1 Introduction 1
 1.1 Scope ... 1
 1.2 Overview .. 3

2 Principles of circumvention 4
 2.1 Collateral damage ... 6
 2.2 Content obfuscation strategies ... 8
 2.3 Address blocking resistance strategies .. 11
 2.4 Spheres of influence and visibility ... 13
 2.5 Early censorship and circumvention ... 14

3 Understanding censors 16

4 Active probing 19
 4.1 Fingerprinting the probers ... 20

5 Time delays in censors’ reactions 21

6 Domain fronting 22
 6.1 Related work on domain fronting ... 22
 6.2 An unvarnished history of meek deployment ... 23

7 Snowflake 32
 7.0.1 Flash proxy .. 33

A Summary of censorship measurement studies 35
Chapter 1

Introduction

This is a thesis about Internet censorship. In it, I will expand on two threads of research that have occupied my attention for the past several years: better understanding how censors work, and fielding systems that circumvent their restrictions. These two threads fuel each other: better understanding censors enables us to build better circumvention systems that take into account their strengths and weaknesses; and the deployment of a circumvention system affords an opportunity to observe how censors themselves react to changing circumstances. If I am successful, the output of my research is useful models that describe not only how censors behave today but how they may evolve in the future, and tools for circumvention that are not only sound in theory but also effective in practice.

1.1 Scope

Censorship is an enormous topic. Even the addition of the “Internet” qualifier hardly reduces its scope, because almost everything that might be censored touches the Internet in some way. To deal with the subject in depth, it is necessary to limit the scope. My research is focused on an important special case of censorship, which I call the “border firewall” case. It is illustrated in Figure 1.1.

A client resides within a network that is entirely controlled by a censor. Within the censor’s network, the censor may observe, modify, inject, or block any communication along

Figure 1.1: In the border firewall scenario, a client within a censor-controlled network wants to reach a destination that lies outside the censor’s control.
any link. The censor, in particular, tries to prevent some subset of communication with the wider Internet, for instance by blocking certain keywords, network addresses, or protocols. The client’s computer, however, is trustworthy and not controlled by the censor. The client’s goal is to communicate with some destination that lies outside the censor’s network, despite the censor’s blocks: we call this activity circumvention. Circumvention requires somehow safely traversing a hostile network, eluding detection and blocking by the censor, in order to reach a destination. The censor does not control network links outside its own border; it may of course send messages to the outside world, but it cannot control them after they have traversed the border.

This abstract model is a good starting point, but the situation in practice is never so clear-cut. For example, the censor may be weaker than assumed: it may observe only the links at the border, not those wholly inside; it may not be able to fully inspect every packet that flows on its network; or there may be deficiencies or dysfunctions in its detection capabilities. Or the censor may be stronger: perhaps it, while not fully controlling outside networks, may influence their operators to discourage them from assisting in circumvention. The client may be limited, for technical or social reasons, in the software and hardware they can use. The destination may knowingly cooperate with the client’s circumvention, or may not. There is no limit to the possible complications. Adjusting the basic model to reflect real-world actors’ motivations and capabilities is the heart of threat modeling, one of the main topics of this thesis. Depending on the situation, we will add to the list of assumptions. In particular, what makes circumvention possible at all is the censor’s motivation to block only some of the incoming and outgoing traffic, and allow the rest to pass—this assumption will be a major focus of the next chapter.

It is not hard to see how the border firewall model relates to censorship in practice. In a common case, the censor is a national government, and the borders of its controlled network correspond to the borders of a country. A government typically has the power to enforce laws and control network infrastructure to act within its own borders, but not outside. However the boundaries of censorship do not always correspond exactly to the border of a country. Almost since the study of Internet censorship began, it has been recognized that content restrictions may vary across geographic locations, even within the same country (Wright et al. [136] identified some possible causes). In some places a better model is not a single unified censorship regime, but rather many individual Internet service providers, each controlling its own network and acting as a mini-censor, perhaps coordinating with others about what to block and perhaps not. Another important case is that of a university or corporate network, in which the only outside network access is through a single gateway router, which tries to enforce a policy on what is acceptable and what is not. These smaller networks often differ from national- or ISP-level networks in interesting ways, for instance with regard to the amount of overblocking they are willing to tolerate, or the amount of computation they can afford to spend on each communication.

Here are some examples of forms of censorship that are in scope:

- blocking IP addresses
- blocking specific network protocols
- blocking DNS resolution for certain domains
• blocking keywords in URLs
• dissecting network layers (“deep packet inspection”)
• statistical and probabilistic traffic classification
• connection speed throttling
• active measures by censors to discover the use of circumvention

Other forms of censorship that are not in scope include:

• domain takedowns (that affect all clients globally)
• server-side blocking (servers refusing to serve certain clients)
• anything that takes place entirely within the censor’s network and does not cross the border
• forum moderation and deletion of social media posts
• deletion-resistant publishing in the vein of the Eternity Service [6] (what Köpsell and Hillig call “censorship resistant publishing systems” [76, § 1]), except insofar as access to such services may be blocked

Many parts of the abstract model are deliberately left unspecified, to allow for the many variations that arise in practice. The precise nature of “blocking” can take many forms, from packet dropping, to injection of false responses, and softer forms of disruption such as bandwidth throttling. Detection need not be purely passive. The censor is permitted to do work outside the context of a single connection; for example, it may compute aggregate statistics over many connections, make lists of suspected IP addresses, and defer some analysis for offline processing. The client may cooperate with other entities inside and outside the censor’s network, and indeed almost all circumvention will require the cooperation of a willing proxy on the outside.

Some have objected to the use of the generic term “Internet censorship” to refer to the narrow case of the border firewall. I am sensitive to this objection and acknowledge that far more topics could fit under the umbrella of Internet censorship. Nevertheless, for the purpose of this thesis, I will continue to use “Internet censorship” without further qualification to refer to the border firewall case.

1.2 Overview

here be dragons

Chapter 2 is the “thesis” within the thesis.
experience with tor
pluggable transports
My blind spots: VPNs, systems without research documentation (FreeGate, Ultrasurf, Shadowsocks), foreign-language documentation and forums.
Chapter 2

Principles of circumvention

- Pluggable transports

In order to understand the challenges of circumvention, it helps to put yourself in the mindset of a censor. A censor has two high-level functions: detection and blocking. Detection is a classification problem: the censor prefers to permit some communications and deny others, and so it must have some procedure for deciding which communications fall in which category. Blocking follows detection. Once the censor detects some prohibited communication, it must take some action to stop the communication, such as terminating the connection at a network router. A censor must be able both to detect and to block. (Detection without blocking would be called surveillance, not censorship.) The flip side of this statement is that a circumventor succeeds either by eluding detection, or, once detected, somehow resist the censor’s blocking action.

A censor is, then, essentially a traffic classifier coupled with a blocking mechanism. Though the design space is large, and many complications are possible, at its heart it must decide, for each communication, whether to block or allow, and then effect blocks as appropriate. Like any classifier, a censor is liable to make mistakes. When the censor fails to block something that it would have preferred to block, it is an error called a false negative; when the censor accidentally blocks something that it would have preferred to allow, it is a false positive. Techniques for avoiding detection are often called network protocol “obfuscation,” and the term is apt. It reflects not an attitude of security through obscurity; but rather a recognition that avoiding detection is about making the censor’s classification problem more difficult, and therefore more costly. Forcing the censor to trade false positives for false negatives is the core of all circumvention that is based on avoiding detection. The costs of misclassifications cannot be understood in absolute terms: they only have meaning relative to a given censor and its specific resources and motivations. Understanding the relative importance the censor assigns to classification errors—knowing what it prefers to allow and to block—is helpful. Through good modeling, we can make the tradeoffs less favorable for the censor and more favorable for the circumventor.

The censor may base its detection decision on whatever criteria it find practical. I like to divide detection techniques into two classes: detection by content and detection by address. Detection by content is based on the content or topic of the message: keyword filtering and protocol identification fall into this class. Detection by address is based on the sender or
recipient of the message: IP address blacklists and DNS response tampering fall into this class. An “address” may be any kind of identifier: an IP address, a domain name, an email address. Of these two classes, my experience is that detection by address is harder to defeat. Of course, there is no clear separation between what is content and what is an address. The layered nature of network protocols means that an address at one layer is content at another. Nevertheless, I find it useful to think about detection techniques in these terms.

The censor may block the address of the destination, preventing direct access. Any communication between the client and the destination must therefore be indirect. The intermediary between client and destination is called a *proxy*, and it must do two things: provide an unblocked address for the client to contact; and somehow mask the contents of the channel and the eventual destination address. Throughout this thesis, I will use the word “proxy” with an abstract meaning of “one that acts of behalf of another.” A proxy need not be what is typically understood by the term “proxy server,” a single host accepting and forwarding connections. A VPN (virtual private network) is also a kind of proxy, as is the Tor network, as may be a specially configured network router. In Chapter 6 we will see a network of cloud servers acting as a proxy. In Chapter 7 the proxy will be a pool of temporary instances of some JavaScript code.

Proxies solve the first-order effects of censorship (detection by content and address), but they induce a second-order effect: the censor must now seek out and block proxies, in addition to the contents and addresses that are its primary targets. This is where circumvention research really begins: not with access to the destination per se, but access to a proxy, which transitively gives access to the destination. The censor attempts deals with detecting and blocking communication with proxies using the same tools it would for any other communication. Just as it may look for forbidden keywords in text, it may look for distinctive features of proxy protocols; just as it may block politically sensitive web sites, it may block the addresses of any proxies it can discover. The challenge for the circumventor is to use proxy addresses and proxy protocols that are difficult for the censor to detect or block.

The way of organizing censorship and circumvention techniques that I have presented is not the only way. Köpsell and Hillig divide detection into “content” and “circumstances” [76, § 4]; their circumstances include addresses and also what I would consider more content-like: timing, data transfer characteristics, and protocols. Philipp Winter divides circumvention into three problems: bootstrapping, endpoint blocking, and traffic obfuscation [131, § 1.1]. Endpoint blocking and traffic obfuscation correspond to my detection by address and detection by content; bootstrapping is the challenge of getting a copy of circumvention software and discovering initial proxy addresses. I tend to fold bootstrapping in with address-based detection; see Section 2.3. Khattak, Elahi, et al., in their 2016 survey and systematization of circumvention systems, break detection into four aspects: destinations, content, flow properties, and protocol semantics [74, § 2.4]. I think of their “content,” “flow properties,” and “protocol semantics” as all fitting under the heading of content. Tschantz et al. identify “setup” and “usage” [122, § V], and Khattak, Elahi, et al. identify “communication establishment” and “conversation” [74, § 3.1], as targets of obfuscation; these mostly correspond to address and content. What I call “detection” and “blocking,” Khattak, Elahi, et al. call “fingerprinting” and “direct censorship” [74, § 2.3], and Tschantz et al. call “detection” and “action” [122, § II].

