edu/∼hopper/ccs13-cya.pdf (cit. on
p. 10).

[74] Google. Google Transparency Report: China, All Products, May 31, 2014–Present.
July 2014. https://www.google.com/transparencyreport/traffic/disruptions/124/
(cit. on p. 37).

[75] Google Cloud Platform. Service Specific Terms. Mar. 2015. https://web.archive.org/
web/20150326000133/https://cloud.google.com/terms/service-terms (cit. on p. 39).

https://www.bamsoftware.com/papers/flashproxy.pdf
https://www.bamsoftware.com/papers/flashproxy.pdf
https://bugs.torproject.org/10935
https://bugs.torproject.org/20495
https://bugs.torproject.org/17473
https://bugs.torproject.org/17473
https://trac.torproject.org/projects/tor/wiki/doc/OONI/censorshipwiki/CensorshipByCountry/Kazakhstan#a20348
https://trac.torproject.org/projects/tor/wiki/doc/OONI/censorshipwiki/CensorshipByCountry/Kazakhstan#a20348
https://www.bamsoftware.com/papers/fronting/
https://www.usenix.org/conference/foci16/workshop-program/presentation/fifield
https://www.usenix.org/conference/foci16/workshop-program/presentation/fifield
https://www.usenix.org/system/files/conference/foci12/foci12-final12.pdf
https://www.usenix.org/system/files/conference/foci17/foci17-paper-frolov_0.pdf
https://www-users.cs.umn.edu/~hopper/ccs13-cya.pdf
https://www.google.com/transparencyreport/traffic/disruptions/124/
https://web.archive.org/web/20150326000133/https://cloud.google.com/terms/service-terms
https://web.archive.org/web/20150326000133/https://cloud.google.com/terms/service-terms

BIBLIOGRAPHY 58

[76] Arthur Gwagwa. A study of Internet-based information controls in Rwanda, with a
particular focus on the period around the 4 August 2017 General Elections. Oct. 2017.
https://www.opentech.fund/sites/default/files/attachments/a study of internet-
based information controls in rwanda-arthur gwagwa final.pdf (cit. on p. 51).

[77] Bennett Haselton. Circumventor. Peacefire. http://peacefire.org/circumventor/ (cit. on
p. 16).

[78] Bennett Haselton. Peacefire Censorware Pages. Peacefire. http://www.peacefire.org/
censorware/ (cit. on p. 16).

[79] hellofwy, Max Lv, Mygod, Rio, and Siyuan Ren. SIP007 - Per-session subkey. Jan.
2017. https://github.com/shadowsocks/shadowsocks-org/issues/42 (cit. on pp. 23,
25).

[80] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. “The Parrot is Dead:
Observing Unobservable Network Communications”. In: Symposium on Security &
Privacy. IEEE, 2013. https://people.cs.umass.edu/∼amir/papers/parrot.pdf (cit. on
pp. 8, 10).

[81] Amir Houmansadr, Giang T. K. Nguyen, Matthew Caesar, and Nikita Borisov. “Cir-
ripede: Circumvention Infrastructure using Router Redirection with Plausible De-
niability”. In: Computer and Communications Security. ACM, 2011, pp. 187–200.
https://hatswitch.org/∼nikita/papers/cirripede-ccs11.pdf (cit. on pp. 8, 32).

[82] Amir Houmansadr, Thomas Riedl, Nikita Borisov, and Andrew Singer. “I want my
voice to be heard: IP over Voice-over-IP for unobservable censorship circumvention”.
In: Network and Distributed System Security. The Internet Society, 2013. https :
//people.cs.umass.edu/∼amir/papers/FreeWave.pdf (cit. on pp. 8, 10).

[83] Amir Houmansadr, Edmund L. Wong, and Vitaly Shmatikov. “No Direction Home: The
True Cost of Routing Around Decoys”. In: Network and Distributed System Security.
The Internet Society, 2014. http://dedis.cs.yale.edu/dissent/papers/nodirection.pdf
(cit. on p. 14).

[84] ICLab. https://iclab.org/ (cit. on pp. 19, 29).

