
Snowflake, a censorship circumvention system

using temporary WebRTC proxies

(Draft February 10, 2024)

Cecylia Bocovich Arlo Breault David Fifield Serene Xiaokang Wang

Abstract

Snowflake is a system for circumventing Internet censorship.

Its blocking resistance comes from the use of numerous, ultra-

light, temporary proxies (“snowflakes”), which accept traffic

from censored clients using peer-to-peer WebRTC protocols

and forward it to a centralized bridge. The temporary proxies

are simple enough to be implemented in JavaScript, in a web

page or browser extension, making them much cheaper to run

than a traditional proxy or VPN server. The large and con-

stantly changing pool of proxy addresses resists enumeration

and blocking by a censor. The system is built on the assump-

tion that proxies may appear or disappear at any time: clients

discover live proxies dynamically using a secure rendezvous

protocol; when an in-use proxy goes offline, its client switches

to another on the fly, invisibly to upper network layers.

Snowflake has been deployed with success in Tor Browser

and Orbot for several years. It has been a significant circum-

vention tool during high-profile network disruptions, includ-

ing in Russia in 2021 and Iran in 2022. In this paper, we

explain the composition of Snowflake’s many parts, give a

history of deployment and blocking attempts, and reflect on

implications for circumvention generally.

1 Introduction

Snowflake is a censorship circumvention system, a system

to enable network communication despite interference by a

censor. Its blocking resistance comes from a large pool of

low-cost, temporary proxies that varies over time and offers a

censor no fixed target for blocking. The core research purpose

of this paper is to investigate experimentally to what extent

a circumvention system that makes the tradeoffs Snowflake

does can be effective against contemporary censors. We will

present the design of the system, listing the many challenges

of circumvention and showing how Snowflake addresses them.

We will explain how Snowflake solves the technical challenge

of providing a good user experience when proxies are individ-

ually unreliable. We will document the reactions of national

censors through case studies in Russia, Iran, China, and Turk-

menistan over more than three years of deployment. On the

way we will provide quantitative evaluations of various facets

of the system, including the number of clients served, and the

size and composition of the proxy pool.

Censorship circumvention systems may be characterized

on multiple axes. Some systems imitate a common network

protocol; others try not to look like any protocol in particular.

Some distribute connections over numerous proxy servers;

others concentrate on a single proxy that is, for one reason or

another, difficult for a censor to block. What all circumvention

systems have in common is that they strive to increase the

cost to the censor of blocking them—whether that cost be in

research and development, human resources, and hardware; or

in the inevitable overblocking that results when a censor tries

to selectively block some connections but not others. On the

spectrum of imitation to randomization, Snowflake falls on

the side of imitation; on the scale of diffuse to concentrated, it

is diffuse. Snowflake’s defining characteristic is that it pushes

the idea of distributed, disposable proxies to an extreme.

WebRTC is a suite of protocols intended for real-time com-

munication applications on the web [1]. Video and voice

chat are typical applications. Snowflake exchanges WebRTC

data formats in the course of establishing a connection, and

uses WebRTC protocols to traverse of NAT (network address

translation) and to connect clients and proxies. Crucially for

Snowflake, WebRTC APIs are available to JavaScript code in

web browsers, meaning it is possible to implement a proxy

in a web page or browser extension. WebRTC is also usable

outside a browser, which is how we implement the Snowflake

client program and alternative, command line–based proxies.

As is usual in circumvention research, we assume a threat

model in which clients reside in a network controlled by a

censor. The censor has the power to inspect and interfere

with traffic that crosses the border of its network; typical real-

world censor behaviors include inspecting IP addresses and

hostnames, checking packet contents for keywords, blocking

IP addresses, and injecting false DNS responses and TCP

RST packets. The client wants to communicate with some
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destination outside the censor’s network, possibly with the

aid of third-party proxies. The censor is motivated to block

the contents of the client’s communication, or the destination

itself. The censor knows of the possibility of circumvention,

and therefore seeks to block not only direct communication

with the destination, but also indirect communication by way

of a proxy or circumvention system. Circumvention is accom-

plished when the client can reliably reach any proxy, because a

proxy, being outside the censor’s control, can then forward the

client’s communication to any destination. (In Snowflake, we

separate the roles of temporary proxies and a stable long-term

bridge, but the idea is the same.) The censor derives benefit

from permitting some forms of network access: it cannot triv-

ially “win” by shutting down all communication, but must

be selective in its blocking decisions, in order to optimize

some objective of its own. The art of censorship circumven-

tion is forcing the censor into a dilemma of overblocking or

underblocking, by making circumvention traffic difficult to

distinguish from traffic that the censor prefers not to block.