A major difficulty in developing circumvention systems is that however much you model
CHAPTER 2. PRINCIPLES OF CIRCUMVENTION

and try to predict the reactions of a censor; real-world stress testing is expensive. If you really want to test a design against a censor, not only must you write and deploy an implementation, integrate it with client-facing software like web browser, and work out details of distribution—you must also attract enough users to merit a censor’s attention. Any system, even a fundamentally broken one, will work to circumvent most censors, as long as it is used only by one or a few clients. The true test arises only after the system has begun to scale and the censor to fight back. This phenomenon may have contributed to the unfortunate characterization of censorship and circumvention as a cat-and-mouse game: deploying a weak circumvention system, watching it get blocked as it becomes popular, and starting over again with another similarly weak system. In my opinion, the cat-and-mouse game is not inevitable. It is possible to develop systems that resist blocking—not absolutely, but quantifiably in terms of costs to the blocker—even after it has become popular. We should think of the honeymoon period while a system is too small to be worth noticing, not as the beginning and end of a system’s useful life, but as a time to work out growing pains.

2.1 Collateral damage

What’s to prevent the censor from shutting down all connectivity within its network, trivially preventing the client from reaching the destination? The answer is that the censor derives some kind of benefit from allowing network connectivity, other than that which it tries to censor. Or to put it another way: the censor incurs a cost whenever it commits a false positive (also called overblocking: inadvertently blocking something it would have preferred to allow). Because it wants to block some things and allow others, the censor is forced to run as a classifier. In order to avoid harm to itself, the censor permits some measure of circumvention traffic.

The cost of false positives is of so central importance to circumvention that researchers have a special term for it: collateral damage. The term is a bit unfortunate, evoking as it does negative connotations from other contexts. It helps to focus more on the “collateral” than the “damage”: collateral damage is any cost experienced by the censor as a result of incidental blocking done in the course of censorship. It must trade its desire to block forbidden communications against its desire to avoid harm to itself, balance underblocking with overblocking. Ideally, we force the censor into a dilemma: unable to distinguish between circumvention and other traffic, it must choose either to allow circumvention along with everything else, or else block everything and suffer maximum collateral damage. It is not necessary to fully reach this ideal before circumvention becomes possible. Better obfuscation drives up the censor’s error rate and therefore the cost of any blocking. Ideally, the potential “damage” is never realized, because the censor sees the cost as being too great.

Collateral damage, being an abstract “cost,” can take many forms. It may come in the form of civil discontent, as people try to access web sites and get annoyed with the government when unable to do so. It may be reduced productivity, as workers are unable to access resources they need to to their job. This is the usual explanation for why the Great Firewall of China has never blocked GitHub for long, despite GitHub’s hosting and distribution of circumvention software: GitHub is so deeply integrated into software development, that programmers are not able to work when it is blocked.
Collateral damage, as with other aspects of censorship, cannot be understood in isolation, but only in relation to a particular censor. Suppose that blocking one web site results in the collateral blocking of a hundred more. Is that a large amount of collateral damage? It depends. Are those other sites likely to be visited by clients in the censor’s network? Are they in the local language? Do professionals and officials rely on them to get their job done? Is someone in the censorship bureau likely to get fired as a result of their blocking? If the answers to these question is yes, then yes, the collateral damage is likely to be high. But if not, then the censor could take or leave those hundred sites—it doesn’t matter.

Censors may take actions to reduce collateral damage while still blocking most of what they intend to. (Another way to think of it is: reducing false positives without reducing false negatives.) For example, it has been repeatedly documented—by Clayton et al. [17], Winter and Lindskog [132], and Fifield and Tsai [57], for example—that the Great Firewall prefers to block individual ports (or a small range of ports), rather than blocking an entire IP address, probably in a bid to reduce collateral damage. In Chapter 6 we will see a system whose blocking resistance is based on widely used web services—the argument is that to block the circumvention system, the censor would have to block the entire web service. However this argument requires that the circumvention system’s use of the web service be indistinguishable from other uses—otherwise the censor may selectively block only the connections used for circumvention. Local circumstances may serve to reduce collateral damage: for example if a domestic replacement exists for a foreign service, the censor may block the foreign service more easily.

The censor’s reluctance to cause collateral damage is what makes circumvention possible in general. (There are some exceptions, discussed in the next section, where the censor can detect but is not capable of blocking.) To deploying a circumvention system is to make a bet: that the censor cannot field a classifier that adequately distinguishes traffic of the circumvention system from other traffic which, if blocked, would result in collateral damage. Even steganographic circumvention channels that mimic some other protocol ultimately derive their blocking resistance from a collateral damage argument: that the censor feels that to block that other protocol would result in too much damage to be worth it. For example, a circumvention protocol that imitates HTTP can be blocked by blocking HTTP—the question then is whether the censor can afford to block HTTP. And that’s in the best case—assuming the circumvention protocol has no “tell” that enables the censor easily to distinguish it from the cover protocol it is trying to imitate. Indistinguishability is a necessary but not sufficient condition for blocking resistance: that which you are trying to be indistinguishable from must also have sufficient collateral damage. It’s of no use to have a perfect steganographic of a protocol that the censor doesn’t mind blocking.

In my opinion, collateral damage provides a more productive way to think about the behavior of censors than do alternatives. Is is able to take into account different censors’ differing resources and motivations, and so is more useful for generic modeling. Moreover, it gets to the heart of what makes traffic resistant to blocking. There have been many other attempts at defining resistance to blocking. Narain et al. [94] called the essential element “deniability,” meaning that a user could plausibly claim to have been doing something other than circumventing when confronted with a log of their network activity. Khattak, Elahi, et al. [74, § 4] also consider “deniability” separately from “unblockability.” Houmansadr et al. [66, 67, 65] used the term “unobservability,” which I feel fails to convey that the
censor’s essential function is distinguishing, not observation. Brubaker et al. [11] used the term “entanglement,” which is closer to the mark and inspired my own thinking. What they call entanglement I think of as indistinguishability, and keep in mind that that which you are trying to be indistinguishable with has to be something valued by the censor. Collateral damage provides a way to make statements about censorship resistance quantifiable, at least in a loose sense. Rather than saying, “the censor cannot block \(X \),” or even, “the censor is unwilling to block \(X \),” it is better to say “in order to block \(X \), the censor would have to do \(Y \),” where \(Y \) is some action bearing a cost for the censor. A statement like this makes it clear that some censors may be able to afford the cost of doing \(Y \) and others may not; there is no “unblockable” in absolute terms. Now, actually quantifying the value of \(Y \) is a task in itself, by no means a trivial one. The state of research in this field is still far from being able to assign actual numbers (e.g. in terms of dollars) to costs as perceived by censors. If a circumvention system becomes blocked, it may simply mean that the circumventor overestimated the collateral damage or underestimated the censor’s capacity to absorb it.

We have observed that the risk of collateral damage is what prevents the censor from shutting down the network completely—and yet, censors do occasionally do complete shutdowns. In fact the practice is increasing; reported of shutdowns in 2016. This does not necessarily contradict the theory of collateral damage. Shutdowns are indeed costly—estimated that shutdowns cost \(\text{some number} \). It is just that, in some cases, the calculus works out that the harm caused by a shutdown does not outweigh (in the censor’s mind) the benefits of blocking access. As always, the outcome depends on the specific censor: censors that don’t benefit as much from the Internet don’t have as much to lose by blocking it. The fact that shutdowns or “curfews” are limited in duration shows that even censors that can afford to do a total shutdown cannot afford to do it forever.

Complicating everything is the fact that censors are not bound to act rationally. Like any other large, complex entity, a censor is prone to err, to act impetuously, to make decisions that cause more harm than good. One might even say that the very decision to censor is exactly such an irrational decision, at the greater societal level.

2.2 Content obfuscation strategies

- Sony thing on passive/active detection [115, § 5.1]
 - relation to website fingerprinting—circumvention is potentially harder because you can’t just use e.g. constant bitrate.

There are two general strategies to counter content-based blocking. The first is to mimic some content that the censor allows, like HTTP or email. The second is to randomize the content, to make it dissimilar to anything that the censor specifically blocks.

Tschantz et al. [122] call these two strategies “steganography” and “polymorphism” respectively. Another way to say it is “look like something” and “look like nothing.” They are not strict classifications—any real system will incorporate a bit of both—and they reflect differing conceptions of censors. Steganography works against a “whitelisting” or “default-deny” censor, one that permits only a set of specifically enumerated protocols and blocks all others. Polymorphism, on the other hand, falls to a whitelisting censor, but works against
a “blacklisting” or “default-allow” censor, one that blocks a set of specifically enumerated protocols and allows all others.

This is not to say that steganography is strictly superior to polymorphism—there are tradeoffs in both directions. Effective mimickry can be difficult to achieve, and in any case effectiveness can only be judged against a censor’s specific computations of collateral damage. Whitelisting, by its nature, tends to cause more collateral damage than blacklisting. And just as obfuscation protocols are not purely steganographic or polymorphic, real censors are not purely whitelisting or blacklisting. Houmansadr et al. [65] exhibited weaknesses in “parrot” circumvention systems that mimic a cover protocol but do not perfectly imitate it. Mimicking a protocol in every detail, down to its error behavior, is difficult, and any inconsistency is a potential feature that a censor may exploit. Wang et al. [125] found that some of Houmansadr et al.’s proposed attacks were impractical, due to high false-positive rates, but proposed other attacks designed for efficiency and low false positives, against both steganographic and polymorphic protocols. Geddes et al. [59] showed that even perfect imitatin (achieved via tunnelling) may leave vulnerabilities due to mismatches between the cover protocol and the covert protocol—for instance randomly dropping packets may disrupt circumvention more than other uses of the cover protocol. It’s worth noting, though, that apart from active probing and perhaps entropy measurement, most of the attacks proposed in academic literature have not been used by censors in practice.

Some systematizations (for example those of Brubaker et al. [11, § 6]; Wang et al. [125, § 2]; and Khattak, Elahi, et al. [74, § 6.1]) further subdivide steganographic systems into those based on mimickry (attempting to replicate the behavior of a cover protocol) and tunneling (sending through a genuine implementation of the cover protocol). I do not find the distinction useful, except when speaking of concrete implementation choices; to me, there are various degrees of fidelity in imitation, and tunneling only tends to offer higher fidelity than mimickry.

I will list some representative circumvention systems that exemplify the steganographic strategy. Infranet [38], way back in 2002, built a covert channel out of HTTP, encoding upstream data in special requests and downstream data using standard steganography in image files. (An aside on the evolution of threat models: the authors of Infranet rejected the possibility of using TLS (then called SSL), because it was not then common enough that its wholesale blocking would cause much damage. Today the situation around TLS is much different, and it is much relied on by circumventors.) StegoTorus [128] (2012) uses custom encoders to make traffic resemble common HTTP file types, such as PDF, JavaScript, and Flash. SkypeMorph [91] (2012) mimics a Skype video call. FreeWave [67] (2013) modulates a data stream into an acoustic signal and transmits it over VoIP. FTE [34] (for “format-transforming encryption”; 2013) and its followup Marionette [35] (2015) force traffic to conform to a user-specified syntax: if you can describe it, you can imitate it. Despite the research attention they have received, steganographic systems have not been as used in practice: of these listed systems, FTE is the only one that has seen substantial deployment.