[85] Ben Jones, Roya Ensafi, Nick Feamster, Vern Paxson, and Nick Weaver. “Ethical
Concerns for Censorship Measurement”. In: Ethics in Networked Systems Research.
ACM, 2015. https://www.icir.org/vern/papers/censorship-meas.nsethics15.pdf
(cit. on p. 20).

[86] Justin. Pluggable Transports and DPI. tor-dev mailing list. May 2016. https://lists.
torproject.org/pipermail/tor-talk/2016-May/040898.html (cit. on p. 41).

[87] George Kadianakis and Nick Mathewson. obfs2 (The Twobfuscator). Jan. 2011. https:
//gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-
protocol-spec.txt (cit. on p. 11).

[88] George Kadianakis and Nick Mathewson. obfs3 (The Threebfuscator). Jan. 2013. https:
//gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-
protocol-spec.txt (cit. on p. 11).

https://www.opentech.fund/sites/default/files/attachments/a_study_of_internet-based_information_controls_in_rwanda-arthur_gwagwa_final.pdf
https://www.opentech.fund/sites/default/files/attachments/a_study_of_internet-based_information_controls_in_rwanda-arthur_gwagwa_final.pdf
http://peacefire.org/circumventor/
http://www.peacefire.org/censorware/
http://www.peacefire.org/censorware/
https://github.com/shadowsocks/shadowsocks-org/issues/42
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://hatswitch.org/~nikita/papers/cirripede-ccs11.pdf
https://people.cs.umass.edu/~amir/papers/FreeWave.pdf
https://people.cs.umass.edu/~amir/papers/FreeWave.pdf
http://dedis.cs.yale.edu/dissent/papers/nodirection.pdf
https://iclab.org/
https://www.icir.org/vern/papers/censorship-meas.nsethics15.pdf
https://lists.torproject.org/pipermail/tor-talk/2016-May/040898.html
https://lists.torproject.org/pipermail/tor-talk/2016-May/040898.html
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt

BIBLIOGRAPHY 59

[89] Josh Karlin, Daniel Ellard, Alden W. Jackson, Christine E. Jones, Greg Lauer, David P.
Mankins, and W. Timothy Strayer. “Decoy Routing: Toward Unblockable Internet
Communication”. In: Free and Open Communications on the Internet. USENIX, 2011.
https://www.usenix.org/legacy/events/foci11/tech/final files/Karlin.pdf (cit. on
p. 32).

[90] Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M. Swanson, Steven J.
Murdoch, and Ian Goldberg. “SoK: Making Sense of Censorship Resistance Systems”.
In: Privacy Enhancing Technologies 2016.4 (2016), pp. 37–61. https://www.degruyter.
com/downloadpdf/j/popets.2016.2016.issue-4/popets- 2016-0028/popets-2016-
0028.xml (cit. on pp. 6, 8, 10, 14).

[91] Sheharbano Khattak, Mobin Javed, Philip D. Anderson, and Vern Paxson. “Towards
Illuminating a Censorship Monitor’s Model to Facilitate Evasion”. In: Free and Open
Communications on the Internet. USENIX, 2013. https://censorbib.nymity.ch/pdf/
Khattak2013a.pdf (cit. on pp. 15, 50).

[92] Stefan Köpsell and Ulf Hillig. “How to Achieve Blocking Resistance for Existing
Systems Enabling Anonymous Web Surfing”. In: Workshop on Privacy in the Electronic
Society. ACM, 2004, pp. 47–58. https://censorbib.nymity.ch/pdf/Koepsell2004a.pdf
(cit. on pp. 3, 6, 32).

[93] Lantern. https://getlantern.org/ (cit. on p. 32).

[94] Bruce Leidl. obfuscated-openssh. 2009. https://github.com/brl/obfuscated-openssh
(cit. on p. 10).

[95] Katherine Li. GAEuploader. tor-dev mailing list. Jan. 2017. https://lists.torproject.
org/pipermail/tor-dev/2017-January/011812.html (cit. on p. 42).

[96] Katherine Li. GAEuploader. https://github.com/katherinelitor/GAEuploader (cit. on
p. 42).

[97] Patrick Lincoln, Ian Mason, Phillip Porras, Vinod Yegneswaran, Zachary Weinberg,
Jeroen Massar, William Simpson, Paul Vixie, and Dan Boneh. “Bootstrapping Com-
munications into an Anti-Censorship System”. In: Free and Open Communications on
the Internet. USENIX, 2012. https://www.usenix.org/system/files/conference/foci12/
foci12-final7.pdf (cit. on p. 12).