Snowflake originates in two earlier projects: flash proxy

and uProxy. Flash proxy [10], like Snowflake, used untrusted

temporary JavaScript proxies in web browsers forwarding to

a central bridge, but the link between client and proxy was

WebSocket rather than WebRTC, which was then an emerging

technology. Flash proxy was deployed from 2013 to 2016,

but never saw much use, probably because WebSocket, which

lacks the built-in NAT traversal of WebRTC, required clients

to do complicated port forwarding. uProxy [38], in one of

its early incarnations, pioneered the use of WebRTC prox-

ies for circumvention. uProxy’s proxies were browser-based,

but its trust and deployment model was different from flash

proxy’s and Snowflake’s. Censored clients would arrange, out

of band, for an acquaintance outside the censor’s network to

run a proxy in their browser [39]. A personal trust relation-

ship was necessary to prevent misuse, since browser proxies

fetched destination content directly—meaning client activity

would be attributed to the proxy, and the proxy might inspect

the client’s traffic. Clients did not change proxies on the fly.

uProxy supported protocol obfuscation: its packets could be

transformed to resemble something other than WebRTC. This

was possible because of uProxy’s implementation as a privi-

leged browser extension with access to real sockets. Because

Snowflake uses ordinary unprivileged APIs, its WebRTC can

only look like WebRTC; on the other hand, for the same rea-

son, Snowflake proxies are easier to deploy. Like flash proxy,

uProxy was active in the years 2013–2016.

Among existing circumvention systems, the one that is

most similar to Snowflake is MassBrowser [25], which of-

fers proxying though volunteer proxies, called buddies. Mass-

Browser’s architecture is similar to Snowflake’s: there is

a centralized component that coordinates connections be-

tween clients and buddies, which corresponds to a piece

in Snowflake called the broker; buddies are similar to our

proxies. The trust model is in between Snowflake’s and

uProxy’s. Buddies preferentially operate as one-hop prox-

ies, as in uProxy, but are not limited to proxying only for

trusted friends. To deter misuse, buddies specify a policy of

what categories of content they are willing to proxy. The

buddy software is not constrained by a web browser environ-

ment, and can, like uProxy, use protocol obfuscation on the

client–buddy link.

Other circumvention systems have used WebRTC, though

without Snowflake’s focus on numerous proxies. Protozoa [2]

and Stegozoa [12] demonstrate point-to-point covert tunnel

over WebRTC, the former by directly replacing encoded me-

dia with its own ciphertexts, the latter using video steganog-

raphy. Significantly, where Snowflake now uses WebRTC

data channels, Protozoa and Stegozoa use WebRTC media

streams, which may have advantages for blocking resistance.

We will say more on this point in Section 3. TorKameleon [40]

is a WebRTC-based system with the dual goals of resisting

blocking and complicating traffic correlation attacks. It uses a

recent draft programming interface called WebRTC Encoded

Transforms to support Protozoa-like embedding of data within

media streams, without invasive browser modifications.

Our goal in this paper is to provide a realistic assessment

of Snowflake, neither to exaggerate its advantages, nor dis-

proportionately emphasize the limitations of other systems.

Circumvention research is a cooperative enterprise, and we

recognize and support our colleagues who design and main-

tain their own systems. With Snowflake, we have tried to

explore a different point in the design space, and by this explo-

ration widen the scope of effective circumvention techniques.

We acknowledge that Snowflake will be a better choice in

some censorship environments and worse in others; indeed,

one of the ideas we hope to convey is that blocking resistance

can be meaningfully understood only in relation to particular

censor and its resources, costs, and motivations.

As of February 2024, Snowflake supports an estimated

42,000 average concurrent users at an average total trans-

fer rate of 3.5 Gbit/s, which works out to around 38 TB of

circumvention traffic per day.