There are many examples of the randomized, polymorphic strategy. An important subclass of these are the so-called look-like-nothing systems that encrypt a stream without any plaintext header or framing information, so that it appears to be a uniformly random byte sequence. A pioneering design was the obfuscated-openssh of Bruce Leidl [77], which aimed to hide the plaintext packet metadata in the SSH protocol. obfuscated-openssh worked,
in essence, by first sending a cryptographic key, then sending ciphertext encrypted with that key. The encryption of the obfuscation layer was an additional, independent layer on top of SSH’s usual encryption. A censor could, in principle, purely passively detect and deobfuscate the protocol just by recovering the key and using it to decrypt the rest—a situation partially mitigated by the use of an expensive key derivation function based on iterated hashing. obfuscated-openssh could optionally incorporate a pre-shared password into the key derivation function, which would prevent easy identification. Dust [129], a design by Brandon Wiley, similarly randomized bytes (at least in its v1 version—later versions permitted fitting to distributions other than uniform). It was not susceptible to passive deobfuscation, relying on an out-of-band key exchange before each session. Shadowsocks [114] is a lightweight encryption layer atop a simple proxy protocol, widely used in China.

There is a line of successive look-like-nothing protocols—known by the names obfs2, obfs3, ScrambleSuit, and obfs4—whose history is interesting, because it illustrates mutual advances by censors and circumventors over several years. obfs2 [72], which debuted in 2012 in response to blocking in Iran [24], uses very simple obfuscation inspired by obfuscated-openssh: it is essentially equivalent to sending an encryption key, followed by the rest of the stream encrypted by that key. obfs2 is detectable, with no false negatives and negligible false positives, by even a passive censor who knows how it works; and it is vulnerable to active probing attacks, where the censor speculatively connects to the proxy to see what protocol it uses. However, it was sufficient against the keyword- or pattern-based censors of its era. obfs3 [73]—first available in 2013 but not really released to users until 2014 [103]—was designed to fix the passive detectability of its predecessor. obfs3 employs a Diffie–Hellman key exchange that prevents easy passive detection, but it can still be subverted by an active man in the middle, and remains vulnerable to active probing. (The Great Firewall of China had begun active-probing for obfs2 by January 2013, and for obfs3 by February 2015, or possibly as early as July 2013 [36, § 5.4].) ScrambleSuit [133], first available to users in 2014 [15], arose in response to the active-probing of obfs3. Its improvements were the use of an out-of-band secret to authenticate clients, and traffic shaping techniques to perturb the underlying stream’s statistical properties. When a client connects to a ScrambleSuit proxy, it must demonstrate knowledge of the out-of-band secret, or else the server will not respond, preventing active probing. (Active probing resistance really has more to do with blocking by address than with blocking by content, but it is only because the randomized transports sufficiently frustrated content-based detection that active probing became relevant.) obfs4 [139], first available in 2014, is an incremental advancement on ScrambleSuit that uses more efficient cryptography, and additionally authenticates the key exchange to prevent active man-in-the-middle attacks.

There is an advantage in designing polymorphic protocols, as opposed to steganographic ones, which is that every proxy can potentially have its own characteristics. ScrambleSuit and obfs4, in addition to randomizing packet contents, also shape packet lengths and timing to fit random distributions. Crucially, the chosen distributions are consistent within each server, not generated afresh for each connection. That means that even if a censor is able to build a profile for a particular server, it is not necessarily useful for detecting other server instances.
2.3 Address blocking resistance strategies

The first-order solution for reaching a destination whose address is blocked is to instead route through a proxy. But a single, static proxy is not much better than direct access, from a circumvention point of view—a censor can block the proxy just as easily as it can block the destination. Circumvention systems must come up with ways of addressing this problem.

There are two reasons why resistance to blocking by address is challenging. The first is due to the nature of network routing: the client must, somehow, encode the address of the destination into what it sends, where it can be observed by the censor, if the encoding is sufficiently transparent. The second is the insider attack: legitimate clients must have some way to discover addresses of, e.g., proxies. By pretending to be a legitimate client, the censor can learn those addresses in the same way.

Compared to content obfuscation, there are relatively few strategies for resistance to blocking by address. They are basically five: private proxies shared by only a few clients; having a large population of secret proxies and distributing them carefully; having a very large population of proxies and treating them as disposable; proxying through a service with high collateral damage; and address spoofing.

The simplest proxy infrastructure is no infrastructure at all: require every client to set up and maintain a proxy for their own personal use, or for a few of their friends. As long as the use of any single address remains low, it may escape the censor’s notice [28, § 4.2]. The problem with this strategy, of course, is usability and scalability. If it were easy for everyone to set up their own proxy on an unblocked address, they would do it, and blocking by address would not be a concern. The challenge is making such techniques general so they are usable by more than experts. uProxy [123] is now working on just that: automating the process of setting up a proxy on a server.

What Köpsell and Hillig call the “many access points” model has been adopted in some form by many circumvention systems. In this model, there are many proxies in operation. They may be full-fledged general-purpose proxies, or only simple forwarders to a more capable proxy. They may be operated by volunteers or coordinated centrally. In any case, the success of the system hinges on being able to sustain a population of proxies, and distribute information about them to legitimate users, without revealing them all to the censor. Both of these considerations pose challenges.

Tor’s blocking resistance design [28], based on secret proxies called “bridges,” was of this kind. Volunteers run bridges, which report themselves to central database called BridgeDB [120]. Clients contact BridgeDB through some unblocked out-of-band channel (HTTPS, email, or word of mouth) in order to learn bridge addresses. The BridgeDB server takes steps to prevent easy enumeration of the entire database [82]. Each request returns only a small set of bridges, and repeated requests by the same client return the same small set (keyed by a hash of the client’s IP address prefix or email address). Requests through the HTTPS interface require the client to solve a captcha, and email requests are permitted only from the domains of email providers that are known to limit the rate of account creation. The population of bridges is partitioned into “pools”—one pool for HTTPS distribution, one for email, and so on—so that an exploit allowing enumeration of one distribution method does not affect the others. But even these defenses may not be enough: despite public appeals for volunteers to run bridges (see for example Dingledine’s initial call in 2007 [25]), there have
never been more than a few thousand of them, and Dingledine reported in 2011 that the Great Firewall of China had managed to enumerate both the HTTPS and email distribution pools [26, § 1][27, § 1], presumably taking advantage of its greater resources.

Tor relies on BridgeDB to provide address blocking resistance for all its transports that otherwise only have content obfuscation. And that is a great strength of such a system. It enables, to some extent, content obfuscation to be developed independently, and rely on an existing generic proxy distribution mechanism in order to produce an overall plausibly working system. There is a whole line of research, in fact, on the question of how best to distribute information about an existing population of proxies, which is known as the “bridge distribution problem” or “proxy discovery problem.” I will give just a summary of various proposals.

A way to make proxy distribution more robust against censors (but at the same time less usable by clients) is to “poison” the set of proxy addresses with the addresses of important servers, blocking which would result in high collateral damage. VPN Gate employed this idea [98, § 4.2], mixing into the their public proxy list the addresses of root DNS servers and Windows Update servers.

Apart from “in-band” discovery of bridges via subversion of a proxy distribution system, one must also worry about “out-of-band” discovery, for example by mass scanning [27, § 6][28, § 9.3]. Durumeric et al. found about 80% of existing (unobfuscated) Tor bridges [33, § 4.4] by scanning all of IPv4 on a handful of common bridge ports. Matic et al. had similar results in 2017 [87, § V.D], using public search engines in lieu of active scanning. The best solution to the scanning problem is to do as ScrambleSuit and obfs4 do, and associate with each proxy a secret, without which a client cannot initiate a connection. The critical part is that the IP address and port must not constitute the whole of the information needed to connect to the proxy. Scanning for bridges is closely related to active probing, the topic of Chapter 4.

An alternative way of achieving address blocking resistance is to treat proxies as temporary and disposable, rather than permanent and valuable. This is the idea underlying flash proxy [52] and Snowflake [117]. (Snowflake is the topic of Chapter 7.) Even proxy distribution strategies that take churn into account have in mind proxies that last on the order of at least days. In contrast, disposable proxies may last only minutes or hours. Setting up a Tor bridge or even something lighter-weight like a SOCKS proxy still requires installing some software on a server somewhere. Flash proxy and Snowflake proxies have a low set-up and tear-down cost: you can run one just by visiting a web page. These designs do not to need a sophisticated proxy distribution strategy as long as the rate of proxy creation is kept higher than the censor’s rate of discovery.

The logic behind diffusing many proxies widely is that a censor would have to block large swathes of the Internet in order to effectively block them. However, it also makes sense to take the opposite tack: have just one or a few proxies, but choose them to have such high collateral damage that the censor does not dare block them. Refraction networking [108], also called decoy routing, puts proxy capability into network routers—in the middle of paths, rather than at the end. Clients tag certain flows in a way that is invisible to the censor but detectable to a refraction-capable router, which redirects from its apparent destination to some other, covert destination. The censor has to induce routes that avoid the special routers [112], which is costly [68]. Domain fronting [56] has similar properties. Rather than a router, it uses another kind of network intermediary: a content delivery network. Using
properties of HTTPS, a client may request one site while appearing (to the censor) to request another. Domain fronting is the topic of Chapter 6. The big advantage of this general strategy is that the proxies do not need to be kept secret from the censor.

The final strategy for address blocking resistance is address spoofing. The notable design in this category is CensorSpoofer [126]. A CensorSpoofer client never communicates directly with a proxy. It sends upstream data through a low-bandwidth, indirect channel such as email or instant messaging, and downstream data through a simulated VoIP conversation, spoofed to appear as if it were coming from some unrelated dummy IP address. The asymmetric design is feasible because of the nature of web browsing: typical clients send much less than they receive. The client never even needs to know the actual address of the proxy, meaning that CensorSpoofer has high resistance to insider attack: even running the same software as a legitimate client, the censor does not learn enough information to effect a block. The idea of address spoofing goes back farther; as early as 2001 TriangleBoy [111] employed lighter-weight intermediate proxies that would simply forward client requests to a long-lived proxy at a static, easily blockable address. In the downstream direction, the long-lived proxy would, rather than route back through the intermediate proxy, spoof its responses so they appeared to originate from the intermediate proxy. TriangleBoy did not match CensorSpoofer’s resistance to insider attack, because clients still needed to find and communicate directly with a proxy, so the whole system basically reduced to the proxy discovery problem, despite the use of address spoofing.

2.4 Spheres of influence and visibility

- Deniable Liaisons [94]

It is usual to assume (conservatively) that whatever the censor can detect, it also can block. That is, to ignore blocking per se and focus only on the detection problem. We know from experience, however, that there are cases in practice where a censor’s reach exceeds its grasp: where it is able to detect circumvention but not block it. Sometimes it is useful to consider this possibility when modeling. Khattak, Elahi, et al. [74] express it nicely by subdividing the censor’s network into a sphere of influence within which the censor has active control, and a potentially larger sphere of visibility within which the censor may only observe, not act.