[98] Karsten Loesing. Counting daily bridge users. Tech. rep. 2012-10-001. The Tor Project,
Oct. 2012. https://research.torproject.org/techreports/counting-daily-bridge-users-
2012-10-24.pdf (cit. on p. 34).

[99] Karsten Loesing and Nick Mathewson. BridgeDB specification. Dec. 2013. https :
//spec.torproject.org/bridgedb-spec (cit. on p. 12).

[100] Graham Lowe, Patrick Winters, and Michael L. Marcus. The Great DNS Wall of China.
Tech. rep. New York University, 2007. https://censorbib.nymity.ch/pdf/Lowe2007a.pdf
(cit. on p. 48).

[101] Max Lv and Rio. AEAD Ciphers. https : / / shadowsocks . org / en / spec / AEAD -
Ciphers.html (cit. on p. 22).

https://www.usenix.org/legacy/events/foci11/tech/final_files/Karlin.pdf
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0028/popets-2016-0028.xml
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0028/popets-2016-0028.xml
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0028/popets-2016-0028.xml
https://censorbib.nymity.ch/pdf/Khattak2013a.pdf
https://censorbib.nymity.ch/pdf/Khattak2013a.pdf
https://censorbib.nymity.ch/pdf/Koepsell2004a.pdf
https://getlantern.org/
https://github.com/brl/obfuscated-openssh
https://lists.torproject.org/pipermail/tor-dev/2017-January/011812.html
https://lists.torproject.org/pipermail/tor-dev/2017-January/011812.html
https://github.com/katherinelitor/GAEuploader
https://www.usenix.org/system/files/conference/foci12/foci12-final7.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final7.pdf
https://research.torproject.org/techreports/counting-daily-bridge-users-2012-10-24.pdf
https://research.torproject.org/techreports/counting-daily-bridge-users-2012-10-24.pdf
https://spec.torproject.org/bridgedb-spec
https://spec.torproject.org/bridgedb-spec
https://censorbib.nymity.ch/pdf/Lowe2007a.pdf
https://shadowsocks.org/en/spec/AEAD-Ciphers.html
https://shadowsocks.org/en/spec/AEAD-Ciphers.html

BIBLIOGRAPHY 60

[102] Marek Majkowski. Fun with The Great Firewall. July 2013. https://idea.popcount.
org/2013-07-11-fun-with-the-great-firewall/ (cit. on pp. 23, 24).

[103] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah
McKune, Arn Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. “An Analysis
of China’s ‘Great Cannon’”. In: Free and Open Communications on the Internet.
USENIX, 2015. https://www.usenix.org/system/files/conference/foci15/foci15-paper-
marczak.pdf (cit. on pp. 39, 51).

[104] James Marshall. CGIProxy. https://jmarshall.com/tools/cgiproxy/ (cit. on p. 16).

[105] David Martin and Andrew Schulman. “Deanonymizing Users of the SafeWeb Anonymiz-
ing Service”. In: USENIX Security Symposium. USENIX, 2002. https://www.usenix.
org/legacy/publications/library/proceedings/sec02/martin.html (cit. on p. 16).

[106] Srdjan Matic, Carmela Troncoso, and Juan Caballero. “Dissecting Tor Bridges: a
Security Evaluation of Their Private and Public Infrastructures”. In: Network and
Distributed System Security. The Internet Society, 2017. https://software.imdea.org/
∼juanca/papers/torbridges ndss17.pdf (cit. on pp. 13, 22).

[107] Jon McLachlan and Nicholas Hopper. “On the risks of serving whenever you surf:
Vulnerabilities in Tor’s blocking resistance design”. In: Workshop on Privacy in
the Electronic Society. ACM, 2009. https : / / www - users . cs . umn . edu /∼hopper /
surf and serve.pdf (cit. on p. 21).

[108] meek. Tor Bug Tracker & Wiki. https://trac.torproject.org/projects/tor/wiki/doc/
meek (cit. on pp. 35, 38, 39).