2 How it works

A Snowflake proxy connection proceeds in three phases. First,

there is rendezvous, in which a client indicates its need for

circumvention service and is matched with a temporary proxy.

Rendezvous is facilitated by a central server called the broker.

Then, there is connection establishment, where the client and

its proxy connect to each other with WebRTC, using infor-

mation exchanged during rendezvous. Finally, there is data

transfer, where the proxy transports data between the client

and the bridge. The bridge is responsible for directing the

client’s traffic to its eventual destination (in our case, by feed-

ing it into the Tor network). Figure 1 illustrates the process.

These phases repeat as needed, as temporary proxies come

and go. Proxy failure is not an abnormal condition—it hap-
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Figure 1: Architecture of Snowflake. The client contacts the broker through a special rendezvous channel with high blocking

resistance. The broker matches the client with one of the proxies that are currently polling. The client and proxy connect to one

another using WebRTC. The proxy connects to the bridge, then begins copying traffic in both directions. If the proxy disappears,

the client does another rendezvous and resumes its session with a new proxy.

Make this graphic depict STUN servers and indirect rendezvous.

pens whenever a proxy is running in a browser that is closed,

for example. A client builds a circumvention session over a

sequence of proxies, switching to a new one whenever the cur-

rent one stops working. State variables stored at the client and

the bridge let the session pick up where it left off. The change

of proxies is invisible to the applications using Snowflake (ex-

cept for a brief delay for another rendezvous). The Snowflake

client presents an abstraction of one uninterrupted connection.

It does not avail a censor to block the broker or bridge,

because Snowflake clients never contact either one directly.

Clients reach the broker over an indirect rendezvous channel.

Access to the bridge is always mediated by a temporary proxy.

2.1 Rendezvous

A session begins with the client sending a rendezvous message

to the broker. An ambient population of proxies constantly

polls the broker to check for clients in need of service. The

broker matches the client with an available proxy, taking into

account factors like NAT compatibility.

The client’s rendezvous message is a bundle of data that

the broker will need in order to match the client with a proxy,

and the proxy will need in order to connect to the client. The

most important part of the rendezvous message is a Session

Description Protocol (SDP) offer [28], which contains the

information needed for a WebRTC connection, such as the

client’s external IP addresses and cryptographic data to secure

a later key exchange. The broker gives the client’s offer to

a currently polling proxy, which sends back an SDP answer

with its share of connection details. The broker forwards

the proxy’s answer to the client, and client and proxy then

connect to one other directly. In WebRTC terms, this offer/

answer exchange is called “signaling” [1 §2.2], and here the

broker acts as a signaling server. To gather the information for

an SDP offer or answer, clients and proxies communicate with

third-party servers, called STUN servers, before contacting

the broker. We will say more about how STUN is used in

Section 2.2. Connecting to STUN servers is a normal part of

WebRTC, though there are fingerprinting considerations that

we cover in Section 3.

Interaction with the broker uses a “long-polling” model,

depicted abstractly in Figure 2. Proxies poll the broker period-

ically, making an ordinary HTTPS request. The broker holds

the connection open for a few seconds to await a client ren-

dezvous message. If none arrives, the broker sends a response

that says “no clients” and the proxy goes to sleep until its next

poll. When a client does arrive, the broker responds to the

proxy’s poll request with the client’s SDP offer. The proxy

re-connects to the broker to send back its SDP answer. The

broker sends the SDP answer to the client and an acknowl-

edgement to the proxy. At this point rendezvous is finished:

client and proxy have what they need to connect.

Proxies are free to connect to the broker directly, because

they are assumed to be uncensored. But clients must use an

indirect, blocking-resistant channel, because any direct con-

nection with the broker would be easily blocked by a censor.

What is needed, essentially, is a miniature circumvention sys-

tem to bootstrap the full system. But if clients have access to a

bootstrap rendezvous method that is good enough to reach the

broker, why is a more extensive circumvention system needed

at all? The answer is that the restricted scope of rendezvous

admits a wider range of solutions than general circumven-

tion. Techniques that would be too slow or expensive for

high-volume or interactive circumvention may yet be suited

to rendezvous, because rendezvous happens infrequently and

transmits only small amounts of data.