A landmark example of this kind of thinking is the 2006 research on “Ignoring the Great Firewall of China” by Clayton et al. [17]. They found that the firewall would block connections by injecting phony TCP RST packets (which cause the connection to be torn down) or SYN/ACK packets (which cause the client to become unsynchronized), and that simply ignoring the anomalous packets rendered blocking ineffective. (Why then, did the censor choose to inject its own packets, rather than drop the client’s or server’s? The answer is probably that injection is technically easier to achieve, highlighting a limit on the censor’s power.) One can think of this ignoring as shrinking the censor’s sphere of influence: it can still technically act within this sphere, but not in a way that actually effects blocking. Additionally, intensive measurements revealed many failures to block, and blocking rates that changed over time, suggesting that even when the firewall intends a general policy of blocking, it does not always succeed.
Another fascinating example of “look, but don’t touch” communication is the “filecasting” technique used by Toosheh [96], a file distribution service based on satellite TV broadcasts. Clients tune their satellite receivers to a certain channel and record the broadcast to a USB flash drive. Later, they run a program on the recording that decodes the information and extracts a bundle of files. The system is unidirectional: clients can only receive the files that the Toosheh operators choose to provide. The censor can easily see that Toosheh is in use—it’s a broadcast, after all—but cannot identify users, or block the signal in any way short of continuous radio jamming or tearing down satellite dishes.

There are parallels between the study of Internet censorship and that of network intrusion detection. One is that a censor’s detector may be implemented as a network intrusion detection system or monitor, a device “on the side” of a communication link that receives a copy of the packets that flow over the link, but that, unlike a router, is not responsible for forwarding the packets onward. Another parallel is that censors are susceptible to the same kinds of evasion and obfuscation attacks that affect network monitors more generally. In 1998, Ptacek and Newsham [107] and Paxson [102, § 5.3] outlined various attacks against network intrusion detection systems—such as manipulating the IP time-to-live field or sending overlapping IP fragments—that cause a monitor either to accept what the receiver will reject, or reject what the receiver will accept. A basic problem is that a monitor’s position in the middle of the network does not allow it to predict exactly how each packet will be interpreted by the endpoints. Cronin et al. [21] posit that the monitor’s conflicting goals of sensitivity (recording all that is relevant) and selectivity (recording only what is relevant) give rise to an unavoidable “eavesdropper’s dilemma.”

Monitor evasion techniques can be used to reduce a censor’s sphere of visibility—eliminating certain traffic features from its consideration. Crandall et al. [19] in 2007 suggested using IP fragmentation to prevent keyword matching (splitting keywords across fragments). In 2008 and 2009, Park and Crandall [101] explicitly characterized the Great Firewall as a network intrusion detection system and found that a lack of TCP reassembly allowed evading keyword matching. Winter and Lindskog [132] found that the Great Firewall still did not do TCP segment reassembly in 2012, in the course of studying the firewall’s proxy-discovery probes. (Such probes are the subject of Chapter 4.) They released a tool, brdgrd [130], that by manipulating the TCP window size, prevented the censor’s scanners from receiving a full response in the first packet, thereby foiling active probing. They reported that the tool stopped working in 2013. Anderson [5] gave technical information on the implementation of the Great Firewall as it existed in 2012, and observed that it is implemented as an “on-the-side” monitor. Khattak et al. [75] applied a wide array of evasion experiments to the Great Firewall in 2013, identifying classes of working evasions and estimating the cost to counteract them.

2.5 Early censorship and circumvention

Internet censorship and circumvention began to rise to importance in the mid-1900s, coinciding with the popularization of the World Wide Web. At that time, online censorship focused mainly on the web. Computer security companies were developing technology for IP address, URL, and web page filtering. Even before national-level censorship by governments became an issue, researchers investigated the blocking policies of personal firewall products—those
CHAPTER 2. PRINCIPLES OF CIRCUMVENTION

intended, for example, for parents to install on the family computer. Meeks and McCullagh [90] reported in 1996 on the secret blocking lists of several programs. Bennett Haselton and Peacefire [64] found many cases of programs blocking more than they claimed, including web sites related to politics and health.

Governments were not far behind in building legal and technical structures to control the flow of information on the web. The term “Great Firewall of China” first appeared in an article in Wired magazine [9] in 1997. In some cases adapting the same technology originally developed for personal firewalls. In the wake of the first signs of blocking by ISPs, people were thinking about how to bypass filters. The circumvention systems of that era were largely HTML-rewriting web proxies: essentially a form on a web page into which a client would enter a URL. The server would fetch the desired URL on behalf of the client, and before returning the response, rewrite all the links and external references in the page to make the relative to the proxy. CGIProxy [85], SafeWeb [86], Circumventor [63], and the first version of Psiphon [119] were all of this kind.

These systems were effective against their censors of their day—at least with respect to destination blocking. And they had the major advantage of requiring no special client-side software other than a web browser. The difficulty they faced was second-order blocking as censors discovered and blocked the proxies themselves. Circumvention designers deployed some countermeasures; for example Circumventor had a mailing list [28, § 7.4] which would send out fresh proxy addresses every few days. A 1996 article by Rich Morin [92] presented a prototype HTML-rewriting proxy called Rover, which eventually became CGIProxy. The article predicted the failure of censorship based on URL or IP address, as long as a significant fraction of web servers ran such proxies. That vision clearly did not come to pass. Accumulating a sufficient number of proxies and communicating their addresses securely to clients—in short, the proxy distribution problem—turned out not to follow automatically, but to be a major sub-problem of its own.

Threat models had to evolve along with censor capabilities. The first censors would be considered weak by today’s standards, mostly easy to circumvent by simple countermeasures, such as tweaking a protocol or using an alternative DNS server. (We see the same progression play out again when countries begin to experiment with censorship, such as in Turkey in 2014, where alternative DNS servers briefly sufficed to circumvent a block of Twitter [20].) Not only censors were changing—the world around them was changing as well. In this field that is so heavily affected by concerns about collateral damage, the milieu in which censors operate is as important as the censors themselves. A good example of this is the paper on Infranet, the first academic circumvention design I am aware of. Its authors argued, in 2001, that TLS would not suffice as a cover protocol [38, § 3.2], because the relatively few TLS-using services at that time could all be blocked without much harm. Certainly the circumstances are different today—domain fronting and all refraction networking schemes require the censor to permit TLS. As long as circumvention remains relevant, it will have to change along with changing times, just as censors do.
Chapter 3

Understanding censors

 hei be dragons

The main tool we have to build relevant threat models is the natural study of censors. The study of censors is complicated by difficulty of access: censors are not forthcoming about their methods. Researchers are obligated to treat censors as a black box, drawing inferences about their internal workings from their externally visible characteristics. The easiest thing to learn is the censor’s what—the destinations that are blocked. Somewhat harder is the investigation into where and how, the specific technical mechanisms used to effect censorship and where they are deployed in the network. What we are really interested in, and what is most difficult to infer, is the why, or the motivations and goals that underlie a censorship apparatus. We posit that censors, far from being unitary entities of focused purpose, are rather complex organizations of people and machines, with conflicting purposes and economic rationales, subject to resource limitations. The why gets to the heart of why circumvention is even possible: a censoring firewall’s duty is not merely to block, but to discriminate between what is blocked and what is allowed, in support of some other goal. Circumvention systems confuse this discrimination in order to sneak traffic through the firewall.

Past measurement studies have mostly been short-lived, one-off affairs, focusing deeply on one region of the world for at most a few months. Thus published knowledge about censors’ capabilities consists mostly of a series of “spot checks” with blank areas between them. There have been a few designs proposed to do ongoing measurements of censorship, such as ConceptDoppler [19] in 2007 and CensMon [113] in 2011, but these have not lasted long in practice, and for the most part there is an unfortunate lack of longitudinal and cross-country measurements. Just as in circumvention, in censorship measurement a host of difficulties arise when running a scalable system for a long time, that do not arise when doing a one-time operation. The situation is thankfully becoming better, with the increasing data collection capabilities of measurement systems like OONI [58].

From the survey of measurement studies we may draw some general conclusions. Censors change over time, sometimes for unknown reasons, and not always in the direction of greater restrictions. Censorship conditions differ greatly across countries, not only in subject but in mechanism and motivation. The “Great Firewall” of China has long been the world’s most sophisticated censor, but it is in many ways an outlier, and not representative of censors
elsewhere. Most censors are capable of manipulating DNS responses, IP address blocking, and keyword filtering at some level.

A reasonable set of capabilities, therefore, that a contemporary censor may be assumed to have is:

- blocking of specific IP addresses and ports,
- control of default DNS servers,
- injection of false DNS responses,
- injection of TCP RSTs,
- throttling of connection,
- keyword filtering
- protocol identification, and
- temporary total shutdown of Internet connections

Not all censors will be able to do all of these. As the amount of traffic to be handled increases, in-path attacks such as throttling become relatively more expensive. Whether a particular censoring act even makes sense will depend on a local cost–benefit analysis. Some censors may be able to tolerate a brief total shutdown, while for others the importance of the Internet is too great for such a crude measure.

Past measurement studies have done a good job at determining the technical aspects of censorship, for example where in the network censorship routers are located. There is not so much known about the inner workings of censors. The anonymous paper on China’s DNS censorship [7] probably comes closest to the kind of insight I am talking about, with its clever use of side channels to infer operational characteristics of censor boxes. For example, their research found that each DNS injection node runs a few hundred independent processes. This is indirect information, to be sure, but it hints at the level of resources the censor is able to bring to bear. I am interested in even deeper information, for example how censors make the decision on what to block, and what bureaucratic and other considerations might cause them to work less than optimally.

informing our threat models
censors’ capabilities—presumed and actual e.g. ip blocking (reaction time?) active probing
Internet curfews (Gabon), limited time of shutdowns shows sensitivity to collateral damage.
commercial firewalls (Citizen Lab) and bespoke systems

Ongoing, longitudinal measurement of censorship remains a challenge. Studies tend to be limited to one geographical region and one period of time. Dedicated measurement platforms such as OONI [58] and ICLab [69] are starting to make a dent in this problem, by providing regular measurements from many locations worldwide. Even with these, there are challenges around getting probes into challenging locations and keeping them running.

Apart from a few reports of, for example, per annum spending on filtering hardware, not much is known about how much censorship costs to implement. In general, contemporary threat models tend to ignore resource limitations on the part of the censor.
Tying questions of ethics to questions about censor behavior, motivation: [136] (also mentions “organisational requirements, administrative burden”) [70] [18] Censors may come to conclusions different than what we expect (have a clue or not).

Evaluating the quality of circumvention systems is tricky, whether they are only proposed or actually deployed. The problem of evaluation is directly tied to threat modeling. Circumvention is judged according to how well it works under a given model; the evaluation is therefore meaningful only as far as the threat model reflects reality. Without grounding in reality, researchers risk running an imaginary arms race that evolves independently of the real one.

This kind of work is rather different than the direct evaluations of circumvention tools that have happened before, for example those done by the Berkman Center [109] and Freedom House [13] in 2011. Rather than testing tools against censors, we evaluated how closely calibrated designers’ own models were to models derived from actual observations of censors.