[109] Brock N. Meeks and Declan B. McCullagh. Jacking in from the “Keys to the Kingdom”
Port. CyberWire Dispatch. July 1996. https://cyberwire.com/cwd/cwd.96.07.03.html
(cit. on p. 16).

[110] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Goldberg.
“SkypeMorph: Protocol Obfuscation for Tor Bridges”. In: Computer and Communica-
tions Security. ACM, 2012. https://www.cypherpunks.ca/∼iang/pubs/skypemorph-
ccs.pdf (cit. on p. 10).

[111] Rich Morin. “The Limits of Control”. In: Unix Review Magazine (June 1996). http:
//cfcl.com/rdm/Pubs/tin/P/199606.shtml (cit. on p. 16).

[112] Zubair Nabi. “The Anatomy of Web Censorship in Pakistan”. In: Free and Open
Communications on the Internet. USENIX, 2013. https://censorbib.nymity.ch/pdf/
Nabi2013a.pdf (cit. on p. 50).

[113] Abhinav Narain, Nick Feamster, and Alex C. Snoeren. “Deniable Liaisons”. In: Com-
puter and Communications Security. ACM, 2014. https://cseweb.ucsd.edu/∼snoeren/
papers/denali-ccs14.pdf (cit. on pp. 8, 14).

[114] Milad Nasr, Sadegh Farhang, Amir Houmansadr, and Jens Grossklags. Enemy At the
Gateways: A Game Theoretic Approach to Proxy Distribution. Tech. rep. Sept. 2017.
https://arxiv.org/abs/1709.04030v1 (cit. on p. 13).

[115] NetFreedom Pioneers. Toosheh. https://www.toosheh.org/en.html (cit. on p. 15).

https://idea.popcount.org/2013-07-11-fun-with-the-great-firewall/
https://idea.popcount.org/2013-07-11-fun-with-the-great-firewall/
https://www.usenix.org/system/files/conference/foci15/foci15-paper-marczak.pdf
https://www.usenix.org/system/files/conference/foci15/foci15-paper-marczak.pdf
https://jmarshall.com/tools/cgiproxy/
https://www.usenix.org/legacy/publications/library/proceedings/sec02/martin.html
https://www.usenix.org/legacy/publications/library/proceedings/sec02/martin.html
https://software.imdea.org/~juanca/papers/torbridges_ndss17.pdf
https://software.imdea.org/~juanca/papers/torbridges_ndss17.pdf
https://www-users.cs.umn.edu/~hopper/surf_and_serve.pdf
https://www-users.cs.umn.edu/~hopper/surf_and_serve.pdf
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://cyberwire.com/cwd/cwd.96.07.03.html
https://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
https://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
http://cfcl.com/rdm/Pubs/tin/P/199606.shtml
http://cfcl.com/rdm/Pubs/tin/P/199606.shtml
https://censorbib.nymity.ch/pdf/Nabi2013a.pdf
https://censorbib.nymity.ch/pdf/Nabi2013a.pdf
https://cseweb.ucsd.edu/~snoeren/papers/denali-ccs14.pdf
https://cseweb.ucsd.edu/~snoeren/papers/denali-ccs14.pdf
https://arxiv.org/abs/1709.04030v1
https://www.toosheh.org/en.html

BIBLIOGRAPHY 61

[116] Leif Nixon. Some observations on the Great Firewall of China. Nov. 2011. https:
//www.nsc.liu.se/∼nixon/sshprobes.html (cit. on p. 23).

[117] Daiyuu Nobori and Yasushi Shinjo. “VPN Gate: A Volunteer-Organized Public VPN
Relay System with Blocking Resistance for Bypassing Government Censorship Fire-
walls”. In: Networked Systems Design and Implementation. USENIX, 2014. https:
//www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-nobori.pdf (cit. on
pp. 12, 13, 25).

[118] OpenNet Initiative. Internet Filtering in China in 2004-2005: A Country Study.
https://opennet.net/studies/china (cit. on p. 47).

[119] Overthrow CPC. 关于 ss/ssr. 编程随想的博客. Oct. 2017. https://program-think.
blogspot.com/2017/10/gfw-news.html?comment=1508314948860 (cit. on p. 25).