The nice thing about rendezvous that it is modular and sep-

arable. More than one method may be used, and the methods
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Rendezvous message

(client’s WebRTC offer)

Rendezvous response

(forward proxy’s answer)

Poll: any pending clients?

Here is a client

(forward client’s offer)

I will serve this client

(proxy’s WebRTC answer)

Acknowledged

Poll: any pending clients?

No pending clients

ProxyBrokerClient

Figure 2: Information exchange in Snowflake rendezvous.

When the broker makes a match, the proxy receives the

client’s SDP offer, then re-connects to send back its SDP

answer. It all happens during one round trip, from the client’s

point of view. Not shown is the indirect channel the client

must use to access the broker.

need not have anything in common with the main system.

Anything that can be persuaded to convey a message of about

1,500 bytes indirectly to the broker, and return a response of

about the same size, may work as a Snowflake rendezvous

module. Snowflake now supports three rendezvous methods:

Domain fronting In this method, the client does an HTTPS

exchange with the broker through an intermediary web

service such as a content delivery network (CDN), set-

ting the externally visible hostname (the TLS Server

Name Indication, or SNI [6 §3]) to a “front domain” dif-

ferent from the broker’s. The CDN routes the HTTPS

request to the broker according to the the HTTP Host

header, which, under TLS encryption, reflects the ac-

tual hostname of the broker [11]. A censor cannot easily

block domain-fronted rendezvous without also blocking

unrelated connections to the front domain, which should

be selected to have high value to the censor. The well-

known drawback of domain fronting is the high cost of

CDN bandwidth, but this is not a big problem when it is

used only for rendezvous.

AMP cache AMP is a framework for web pages written in a

restricted dialect of HTML. Part of the framework is a

free-to-use cache server [27]. The cache fetches AMP-

conformant pages on demand, making it effectively a

restricted sort of HTTP proxy. We have a module that

encodes rendezvous messages to conform to AMP re-

quirements, allowing them to be exchanged with the

broker via the AMP cache.1 This rendezvous method

is not easily blocked without blocking the cache server

as a whole. It still technically requires domain fronting,

because the AMP cache protocol normally exposes the

1https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/
merge_requests/50

broker’s hostname in the TLS SNI, but it enlarges the set

of usable intermediaries and front domains.

SQS (Simple Queue Service) Amazon SQS is a message

queuing service designed for communication between

microservices. Snowflake has the ability (new at the time

of this writing) to use a message queue as a one-way com-

munication channel.2 Clients write into a public queue,

and the broker reads from it. Rendezvous response mes-

sages are sent back through dynamically created, single-

use queues. Communication is indirect via SQS servers.

Rendezvous is not unique to Snowflake. Other examples of

rendezvous are the DEFIANCE Rendezvous Protocol [20 §3],

the facilitator interaction in flash proxy [10 §3], and the

registration proxy in Conjure [13 §4.1]. A key property of

Snowflake and the mentioned systems is that their block-

ing resistance does not rely on preshared secret information.

Whatever information is needed to establish a circumvention

session is obtained dynamically at runtime. This is in contrast

to other systems in which, before making a connection, the

client must acquire some secret, such as an IP address or pass-

word, through an out-of-band channel—and blocking resis-

tance depends on keeping that information secret. A corollary

of the no-secret-information property is that an adversary is at

no special disadvantage in attacking the system. There is no

out-of-band channel which real clients have access to but the

censor does not. The censor may pose as a client, download

the software, study its network connections—and the system

must maintain its blocking resistance despite this. The disad-

vantage of a separate rendezvous step is that it is one more

thing to get right. Both the main circumvention channel and

the rendezvous must resist blocking: the combination is only

as strong as the weaker of the two.

2.2 Peer-to-peer connection establishment

Now the client and the proxy connect to each other directly.

Even in the absence of censorship, making a direct connection

between two Internet peers is not always easy, because of NAT

(network address translation) and firewalls. Snowflake clients

and proxies alike run in diverse networks with varying NATs

and ingress policies. Fortunately for us, WebRTC is designed

with this use case in mind, and has built-in support for travers-

ing NAT, in the form of ICE (Interactive Connectivity Estab-

lishment) [19], a procedure for testing candidate pairs of peer

network addresses to find one that works. ICE makes use of

third-party STUN (Session Traversal Utilities for NAT) [29]

servers that, among other things, enable a host to learn its

external IP addresses. The first part of ICE took place at the

beginning of rendezvous, when the client and proxy contacted

STUN servers to gather external address candidates and in-

cluded them in their respective SDP offer and answer.