This research was partly born out of frustration with some typical assumptions made in academic research on circumvention, which we felt placed undue emphasis on steganography and obfuscation of traffic streams, while not paying enough attention to the perhaps more important problems of bridge distribution and rendezvous. Indeed, in our survey of over 50 circumvention tools, we found that academic designs tended to be concerned with detection in the steady state after a connection is established, while actually deployed systems cared more about how the connection is established initially. We wanted to help bridge the gap by laying out a research agenda to align the incentives of researchers with those of circumventors. This work was built on extensive surveys of circumvention tools, measurement studies, and known censorship events against Tor.

This work on evaluation appeared in the 2016 research paper “Towards Grounding Censorship Circumvention in Empiricism” [122], which I coauthored with Michael Carl Tschantz, Sadia Afroz, and Vern Paxson.

Do they check the right things?
what’s used and what’s not used
In 2015 I helped study the phenomenon of “active probing” by the Great Firewall to discover hidden proxy servers. In active probing, the censor pretends to be a legitimate client of the proxy server: it connects to suspected servers to check whether they speak a proxy protocol. If they do, then they are blocked. Active probing makes good sense for the censor: it has high precision (low risk of collateral damage), and is efficient because it can be run as a batch job apart from a firewall’s real-time responsibilities. The Great Firewall can dynamically active-probe and block the servers of a number of common circumvention protocols, such as Tor, obfs2, and obfs3, within only seconds or minutes of a connection by a legitimate client. The need to resist active probing has informed the design of recent circumvention systems, including meek.

My primary contribution to the active probing project was the analysis of server logs to uncover the history of about two and a half years of active probing. My work revealed the wide distribution of active probing source addresses (there were over 14,000 of them). It also discovered previously undocumented types of probes, for the protocol used by VPN Gate and for a simple form of domain-fronted proxy. I helped analyze the network “fingerprints” of active probes and how they might be distinguished from connections by legitimate clients.

The work on active probing appeared in the 2015 research paper “Examining How the Great Firewall Discovers Hidden Circumvention Servers” [36], which I coauthored with Roya Ensafi, Philipp Winter, Nick Feamster, Nicholas Weaver, Vern Paxson.

breakwa11 documented an active-probing vulnerability in Shadowsocks in 2015(?) but no evidence of probing for it. [106] [100]

August 2010 Leif Nixon notices strange connections from China in his SSH logs [97].
November 2011 Leif Nixon publishes observations and speculation about the strange SSH connections.

Table 4.1: Timeline of active probing.
CHAPTER 4. ACTIVE PROBING

Figure 4.1: Active probes received at my web server over five years. This is an updated version of Figure 8 in our paper “Examining How the Great Firewall Discovers Hidden Circumvention Servers”; the vertical blue stripe divides old and new data. Active probing activity—at least against this server—has subsided since 2016.

4.1 Fingerprinting the probers

here be dragons
Chapter 5

Time delays in censors’ reactions

I am interested in understanding censors at a deeper level. To that end, I am working on a project to measure how long censors take to react to sudden changes in circumvention. So far, our technique has been to monitor the reachability of newly added Tor Browser bridges, to see how long after they are introduced they get blocked. Portions of this work have already appeared in the 2016 research paper “Censors’ Delay in Blocking Circumvention Proxies” [57], which I coauthored with Lynn Tsai. We discovered some interesting, previously undocumented behaviors of the Great Firewall of China. While the firewall, through active probing, is able to detect some bridges dynamically within seconds or minutes, it lags in detecting Tor Browser’s newly added bridges, taking days or weeks to block them. It seems that bridges are first blocked only at certain times of day, perhaps reflecting an automated batch operation.

I am now continuing to work on this project along with Lynn Tsai and Qi Zhong. We plan to run targeted experiments to find out more about how censors extract bridge addresses from public information, for example, by adding bridges with different attributes and seeing whether they are blocked differently. Our first experiment used measurement sites only in China and Iran, but we hope to expand to many more countries by collaborating with measurement platforms such as OONI [58] and ICLab [69]. We hope to solicit other kinds of censor delays from other circumvention projects, in order to build a more all-encompassing picture of censors’ priorities with respect to circumvention.
Chapter 6

Domain fronting

here be dragons

My most influential contribution to the world of circumvention is my research on domain fronting. While the basic idea is not mine, the research I led and the code I wrote helped domain fronting become the ubiquitous tool it is today.

6.1 Related work on domain fronting

[76] Bryce Boe GoAgent flashproxy

Domain fronting assumes a rather strong censor model, essentially equivalent to the state of the art of national censors at the time of its popularization. That is, a censor that can block IP addresses and domain names, that can filter plaintext HTTP, can fingerprint protocol implementations. The main censor capabilities not provided for are probabilistic classification by traffic flow characteristics, and high-collateral-damage blocking of HTTPS on important web servers. What I find most intellectually compelling about domain fronting research is that is finally begins to transcend the “cat-and-mouse” paradigm that has plagued thinking around circumvention, and to put blocking resistance on a scientific basis. By this I mean that one can state assumptions, and consequences that hold as long as the assumptions are true. For example, we do not make claims such as “domain fronting is unblockable”; rather, we may state hypotheses and consequents: “if fronting through a domain with sufficient collateral damage, such that the censor is unwilling to block it, and if the censor does not find some side channel that distinguishes fronted from non-fronted traffic, then the communication

Figure 6.1: Domain fronting uses different names at different network layers.
will be unblocked.” This kind of thinking, that of weighing censors’ costs and capabilities, underlies my thinking about threat modeling.

Like flash proxy, domain fronting is primarily targeted at the problem of address blocking (though it is effective against content blocking and active probing as well). The core idea is the use of different domain names at different layers of communication. The “outside” layers, those visible to the censor, contain an innocuous “front” domain name, ideally one that is hard to block because of the value of the services behind it. The “inside” layer, invisible to the censor under encryption, contains the true, presumably censored, destination. An intermediate server, whose name is the front domain name, removes the outer layer of encryption and forwards the information to the covert destination. There are a number of important services that support domain fronting, mainly cloud providers and content delivery networks. On top of this basic machinery, it is relatively easy to build a general-purpose covert bidirectional communications channel, one that can even be made reasonably efficient.

I wrote and continue to maintain the code of meek, a circumvention transport for Tor based on domain fronting. It first appeared in Tor Browser in October 2014, and continues operation to the present. My code has been forked and incorporated by other circumvention projects, notably including Psiphon and Lantern, with whom I continue to collaborate. Today, meek is Tor’s second-most-used transport, carrying around 10 terabytes of user traffic each month.

Köpsell and Hillig were ahead of the game when in 2004 they posed a hypothetical situation [76, § 5.2]: “Imagine that all web pages of the United States are only retrievable (from abroad) by sending encrypted request to one and only one special node. Clearly this idea belongs to the ‘all or nothing’ concept because a blocker has to block all requests to this node.” The situation they describe—one server hosting many sites, encrypted and indistinguishably—is not far off from what exists today with CDNs and HTTPS. Domain fronting removes the last remaining easy distinguisher, the domain name that appears in the clear.

Domain fronting appeared in the 2015 research paper “Blocking-resistant communication through domain fronting” [56], which I coauthored with Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson.

CloudTransport [11],

6.2 An unvarnished history of meek deployment

- First release of Orbot that had meek?
- Funding/grant timespans
- cost table
- “Seeing Through Network-Protocol Obfuscation” [125] October 2015
CHAPTER 6. DOMAIN FRONTING

24

Fielding a circumvention and keeping it running is full of unexpected challenges. At the time of the publication of the domain fronting paper [56] in 2015, meek had been deployed only a year and a half. Here I will recount the entire history of the deployment project, from inception to the present, a period of over three years. I have been the main developer and project leader of meek over its entire existence. I hope to share the benefit of my experience by commentating the history with surprises and lessons learned. Figure 6.2 shows the estimated concurrent number of users of meek over its entire existence. The counts come from Tor Metrics [81].

2013: Precursors; prototypes

The prehistory of meek begins in 2013 with flash proxy. Flash proxy clients need a secure way to register their address to a central facilitator, in order that flash proxies can connect back to them. Initially we had only two means of registration: flashproxy-reg-http, sending client registrations directly over HTTP; and flashproxy-reg-email, sending client registrations to a special email address. We knew that flashproxy-reg-http was easily blockable; flashproxy-reg-email had good blocking resistance but was somewhat slow and complicated, requiring a server to poll for new messages. At some point, Jacob Appelbaum showed me an example of using domain fronting—though we didn’t have a name for it then—to access a simple HTTP-rewriting proxy on App Engine. I eventually realized that the same trick would work for flash proxy rendezvous. I proposed a design [10] in May 2013 and within a month Arlo Breault had written flashproxy-reg-appspot, which worked just like flashproxy-reg-http, but fronted through www.google.com rather than contacting the registration server directly. The fronting-based registration became flash proxy’s preferred method, being faster and simpler than the email-based one.

The development into a full-fledged bidirectional transport seems slow, in retrospect. All the pieces were there; it was only a matter of putting them together. I did not appreciate the potential of domain fronting when I saw it for the first time. Even after the introduction of flashproxy-reg-appspot, months passed before the beginning of meek. The whole idea behind flash proxy registration was that the registration channel could be of low quality—unidirectional, low-bandwidth, and high-latency—because it was only used to bootstrap into a more capable channel (WebSocket). Email fits well into this model: not good for a general-purpose channel, just good enough for rendezvous. The fronting-based HTTP
channel, however, was much more capable, bidirectional with reasonably high performance. Rather than handing off the client to a flash proxy, it should be possible to carry all the client’s traffic through the same domain-fronted channel. It was during this time that I first became aware of GoAgent through the “Collateral Freedom” report of Robinson et al. [110]. According to the report, GoAgent, which used a less secure form of domain fronting than what meek would have, was the most used circumvention tool among a group of users in China. I read the source code of GoAgent in October 2013 and wrote ideas about writing a similar pluggable transport [43] which would become meek.

I lost time in premature optimization of meek’s network performance. I was thinking about the request–response nature of HTTP, and how requests and responses could conceivably arrive out of order (even if reordering was unlikely to occur in practice, because of the keepalive connections and HTTP pipelining). I made several attempts at a TCP-like reliability and sequencing layer, none of which were satisfactory. I wrote a simplified experimental prototype called “meeker,” which simply prepended an HTTP header before the client and server streams, but meeker only worked for direct connections, not through an HTTP-aware intermediary like App Engine. When I explained these difficulties to George Kadianakis in December 2013, he advised me to forget the complexity and implement the simplest thing that could work, which was good advice. I started working on a version that strictly serialized request–response pairs, which architecture meek still uses today.

2014: Development; collaboration; deployment

According to the Git revision history, I started working on the source code of meek proper on January 26, 2014. I made the first public announcement on January 31, 2014, in a post to the tor-dev mailing list titled “A simple HTTP transport and big ideas” [39]. (If the development time seems short, it’s only because months of prototypes and false starts.) In the post, I linked to the source code, described the protocol, and explained how to try it, using an App Engine instance I had set up shortly before. At this time there was no web browser TLS camouflage, and only App Engine was supported. I was not yet using the term “domain fronting.” The “big ideas” of the title were as follows: we could run one big public bridge rather than relying on multiple smaller bridges as other transports did; a web server with a PHP “reflector” script could do the same forwarding as a CDN, providing a diversity of access points even without domain fronting; we could combine meek with authentication and serve a 404 to unauthenticated users; and Cloudflare and other CDNs are alternatives to App Engine. We did end up running a public bridge for public benefit (and worrying over how to pay for it), and deploying on platforms other than App Engine (with Tor we never used Cloudflare specifically, but did others). Arlo Breault would write a PHP reflector, though there was never a repository of public meek reflectors as there were for other types of Tor bridge. Combining meek with authentication never happened; it was never needed for our public domain-fronted instances because active probing doesn’t help the censor in those cases anyway.