[120] Jong Chun Park and Jedidiah R. Crandall. “Empirical Study of a National-Scale
Distributed Intrusion Detection System: Backbone-Level Filtering of HTML Responses
in China”. In: Distributed Computing Systems. IEEE, 2010, pp. 315–326. https :
//www.cs.unm.edu/∼crandall/icdcs2010.pdf (cit. on pp. 15, 49).

[121] Vern Paxson. “Bro: A System for Detecting Network Intruders in Real-Time”. In:
Computer Networks 31.23-24 (Dec. 1999), pp. 2435–2463. https://www.icir.org/vern/
papers/bro-CN99.pdf (cit. on p. 15).

[122] Mike Perry. Tor Browser 3.6 is released. The Tor Blog. Apr. 2014. https://blog.
torproject.org/tor-browser-36-released (cit. on p. 11).

[123] Mike Perry. Tor Browser 4.0 is released. The Tor Blog. Oct. 2014. https://blog.
torproject.org/tor-browser-40-released (cit. on pp. 23, 24, 38).

[124] Mike Perry. Tor Browser 4.5 is released. The Tor Blog. Apr. 2015. https://blog.
torproject.org/tor-browser-45-released (cit. on pp. 23, 24).

[125] Matthew Prince. Hacker News. Mar. 2015. https://news.ycombinator.com/item?id=
9234367 (cit. on p. 39).

[126] printempw. 为何 shadowsocks 要弃用一次性验证 (OTA). Blessing Studio. Feb. 2017.
https://blessing.studio/why-do-shadowsocks-deprecate-ota/. English synopsis at
https://groups.google.com/d/msg/traffic-obf/CWO0peBJLGc/Py-clLSTBwAJ
(cit. on pp. 22–24).

[127] Psiphon. https://psiphon.ca/ (cit. on p. 32).

[128] Thomas H. Ptacek and Timothy N. Newsham. Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection. Tech. rep. Secure Networks, Inc., Jan.
1998. https://www.icir.org/vern/Ptacek-Newsham-Evasion-98.pdf (cit. on p. 15).

[129] Refraction Networking. https://refraction.network/ (cit. on p. 13).

[130] Hal Roberts, Ethan Zuckerman, and John Palfrey. 2011 Circumvention Tool Evaluation.
Tech. rep. Berkman Center for Internet and Society, Aug. 2011. https://cyber.law.
harvard.edu/publications/2011/2011 Circumvention Tool Evaluation (cit. on p. 20).

https://www.nsc.liu.se/~nixon/sshprobes.html
https://www.nsc.liu.se/~nixon/sshprobes.html
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-nobori.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-nobori.pdf
https://opennet.net/studies/china
https://program-think.blogspot.com/2017/10/gfw-news.html?comment=1508314948860
https://program-think.blogspot.com/2017/10/gfw-news.html?comment=1508314948860
https://www.cs.unm.edu/~crandall/icdcs2010.pdf
https://www.cs.unm.edu/~crandall/icdcs2010.pdf
https://www.icir.org/vern/papers/bro-CN99.pdf
https://www.icir.org/vern/papers/bro-CN99.pdf
https://blog.torproject.org/tor-browser-36-released
https://blog.torproject.org/tor-browser-36-released
https://blog.torproject.org/tor-browser-40-released
https://blog.torproject.org/tor-browser-40-released
https://blog.torproject.org/tor-browser-45-released
https://blog.torproject.org/tor-browser-45-released
https://news.ycombinator.com/item?id=9234367
https://news.ycombinator.com/item?id=9234367
https://blessing.studio/why-do-shadowsocks-deprecate-ota/
https://groups.google.com/d/msg/traffic-obf/CWO0peBJLGc/Py-clLSTBwAJ
https://psiphon.ca/
https://www.icir.org/vern/Ptacek-Newsham-Evasion-98.pdf
https://refraction.network/
https://cyber.law.harvard.edu/publications/2011/2011_Circumvention_Tool_Evaluation
https://cyber.law.harvard.edu/publications/2011/2011_Circumvention_Tool_Evaluation

BIBLIOGRAPHY 62

[131] David Robinson, Harlan Yu, and Anne An. Collateral Freedom: A Snapshot of Chinese
Internet Users Circumventing Censorship. Apr. 2013. https://www.opentech.fund/
article/collateral-freedom-snapshot-chinese-users-circumventing-censorship (cit. on
p. 36).