During the spring 2014 semester (January–May) I was enrolled in Vern Paxson’s Internet/Network Security course along with fellow student Chang Lan. We made the development and security evaluation of meek our course project. During this time we built browser TLS camouflage extensions, tested and polished the code, and ran performance tests. Our final
CHAPTER 6. DOMAIN FRONTING

report, “Blocking-resistant communication through high-value web services,” was the kernel of our later paper on domain fronting.

In March 2014, I met some developers of Lantern at a one-day hackathon sponsored by OpenITP [12]. Lantern developer Percy Wegmann and I realized that the meek code I had been working on could act as a glue layer between Tor and the HTTP proxy exposed by Lantern, in effect allowing you to use Lantern as a pluggable transport for Tor. We worked out a prototype and wrote a summary of the process [45]. Even though our specific application that day did not use domain fronting, the early contact with other circumvention developers was valuable.

June 2014 brought a surprise: the Great Firewall of China blocked all Google services [60, 2]. It would be hubris to think that it was in response to the nascent deployment of meek on App Engine; a more likely cause was Google’s decision to start using HTTPS for web searches, which would foil URL keyword filtering. Nevertheless, the blocking cast doubt on the feasibility of domain fronting: I had believed that blocking all of Google would be too costly in terms of collateral damage to be sustained for long by any censor, even the Great Firewall, and that belief was wrong. At least, we now needed fronts other than Google in order to have any claim of effective circumvention in China. For that reason, I set up additional backends: Amazon CloudFront and Microsoft Azure. When meek made its debut in Tor Browser, it would offer three modes: meek-google, meek-amazon, and meek azure.

Google sponsored a summit of circumvention researchers in June 2014. I presented domain fronting there. (By this time I had started using the term “domain fronting,” realizing that what I had been working on needed a specific name. I tried to separate the idea “domain fronting” from the implementation “meek,” but the terms have sometimes gotten confused in discourse.) Developers from Lantern and Psiphon where there—I was pleased to learn that Psiphon had already implemented and deployed domain fronting, after reading my mailing list posts. The meeting started a fruitful collaboration: Percy Wegmann from Lantern and Rod Hynes from Psiphon would later be among my coauthors on the paper on domain fronting [56].

Chang, Vern, and I submitted a paper on domain fronting to the Network and Distributed System Security Symposium (NDSS) in August 2014, whence it was rejected.

The first public release of Tor Browser that had a built-in easy-to-use meek client was version 4.0-alpha-1 on August 12, 2014 [15]. This was an alpha release, used by fewer users than the stable release. I made a blog post explaining how to use it a few days later [44]. The release and blog post had a positive effect on the number of users, however the absolute numbers are uncertain, because of a configuration error I had made on the meek bridge. I was running the meek bridge and the flash proxy bridge on the same instance of Tor; and because of how Tor’s statistics are aggregated, the counts were spuriously correlated [48]. I switched the meek bridge to a separate instance of Tor on September 15; numbers after that date are more trustworthy. In any case, the usage before this first release was tiny: the App Engine bill ($0.12/GB, with one GB free each day) was less than $1.00 per month for the first seven months of 2014 [89, § Costs]. In August, the cost started to be nonzero every day, and would continue to rise from there.

Tor Browser 4.0 [104] was released on October 15, 2014. It was the first stable (not alpha) release to have meek, and it had an immediate effect on the number of users: the estimate jumped from 50 to 500 within a week. (The increase was partially conflated with a failure of
the meek-amazon bridge to publish statistics before that date, but the other bridge, servicing meek-google and meek-azure, individually showed the same increase.) It was a lesson in user behavior: although there had been a working implementation in the alpha release for two months already, evidently a large number of users did not know of it or chose not to try it. At that time, the other transports available were obfs3, FTE, ScrambleSuit, and flash proxy.

2015: Growth; restraints; outages

Through the first part of 2015, the estimated number of simultaneous users continued to grow, reaching about 2,000, as we fixed bugs and Tor Browser had further releases.

We submitted a revised version of the domain fronting [56], now with contributions from Psiphon and Lantern, to the Privacy Enhancing Technologies Symposium, where it was accepted and appeared on June 30 at the symposium.

The increasing use of domain fronting by various circumvention tools began to attract more attention. A March 2015 article by Eva Dou and Alistair Barr in the Wall Street Journal [30] described domain fronting and “collateral freedom” in general, depicting cloud service providers as being caught in the crossfire between censors and circumventors. The journalists had contacted me but I declined to be interviewed. The CEO of CloudFlare, through whose service Lantern had been fronting, said that recently they had altered their systems to prevent domain fronting by enforcing a match between SNI and Host header [105]. GreatFire, an anticensorship organization that had also been mentioned, shortly thereafter experienced a new type of denial-of-service attack [116], caused by a Chinese network attack system later called the “Great Cannon” [84]. They blamed the attack on the attention brought by the news article.

Since initial deployment, the Azure backend had been slower, with fewer users, than the other two options, App Engine and CloudFront. For months I had chalked it up to limitations of the platform. In April 2015, though, I found the real source of the problem: the code I had written to run on Azure, the code that receives domain-fronted HTTP requests and forwards them to the meek bridge, was not reusing TCP connections. For every outgoing request, the Azure code was doing a fresh TCP and TLS handshake—causing a bottleneck at the CPU of the bridge, coping with all the incoming TLS. When I fixed the Azure code to reuse connections [40], the number of users (overall, not only for Azure) had a sudden jump, reaching 6,000 in less than a week. Evidently, we had been leaving users on the table by having one of the backends not run as fast as possible.

The deployment of domain fronting was being partly supported by a $500/month grant from Google. Already the February 2015, the monthly cost for App Engine alone began to exceed that amount [89, § Costs]. In an effort to control costs, in May 2015 we began to rate-limit the App Engine and CloudFront bridges, deliberately slowing the service so that fewer would use it. Until October 2015, the Azure bridge was on a research grant provided by Microsoft, so we allowed it to run as fast as possible, but when the grant expired, we rate-limited the Azure bridge as well. The rate-limiting explains the relative flatness of the user graph from May to the end of 2015.

Google changed the terms of service governing App Engine in 2015, adding a paragraph that seemed to prohibit running a proxy service [61]:

CHAPTER 6. DOMAIN FRONTING

Networking. Customer will not, and will not allow third parties under its control to: (i) use the Services to provide a service, Application, or functionality of network transport or transmission (including, but not limited to, IP transit, virtual private networks, or content delivery networks); or (ii) sell bandwidth from the Services.

This was an uncomfortable time: we seemed to have the support of Google, but the terms of service said otherwise. I contacted Google and asked for clarification or guidance, in the meantime leaving meek-google running; however I never got an answer to my questions. The point became moot a year later, when Google shut down our App Engine project, for another reason altogether.

By this time we had not received any reports of any type of blocking of domain fronting. We did, however, suffer a few accidental outages (which look just like blocking, from a user’s point of view). Between July 20 and August 14, an account transition error left the Azure configuration broken [47]. I set up another configuration on Azure and published instructions on how to use it, but it would not be available to the majority of users until the next release of Tor Browser, which happened on August 11. Between September 30 and October 9, the CloudFront-fronted bridge was effectively down because of an expired TLS certificate. When it rebooted on October 9, an administrative oversight caused its Tor relay identity fingerprint changed—meaning that clients expecting the former fingerprint would refuse to connect to it [54]. The situation was not fully resolved until November 4 with the next release of Tor Browser: cascading failured led to over a month of downtime.

One of the benefits of building a circumvention system for Tor is the easy integration with Tor Metrics—the source of the user number estimates in this section. Since the beginning of meek’s deployment, we had known about a problem with the way it integrates with Tor Metrics’ data collection. Tor pluggable transports geolocate the client’s IP address in order to aggregate statistics by country. But when a meek bridge receives a connection, the “client IP address” it sees is not that of the true client, but rather is some cloud server, the intermediary through which the domain-fronted traffic passes. So the total counts were fine, but the per-country counts were meaningless. For example, because App Engine’s servers were located in the U.S., every meek-google connection was being counted in the U.S. bucket. By the end of 2015, meek users were a large enough fraction (about 20%) of all bridge users, that they were really starting to skew the overall per-country counts. I wrote a patch to have the client’s true IP address forwarded through the network intermediary in a special HTTP header, which fixed the per-country counts from then on.

2016: Taking off the reins; misuse; blocking efforts

In mid-January 2016 the Tor Project asked me to raise the rate limits on the meek bridges, in anticipation of rumored attempts to block Tor in Egypt. (The blocking attempts were in turn rumored to be caused by Facebook’s integration of Tor into their mobile application.) I had the bridge operators raise the rate limits from approximately 1 MB/s to 3 MB/s. The effect of the relaxed rate limits was immediate: the count shot up as high 15,000 simultaneous users, briefly becoming Tor’s most-used pluggable transport, before settling in around 10,000.

The first action that may have been a deliberate attempt to block domain fronting came
on January 29, 2016, when the Great Firewall of China blocked one of the edge servers of the Azure CDN. The blocking was by IP address, a severe method: not only the domain name we were using for domain fronting, but also thousands of other names, became inaccessible. The block lasted about four days. On February 2, the server changed its IP address, incrementing the final octet from .200 to .201, causing it to become unblocked. I am aware of no similar incidents before or since.

The next surprise was on May 13, 2016. meek’s App Engine backend stopped working and I got a notice:

We’ve recently detected some activity on your Google Cloud Platform/API Project ID meek-reflect that appears to violate our Terms of Service. Please take a moment to review the Google Cloud Platform Terms of Service or the applicable Terms of Service for the specific Google API you are using.

Your project is being suspended for committing a general terms of service violation.

We will delete your project unless you correct the violation by filling in the appeals form available on the project page of Developers Console to get in touch with our team so that we can provide you with more details.

My first thought was that it had to do with the changes to the terms of service that had happened the previous year—but the true cause was unexpected. I tried repeatedly to contact Google and learn the nature of the “general” violation, but was stonewalled. None of my inquiries received so much as an acknowledgment. It was not until June 18 that I got some insight as to what happened, through an unofficial channel. Some botnet had apparently been misusing meek for command and control purposes; and its operators hadn’t even bothered to set up their own App Engine project. They were using the service that we had been operating for the public. Although we may have been able to reinstate the meek-google service, seeing as the suspension was the result of someone else’s botnet, with the already uncertain standing with regard to the terms of service I didn’t have the heart to pursue it. meek-google remained off and users migrated to meek-amazon or meek-azure. It turned out, later, that it had been no common botnet misusing meek-google, but an organized political hacker group, known as Cozy Bear or APT29. Matthew Dunwoody presented observations to that effect in a FireEye blog post [31] in March 2017. He and Nick Carr had presented those findings at DerbyCon in September 2016 [32], but I was not aware of them until the blog post. Malware would install a backdoor that operated over a Tor onion service, and used meek for camouflage.

The year 2016 brought the first reports of efforts to block meek. These efforts all had in common that they used TLS fingerprinting in conjunction with SNI inspection. In May, a Tor user reported that Cyberoam, a firewall company, had released an update that enabled detection and blocking of meek, among other Tor pluggable transports [71]. Through experiments we determined that the firewall was detecting meek whenever it saw a combination of two features: a specific client TLS fingerprint, and an SNI containing any of our three front domains: www.google.com, a0.awsstatic.com, or ajax.aspnetcdn.com [41]. We verified that changing either the TLS fingerprint or the front domain was sufficient to escape detection. Requiring both features to be present was a clever move by the firewall to limit collateral damage: it did not block those domains for all clients, but only the subset having a particular TLS fingerprint. I admit that I had not considered the possibility of using TLS
and SNI together to make a more precise classifier. We had known since the beginning of the possibility of TLS fingerprinting, which is why we spent the time to implement browser-based TLS camouflage. And there was no error in the camouflage: even an ordinary Firefox 38 (the base for Tor Browser, and what meek camouflaged itself as) was blocked by the firewall when accessing one of the three front domains. However, Firefox 38 was by that time a year old. I found a source saying that it made up only 0.38% of desktop browsers, compared to 10.69% for the then-latest Firefox 45 [41]. My guess is that the firewall makers considered the small amount of collateral blocking of Firefox 38 users to be acceptable.

In July I received a report of similar behavior by a FortiGuard firewall [42] from Tor user Kanwaljeet Singh Channey. The situation was virtually the same: the firewall would block connections having a specific TLS fingerprint and a specific SNI. This time, the TLS fingerprint was that of Firefox 45 (which by then Tor Browser had upgraded to); and the specific SNIs were only two, omitting www.google.com. (This meant that meek-google would have worked, had it not been deactivated back in May.) As in the Cyberoam case, changing either the TLS fingerprint or the front domain was sufficient to get through the firewall.

For reasons not directly related to domain fronting or meek, I had been interested in the blocking situation in Kazakhstan, ever since Tor Metrics reported a sudden drop of Tor users in that country in June 2016 [55]. I worked with an anonymous collaborator, who reported that meek was blocked in the country since October 2016 or earlier. According to them, changing the front domain would evade the block, but changing the TLS fingerprint didn’t help. I did not independently confirm these reports. Kazakhstan remains the only case of country-level meek blocking that I am aware of.

Starting in July 2016, there was a months-long increase in the number of meek users reported from Brazil [121]. The estimated count went from around 100 to almost 5,000, peaking in September 2016 before declining again. During parts of this time, over half of all reported meek users were from Brazil. We never got to the bottom of why there should be so many users reported from Brazil in particular. The explanation may be some kind of anomaly; for instance some third-party software that happened to use meek, or a malware infection like the one that caused the shutdown of meek-google. The count dropped suddenly, from 1,500 almost to zero, on March 3, 2017, which happened also to be the day that meek-azure was shut down pending a migration to new infrastructure. The count would remain low until rising again in June 2017.

In September 2016, I began mentoring Katherine Li in making her program GAE-uploader [79], which aims to simplify and automate the process of setting up domain fronting. The program automatically uploads the necessary code to Google App Engine, then outputs a bridge line ready to be pasted into Tor Browser or Orbot. We hoped also that the code would be useful to other projects, like XX-Net [138], that provide documentation on the complicated process of uploading code to App Engine. GAEuploader had a beta release in January 2017 [78]; however the effect on the number of users was not substantial.

Between October 19 and November 10, 2016, the number of meek users decreased globally by about a third [53]. Initially I suspected a censorship event, but the other details didn’t add up: the numbers were depressed and later recovered simultaneously across many countries, including ones not known for censorship. Discussion with other developers revealed the likely cause: a botched release of Orbot that left some users unable to use the program [50]. Once a fixed release was available, user numbers recovered. An unanticipated effect of this occurrence
was that we learned that a majority of meek users were using Orbot rather than Tor Browser.

2017: Long-term support

In January 2017, the grant I had been using to pay meek-azure’s bandwidth bills ran out. Lacking the means to keep it running, I announced my intention to shut it down [46]. Shortly thereafter, Team Cymru offered to stand up their own instances and pay the CDN fees, and so we made plans to migrate meek-azure to the new setup in the next releases. For cost reasons, though, I still had to shut down the old configuration before the new release of Tor Browser was ready. I shut down my configuration on March 3. The next release of Tor Browser was on March 7, and the next release of Orbot was on March 22: so there was a period of days or weeks during which meek-azure was completely non-functional for users. It would have been better to allow the two configurations to run concurrently for a time, so that users of the old would be able to transparently upgrade to the new—but in this case it wasn’t possible. Perhaps not coincidentally, the surge of users from Brazil, which had started in July 2016, ceased on March 3, the same day I shut down meek-azure before its migration.

Handing over control of the infrastructure was a relief to me. I had managed to make sure the monthly bills got paid, but it took more care and attention than I liked. A negative side effect of the migration was that I stopped writing monthly summaries of costs, because I was no longer receiving bills.

Also in January 2017, I became aware of the firewall company Allot Communications, thanks to my anonymous collaborator in the Kazakhstan work. Allot’s marketing materials advertised support for detection of a wide variety of circumvention protocols, including Tor pluggable transports, Psiphon, and various VPN services [51]. They claimed support for “Psiphon CDN (Meek mode)” going back to January 2015, and for “TOR (CDN meek)” going back to April 2015. We did not have any Allot devices to experiment with, and I do not know how (or how well) their detectors worked.

In June 2017, the estimated user count from Brazil began to increase again, similarly to how it had between July 2016 and March 2017. Just as before, we did not find an explanation for the increase.

Between July 29 and August 17, meek-amazon had another outage due to an expired TLS certificate.
I am working on a new circumvention system, a transport for Tor called Snowflake. Snowflake is the successor to flash proxy. It keeps the basic idea of in-browser proxies while fixing the usability problems that hampered the adoption of flash proxy. My main collaborators in this project are Arlo Breault, Serene Han, Mia Gil Epner, and Hooman Mohajeri.

The key difference between flash proxy and Snowflake is the basic communications protocol between client and browser proxy. Flash proxy used the TCP-based WebSocket protocol, which required users to configure their personal firewall to allow incoming connections. Snowflake instead uses WebRTC, a UDP-based protocol that enables peer-to-peer connections without manual configuration. The most similar existing system is uProxy [123], which in one of its operating modes uses WebRTC to connect through a friend’s computer. Snowflake differs because it does not require prior coordination with a friend before connecting.

Figure 7.1: Diagram of Snowflake.
it pulls its proxies from a pool of web users who are running the Snowflake code. Beyond the changed protocol, we hope to build in performance and efficiency improvements.

Snowflake will afford interesting research opportunities. One, of course, is the design of the system itself—no circumvention system of its nature has previously been deployed at a large scale. Another opportunity is observing how censors react to a new challenge.

Most of the available documentation on Snowflake is linked from the project’s wiki page [117]. Mia Gil Epner and I wrote a technical report on the fingerprinting hazards of WebRTC [49].

7.0.1 Flash proxy

I began working on censorship circumvention with flash proxy in 2011. Flash proxy is targeted at the difficult problem of proxy address blocking: it is designed against a censor model in which the censor can block any IP address it chooses, but only on a relatively slow timeline of several hours.

Flash proxy works by running tiny JavaScript proxies in ordinary users’ web browsers. The mini-proxies serve as temporary stepping stones to a full-fledged proxy, such as a Tor relay. The idea is that the flash proxies are too numerous, diverse, and quickly changing to block effectively. A censored user may use a particular proxy for only seconds or minutes before switching to another. If the censor manages to block the IP address of one proxy, there is little harm, because many other temporary proxies are ready to take its place.

The flash proxy system was designed under interesting constraints imposed by being partly implemented in JavaScript in the browser. The proxies sent and received data using the WebSocket protocol, which allows for socket-like persistent TCP connections in browsers, but with a catch: the browser can only make outgoing connections, not receive incoming ones as a traditional proxy would. The censored client must somehow inform the system of its own public address, and then the proxy connects back to the client. This architectural constraint was probably the biggest impediment to the usability of flash proxy, because it required users to configure their local router to permit incoming connections. (Removing this impediment is the main reason for the development of Snowflake, described later.) Flash proxy does not itself try to obfuscate patterns in the underlying traffic; it only provides address diversity.

For the initial “rendezvous” step in which a client advertises its address and a request for proxy service, flash proxy uses a neat idea: a low-capacity, but highly covert channel bootstraps the high-capacity, general-purpose WebSocket channel. For example, we implemented an automated email-based rendezvous, in which the client would send its address in an encrypted email to a special address. While it is difficult to build a useful low-latency bidirectional channel on top of email, email is difficult to block and it is only needed once, at the beginning of a session. We later replaced the email-based rendezvous with one based on domain fronting, which would later inspire meek, described below.

I was the leader of the flash proxy project and the main developer of its code. Flash proxy was among the first circumvention systems built for Tor—only obfs2 is older. It was first deployed in Tor Browser in January 2013, and was later retired in January 2016 after it ceased to see appreciable use. Its spirit lives on in Snowflake, now under development.

Flash proxy appeared in the 2012 research paper “Evading Censorship with Browser-Based Proxies” [52], which I coauthored with Nate Hardison, Jonathan Ellithorpe, Emily Stark,
Roger Dingledine, Phil Porras, and Dan Boneh.
Appendix A

Summary of censorship measurement studies

Here I survey past measurement studies which have helped to build models about censor behavior in general. The objects of the survey are based on those in an evaluation study done by me and others in 2016 [122, §IV.A].

One of the earliest technical studies of censorship occurred not in some illiberal place, but in the German state of North Rhein-Westphalia. In 2003, Dornseif [29] tested ISPs’ implementation of a controversial legal order to block two Nazi web sites. While there were many possible ways to implement the block, none were trivial to implement, nor free of overblocking side effects. The most popular implementation used DNS tampering, simply returning (or injecting) false responses to DNS requests for the domain names of the blocked sites. An in-depth survey of DNS tampering found a variety of implementations, some blocking more and some blocking less than required by the order.

Clayton [16] in 2006 studied a “hybrid” blocking system, called “CleanFeed” by the British ISP BT, that aimed for a better balance of costs and benefits: a “fast path” IP address and port matcher acted as a prefilter for the “slow path,” a full HTTP proxy. The system, in use since 2004, was designed to block access to any of a secret list of pedophile web sites compiled by a third party. The author identifies ways to circumvent or attack such a system: use a proxy, use source routing to evade the blocking router, obfuscate requested URLs, use an alternate IP address or port, return false DNS results to put third parties on the “bad” list. They demonstrate that the two-level nature of the blocking system unintentionally makes it an oracle that can reveal the IP addresses of sites in the secret blocking list.