[132] SafeWeb. TriangleBoy Whitepaper. http://www.webrant.com/safeweb site/html/
www/tboy whitepaper.html (cit. on p. 14).

[133] Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper. “Routing
Around Decoys”. In: Computer and Communications Security. ACM, 2012. https:
//www-users.cs.umn.edu/∼hopper/decoy-ccs12.pdf (cit. on p. 14).

[134] Andreas Sfakianakis, Elias Athanasopoulos, and Sotiris Ioannidis. “CensMon: A Web
Censorship Monitor”. In: Free and Open Communications on the Internet. USENIX,
2011. https://www.usenix.org/legacy/events/foci11/tech/final files/Sfakianakis.pdf
(cit. on pp. 18, 49).

[135] Shadowsocks. https://shadowsocks.org/en/ (cit. on p. 11).

[136] Thomas Sladek and Eduard Bröse. Market Survey: Detection & Filtering Solutions to
Identify File Transfer of Copyright Protected Content for Warner Bros. and movielabs.
Tech. rep. EANTC AG, Mar. 2011. https://wikileaks.org/sony/docs/05/docs/Anti-
Piracy/CDSA/EANTC-Survey-1.5-unsecured.pdf (cit. on p. 9).

[137] Charlie Smith. We are under attack. GreatFire. Mar. 2015. https://en.greatfire.org/
blog/2015/mar/we-are-under-attack (cit. on p. 39).

[138] Rob Smits, Divam Jain, Sarah Pidcock, Ian Goldberg, and Urs Hengartner. “BridgeSPA:
Improving Tor Bridges with Single Packet Authorization”. In: Workshop on Privacy
in the Electronic Society. ACM, 2011. https://www.cypherpunks.ca/∼iang/pubs/
bridgespa-wpes.pdf (cit. on p. 28).

[139] Snowflake. Tor Bug Tracker & Wiki. https://trac.torproject.org/projects/tor/wiki/
doc/Snowflake (cit. on pp. 13, 45).

[140] Qingfeng Tan, Jinqiao Shi, Binxing Fang, Li Guo, Wentao Zhang, Xuebin Wang,
and Bingjie Wei. “Towards Measuring Unobservability in Anonymous Communcation
Systems”. In: Journal of Computer Research and Development 52.10 (Oct. 2015).
http://crad.ict.ac.cn/EN/10.7544/issn1000-1239.2015.20150562 (cit. on pp. 32, 40).

[141] Tor Metrics. Bridge users by transport from Brazil. Oct. 2017. https : // metrics .
torproject.org/userstats-bridge-combined.html?start=2016-06-01&end=2017-10-
01&country=br (cit. on p. 42).

[142] The Tor Project. BridgeDB. https://bridges.torproject.org/ (cit. on p. 12).

[143] Michael Carl Tschantz, Sadia Afroz, Anonymous, and Vern Paxson. “SoK: Towards
Grounding Censorship Circumvention in Empiricism”. In: Symposium on Security &
Privacy. IEEE, 2016. https://internet-freedom-science.org/circumvention-survey/
sp2016/ (cit. on pp. 6, 9, 20, 47).

[144] Vladislav Tsyrklevich. Internet-wide scanning for bridges. tor-dev mailing list. Dec.
2014. https://lists.torproject.org/pipermail/tor-dev/2014-December/007957.html
(cit. on p. 22).