[23]

For a decade, the OpenNet Initiative produced reports on Internet filtering and surveillance in dozens of countries, until it ceased operation in 2014. For example, their 2005 report on Internet filtering in China [99] studied the problem from many perspectives, political, technical, and legal. They translated and interpreted Chinese laws relating to the Internet, which provide strong legal justifications for filtering. The laws regulate both Internet users and service providers, including cybercafes. They prohibit the transfer of information that is indecent, subversive, false, criminal, or that reveals state secrets. The OpenNet Initiative tested the extent of filtering of web sites, search engines, blogs, and email. They found a number of blocked web sites, some related to news and politics, and some on sensitive
subjects such as Tibet and Taiwan. In some cases, entire sites (domains) were blocked; in others, only specific pages within a larger site were blocked. In a small number of cases, sites were accessible by IP address but not by domain name. There were cases of overblocking: apparently inadvertently blocked sites that simply shared an IP address or URL keyword with an intentionally blocked site. On seeing a prohibited keyword, the firewall blocked connections by injecting a TCP RST packet to tear down the connection, then injecting a zero-sized TCP window, which would prevent any communication with the same server for a short time. Using technical tricks, the authors inferred that Chinese search engines index blocked sites (perhaps having a special exemption from the general firewall policy), but do not return them in search results. The firewall blocks access searches for certain keywords on Google as well as the Google Cache—but the latter could be worked around by tweaking the format of the URL. Censorship of blogs comprised keyword blocking by domestic blogging services, and blocking of external domains such as blogspot.com. Email filtering is done by the email providers themselves, not by an independent network firewall. Email providers seem to implement their filtering rules independently and inconsistently: messages were blocked by some providers and not others.

In 2006, Clayton, Murdoch, and Watson [17] further studied the technical aspects of the Great Firewall of China. They relied on an observation that the firewall was symmetric, treating incoming and outgoing traffic equally. By sending web requests from outside the firewall to a web server inside, they could provoke the same blocking behavior that someone on the inside would see. They sent HTTP requests containing forbidden keywords (e.g., “falun”) caused the firewall to inject RST packets towards both the client and server. Simply ignoring RST packets (on both ends) rendered the blocking mostly ineffective. The injected packets had inconsistent TTLs and other anomalies that enabled their identification. Rudimentary countermeasures such as splitting keywords across packets were also effective in avoiding blocking. The authors of this paper bring up an important point that would become a major theme of future censorship modeling: censors are forced to trade blocking effectiveness against performance. In order to cope with high load at a reasonable costs, censors may choose the architecture of a network monitor or intrusion detection system, one that can passively monitor and inject packets, but cannot delay or drop them.

A nearly contemporary study by Wolfgarten [134] reproduced many of the results of Clayton, Murdoch, and Watson. Using a rented server in China, the author found cases of DNS tampering, search engine filtering, and RST injection caused by keyword sniffing. Not much later, in 2007, Lowe, Winters, and Marcus [83] did detailed experiments on DNS tampering in China. They tested about 1,600 recursive DNS servers in China against a list of about 950 likely-censored domains. For about 400 domains, responses came back with bogus IP addresses, chosen from a set of about 20 distinct IP addresses. Eight of the bogus addresses were used more than the others: a whois lookup placed them in Australia, Canada, China, Hong Kong, and the U.S. By manipulating TTLs, the authors found that the false responses were injected by an intermediate router: the authentic response would be received as well, only later. A more comprehensive survey [7] of DNS tampering and injection occurred in 2014, giving remarkable insight into the internal structure of the censorship machines. DNS injection happens only at border routers. IP ID and TTL analysis show that each node is a cluster of several hundred processes that collectively inject censored responses. They found 174 bogus IP addresses, more than previously documented. They extracted a blacklist
The Great Firewall, because of its unusual sophistication, has been an enduring object of study. Part of what makes it interesting is its many blocking modalities, both active and passive, proactive and reactive. The ConceptDoppler project of Crandall et al. [19] measured keyword filtering by the Great Firewall and showed how to discover new keywords automatically by latent semantic analysis, using the Chinese-language Wikipedia as a corpus. They found limited statefulness in the firewall: sending a naked HTTP request without a preceding SYN resulted in no blocking. In 2008 and 2009, Park and Crandall [101] further tested keyword filtering of HTTP responses. Injecting RST packets into responses is more difficult than doing the same to requests, because of the greater uncertainty in predicting TCP sequence numbers once a session is well underway. In fact, RST injection into responses was hit or miss, succeeding only 51% of the time, with some, apparently diurnal, variation. They also found inconsistencies in the statefulness of the firewall. Two of ten injection servers would react to a naked HTTP request; that it, one sent outside of an established TCP connection. The remaining eight of ten required an established TCP connection. Xu et al. [137] continued the theme of keyword filtering in 2011, with the goal of discovering where filters are located at the IP and AS levels. Most filtering is done at border networks (autonomous systems with at least one non-Chinese peer). In their measurements, the firewall was fully stateful: blocking was never triggered by an HTTP request outside an established TCP connection. The system was not run on a continuing basis. Winter and Lindskog [132] did a formal investigation into active probing, a reported capability of the Great Firewall since around October 2011. They focused on the firewall’s probing of Tor relays. Using private Tor relays in Singapore, Sweden, and Russia, they provoked active probes by simulating Tor connections, collecting 3295 firewall scans over 17 days. Over half the scan came from a single IP address in China; the remainder seemingly came from ISP pools. Active probing is initiated every 15 minutes and each burst lasts for about 10 minutes.

Sfakianakis et al. [113] built CensMon, a system for testing web censorship using PlanetLab nodes as distributed measurement points. They ran the system for for 14 days in 2011 across 33 countries, testing about 5,000 unique URLs. They found 193 blocked domain–country pairs, 176 of them in China. CensMon reports the mechanism of blocking. Across all nodes, it was 18.2% DNS tampering, 33.3% IP address blocking, and 48.5% HTTP keyword filtering. The system was not run on a continuing basis. Verkamp and Gupta [124] did a separate study in 11 countries, using a combination of PlanetLab nodes and the computers of volunteers. Censorship techniques vary across countries; for example, some show overt block pages and others do not. China was the only stateful censor of the 11.

PlanetLab is a system that was not originally designed for censorship measurement, that was later adapted for that purpose. Another recent example is RIPE Atlas, a globally distributed Internet measurement network consisting of physical probes hosted by volunteers, Atlas allows 4 types of measurements: ping, traceroute, DNS resolution, and X.509 certificate fetching. Anderson et al. [4] used Atlas to examine two case studies of censorship: Turkey’s ban on social media sites in March 2014 and Russia’s blocking of certain LiveJournal blogs in March 2014. In Turkey, they found at least six shifts in policy during two weeks of site
blocking. They observed an escalation in blocking in Turkey: the authorities first poisoned DNS for twitter.com, then blocked the IP addresses of the Google public DNS servers, then finally blocked Twitter’s IP addresses directly. In Russia, they found ten unique bogus IP addresses used to poison DNS.

Most research on censors has focused on the blocking of specific web sites and HTTP keywords. A few studies have looked at less discriminating forms of censorship: outright shutdowns and throttling without fully blocking. Dainotti et al. [22] reported on the total Internet shutdowns that took place in Egypt and Libya in the early months of 2011. They used multiple measurements to document the outages as they occurred: BGP data, a large network telescope, and active traceroutes. During outages, there was a drop in scanning traffic (mainly from the Conficker botnet) to their telescope. By comparing these different measurements, they showed that the shutdown in Libya was accomplished in more than one way, both by altering network routes and by firewalls dropping packets. Anderson [3] documented network throttling in Iran, which occurred over two major periods between 2011 and 2012. Throttling degrades network access without totally blocking it, and is harder to detect than blocking. The author argues that a hallmark of throttling is a decrease in network throughput without an accompanying increase in latency and packet loss, distinguishing throttling from ordinary network congestion. Academic institutions were affected by throttling, but less so than other networks. Aryan et al. [8] tested censorship in Iran during the two months before the June 2013 presidential election. They found multiple blocking methods: HTTP request keyword filtering, DNS tampering, and throttling. The most usual method was HTTP request filtering. DNS tampering (directing to a blackhole IP address) affected only three domains: facebook.com, youtube.com, and plus.google.com. SSH connections were throttled down to about 15% of the link capacity, while randomized protocols were throttled almost down to zero 60 seconds into a connection’s lifetime. Throttling seemed to be achieved by dropping packets, thereby forcing TCP’s usual recovery.

Khattak et al. [75] evaluated the Great Firewall from the perspective that it works like an intrusion detection system or network monitor, and applied existing technique for evading a monitor the problem of circumvention. They looked particularly for ways to evade detection that are expensive for the censor to remedy. They found that the firewall is stateful, but only in the client-to-server direction. The firewall is vulnerable to a variety of TCP- and HTTP-based evasion techniques, such as overlapping fragments, TTL-limited packets, and URL encodings.

Nabi [93] investigated web censorship in Pakistan in 2013, using a publicly known list of banned web sites. They tested on 5 different networks in Pakistan. Over half of the sites on the list were blocked by DNS tampering; less than 2% were additionally blocked by HTTP filtering (an injected redirection before April 2013, or a static block page after that). They conducted a small survey to find the most commonly used circumvention methods in Pakistan. The most used method was public VPNs, at 45% of respondents.

Ensafi et al. [37] employed an intriguing technique to measure censorship from many locations in China—a “hybrid idle scan.” The hybrid idle scan allows one to test TCP connectivity between two Internet hosts, without needing to control either one. They selected roughly uniformly geographically distributed sites in China from which to measure connectivity to Tor relays, Tor directory authorities, and the web servers of popular Chinese web sites. There were frequent failures of the firewall resulting in temporary connectivity,
typically lasting in bursts of hours.

In 2015, Marczak et al. [84] investigated an innovation in the capabilities of the border routers of China, an attack tool dubbed the “Great Cannon.” The cannon was responsible for denial-of-service attacks on Amazon CloudFront and GitHub. The unwitting participants in the attack were web browsers located outside of China, who began their attack when the cannon injected malicious JavaScript into certain HTTP responses originating in China. The new attack tool is noteworthy because it demonstrated previously unseen in-path behavior, such as packet dropping.

Not every censor is China, with its sophisticated homegrown firewall. A major aspect of censor modeling is that many censors use commercial firewall hardware. A case in point is the analysis by Chaabane et al. [14] of 600 GB of leaked logs from Blue Coat proxies used for censorship in Syria. The logs cover 9 days in July and August 2011, and contain an entry for every HTTP request. The authors of the study found evidence of IP address blocking, domain name blocking, and HTTP request keyword blocking, and also of users circumventing censorship by downloading circumvention software or using the Google cache. All subdomains of .il, the top-level domain for Israel, were blocked, as were many IP address ranges in Israel. Blocked URL keywords included “proxy”, “hotspotshield”, “israel”, and “ultrasurf” (resulting in collateral damage to the Google Toolbar and Facebook Like button because they have “proxy” in HTTP requests). Tor was only lightly censored—only one of several proxies blocked it, and only sporadically.

[62] and other OONI.

Analyzing Internet Censorship in Pakistan[1]
Bibliography