https://www.opentech.fund/article/collateral-freedom-snapshot-chinese-users-circumventing-censorship
https://www.opentech.fund/article/collateral-freedom-snapshot-chinese-users-circumventing-censorship
http://www.webrant.com/safeweb_site/html/www/tboy_whitepaper.html
http://www.webrant.com/safeweb_site/html/www/tboy_whitepaper.html
https://www-users.cs.umn.edu/~hopper/decoy-ccs12.pdf
https://www-users.cs.umn.edu/~hopper/decoy-ccs12.pdf
https://www.usenix.org/legacy/events/foci11/tech/final_files/Sfakianakis.pdf
https://shadowsocks.org/en/
https://wikileaks.org/sony/docs/05/docs/Anti-Piracy/CDSA/EANTC-Survey-1.5-unsecured.pdf
https://wikileaks.org/sony/docs/05/docs/Anti-Piracy/CDSA/EANTC-Survey-1.5-unsecured.pdf
https://en.greatfire.org/blog/2015/mar/we-are-under-attack
https://en.greatfire.org/blog/2015/mar/we-are-under-attack
https://www.cypherpunks.ca/~iang/pubs/bridgespa-wpes.pdf
https://www.cypherpunks.ca/~iang/pubs/bridgespa-wpes.pdf
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
http://crad.ict.ac.cn/EN/10.7544/issn1000-1239.2015.20150562
https://metrics.torproject.org/userstats-bridge-combined.html?start=2016-06-01&end=2017-10-01&country=br
https://metrics.torproject.org/userstats-bridge-combined.html?start=2016-06-01&end=2017-10-01&country=br
https://metrics.torproject.org/userstats-bridge-combined.html?start=2016-06-01&end=2017-10-01&country=br
https://bridges.torproject.org/
https://internet-freedom-science.org/circumvention-survey/sp2016/
https://internet-freedom-science.org/circumvention-survey/sp2016/
https://lists.torproject.org/pipermail/tor-dev/2014-December/007957.html

BIBLIOGRAPHY 63

[145] uProxy. https://www.uproxy.org/ (cit. on pp. 12, 44).

[146] John-Paul Verkamp and Minaxi Gupta. “Inferring Mechanics of Web Censorship
Around the World”. In: Free and Open Communications on the Internet. USENIX,
2012. https://www.usenix.org/system/files/conference/foci12/foci12-final1.pdf
(cit. on p. 49).

[147] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas Ristenpart, and Thomas Shrimp-
ton. “Seeing through Network-Protocol Obfuscation”. In: Computer and Commu-
nications Security. ACM, 2015. http://pages.cs.wisc.edu/∼liangw/pub/ccsfp653-
wangA.pdf (cit. on pp. 10, 32, 40).

[148] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita Borisov.
“CensorSpoofer: Asymmetric Communication using IP Spoofing for Censorship-Resistant
Web Browsing”. In: Computer and Communications Security. ACM, 2012. https:
//hatswitch.org/∼nikita/papers/censorspoofer.pdf (cit. on p. 14).

[149] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishnamurthy.
“Your State is Not Mine: A Closer Look at Evading Stateful Internet Censorship”. In:
Internet Measurement Conference. ACM, 2017. http://www.cs.ucr.edu/∼krish/imc17.
pdf (cit. on p. 15).

[150] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven
Cheung, Frank Wang, and Dan Boneh. “StegoTorus: A Camouflage Proxy for the
Tor Anonymity System”. In: Computer and Communications Security. ACM, 2012.
https://www.frankwang.org/files/papers/ccs2012.pdf (cit. on p. 10).

[151] Tim Wilde. CN Prober IPs. Dec. 2011. https://gist.github.com/twilde/4320b75d398f2e1f074d
(cit. on p. 24).

[152] Tim Wilde. Great Firewall Tor Probing Circa 09 DEC 2011. Jan. 2012. https://gist.
github.com/twilde/da3c7a9af01d74cd7de7 (cit. on pp. 23, 24).

[153] Tim Wilde. Knock Knock Knockin’ on Bridges’ Doors. The Tor Blog. Jan. 2012.
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors (cit. on pp. 23,
24).

[154] Brandon Wiley. Dust: A Blocking-Resistant Internet Transport Protocol. Tech. rep.
University of Texas at Austin, 2011. http://blanu.net/Dust.pdf (cit. on p. 11).

[155] Philipp Winter. brdgrd. 2012. https://github.com/NullHypothesis/brdgrd (cit. on
pp. 15, 24).

[156] Philipp Winter. “Measuring and circumventing Internet censorship”. PhD thesis.
Karlstad University, 2014. https://nymity.ch/papers/pdf/winter2014b.pdf (cit. on
p. 6).

[157] Philipp Winter and Stefan Lindskog. “How the Great Firewall of China is Blocking
Tor”. In: Free and Open Communications on the Internet. USENIX, 2012. https:
//www.usenix.org/system/files/conference/foci12/foci12-final2.pdf (cit. on pp. 8, 15,
23, 24, 49).

https://www.uproxy.org/
https://www.usenix.org/system/files/conference/foci12/foci12-final1.pdf
http://pages.cs.wisc.edu/~liangw/pub/ccsfp653-wangA.pdf
http://pages.cs.wisc.edu/~liangw/pub/ccsfp653-wangA.pdf
https://hatswitch.org/~nikita/papers/censorspoofer.pdf
https://hatswitch.org/~nikita/papers/censorspoofer.pdf
http://www.cs.ucr.edu/~krish/imc17.pdf
http://www.cs.ucr.edu/~krish/imc17.pdf
https://www.frankwang.org/files/papers/ccs2012.pdf
https://gist.github.com/twilde/4320b75d398f2e1f074d
https://gist.github.com/twilde/da3c7a9af01d74cd7de7
https://gist.github.com/twilde/da3c7a9af01d74cd7de7
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
http://blanu.net/Dust.pdf
https://github.com/NullHypothesis/brdgrd
https://nymity.ch/papers/pdf/winter2014b.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf

BIBLIOGRAPHY 64

[158] Philipp Winter, Tobias Pulls, and Juergen Fuss. “ScrambleSuit: A Polymorphic Net-
work Protocol to Circumvent Censorship”. In: Workshop on Privacy in the Electronic
Society. ACM, 2013. https://censorbib.nymity.ch/pdf/Winter2013b.pdf (cit. on pp. 11,
22).

[159] Sebastian Wolfgarten. Investigating large-scale Internet content filtering. Tech. rep.
Dublin City University, 2006. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.133.5778&rep=rep1&type=pdf (cit. on p. 48).

[160] Joss Wright. Regional Variation in Chinese Internet Filtering. Tech. rep. University
of Oxford, 2012. https://papers.ssrn.com/sol3/Delivery.cfm/SSRN ID2265775
code1448244.pdf?abstractid=2265775&mirid=3 (cit. on p. 49).

[161] Joss Wright, Tulio de Souza, and Ian Brown. “Fine-Grained Censorship Mapping:
Information Sources, Legality and Ethics”. In: Free and Open Communications on
the Internet. USENIX, 2011. https://www.usenix.org/legacy/events/foci11/tech/
final files/Wright.pdf (cit. on pp. 2, 20).

[162] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. “Telex: Anticen-
sorship in the Network Infrastructure”. In: USENIX Security Symposium. USENIX,
2011. https://www.usenix.org/event/sec11/tech/full papers/Wustrow.pdf (cit. on
p. 32).

[163] Xueyang Xu, Z. Morley Mao, and J. Alex Halderman. “Internet Censorship in China:
Where Does the Filtering Occur?” In: Passive and Active Measurement Conference.
Springer, 2011, pp. 133–142. https://web.eecs.umich.edu/∼zmao/Papers/china-
censorship-pam11.pdf (cit. on p. 49).

[164] XX-Net. https://github.com/XX-net/XX-Net (cit. on p. 42).

[165] Yawning Angel and Philipp Winter. obfs4 (The obfourscator). May 2014. https :
//gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt
(cit. on pp. 11, 22).

https://censorbib.nymity.ch/pdf/Winter2013b.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.5778&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.5778&rep=rep1&type=pdf
https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2265775_code1448244.pdf?abstractid=2265775&mirid=3
https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2265775_code1448244.pdf?abstractid=2265775&mirid=3
https://www.usenix.org/legacy/events/foci11/tech/final_files/Wright.pdf
https://www.usenix.org/legacy/events/foci11/tech/final_files/Wright.pdf
https://www.usenix.org/event/sec11/tech/full_papers/Wustrow.pdf
https://web.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf
https://web.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf
https://github.com/XX-net/XX-Net
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt

	Introduction
	Scope
	Context and overview

	Principles of circumvention
	Collateral damage
	Content obfuscation strategies
	Address blocking resistance strategies
	Spheres of influence and visibility
	Early censorship and circumvention

	Understanding censors
	Active probing
	History of active probing research
	Types of probes
	Probing infrastructure
	Fingerprinting the probers

	Time delays in censors' reactions
	Domain fronting
	Work related to domain fronting
	A pluggable transport for Tor
	An unvarnished history of meek deployment

	Snowflake
	Flash proxy

	Summary of censorship measurement studies
	Bibliography