2https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/
merge_requests/214
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There is no guarantee that two hosts will be able to make a

connection using the facilities of STUN alone. Some address

mapping and filtering setups are simply incompatible. In such

a case, ICE would normally fall back to using TURN (Traver-

sal Using Relays around NAT) [31], a kind of UDP proxy.

Such a fallback would be problematic for Snowflake, because

the TURN relays themselves would become a target of block-

ing by the censor. But Snowflake has an advantage most

WebRTC applications do not. Most WebRTC applications

want to connect a particular pair of peers, whereas we are

satisfied when a client can connect to any proxy. Snowflake

clients and proxies self-measure their NAT type and report

it to the broker, which takes NAT compatibility into account

and avoids cases that would require a fallback to TURN.

We condense the possible combinations of NAT and fire-

wall features that impact a Snowflake client or proxy’s ability

to make a peer-to-peer connection into the following well-

known variations:

Full cone The same internal IP–port pair always maps to the

same external port. Any remote host may send a packet

to an internal IP address and port by sending a packet to

the mapped external port.

Restricted cone Like full cone, but incoming packets are al-

lowed only if there has recently been an outgoing packet

to the same remote IP address.

Port-restricted cone Like restricted cone, but incoming

packets are allowed only if there has recently been an

outgoing packet to the same remote IP–port pair.

Symmetric The external port depends on both the internal IP–

port pair and the remote IP–port pair. Incoming packets

are allowed only if there has recently been an outgoing

packet to the same remote address.

Table 1 shows the pairwise compatibility of NAT variations.

As the incompatible cases always involve a symmetric NAT,

we further simplify matching by categorizing the variations

into the two types unrestricted (works with most other NATs)

and restricted (works only with more permissive NATs). Un-

restricted proxies may be matched with any client; restricted

proxies may be matched only with unrestricted clients. The

broker prefers to match unrestricted clients with restricted

proxies, in order to conserve unrestricted proxies for the

clients that need them. Symmetric NAT is always considered

restricted, but port-restricted cone NAT differs depending on

the peer: for proxies it is restricted, but for clients it is unre-

stricted. The asymmetric categorization is an approximation

to help conserve unrestricted proxies for clients with symmet-

ric NATs. Though it creates the potential for an incompatible

match, we believe this to be uncommon in practice. In case

of a connection failure, clients re-rendezvous and try again.

To self-assess their NAT type, clients use the NAT behavior

discovery feature of STUN [22]. Proxies cannot use the same

No NAT

Full cone

Restr
icted cone

Port-
restr

icted cone

Symmetric

No NAT 6 6 6 6 6






unrestricted
proxyFull cone 6 6 6 6 6

Restricted cone 6 6 6 6 6

Port-restricted cone 6 6 6 6 –






restricted
proxy

Symmetric 6 6 6 – –
︸ ︷︷ ︸ ︸︷︷︸

unrestricted
client

restricted
client

Table 1: Pairwise compatibility of NAT variants, using the

facilities of STUN alone (no fallback to TURN). The incom-

patible cases are when one peer’s NAT is symmetric and the

other’s is symmetric or port-restricted cone. Note the asym-

metry in what NAT variants we consider “restricted” in client

and proxy.
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Figure 3: Proxy NAT types, in unique IP addresses per day.

The places in 2021 and 2022 where there is an increase in the

“unknown” NAT type and a decrease in the other types were

the result of operational problems with NAT type testing.

technique, because the necessary STUN features are not ex-

posed to JavaScript. Instead, we adapt a technique from Mass-

Browser [25 §V-A]: we run a centralized, always-on WebRTC

testing peer behind a simulated symmetric NAT.3 Proxies try

connecting to this peer: if the connection succeeds, the proxy’s

type is unrestricted; otherwise it is restricted. Clients and prox-

ies retest their NAT type periodically, to account for potential

changes in their local networking environment. If a client or

proxy is unable to determine its NAT type for some reason, it

reports the type “unknown,” which the broker conservatively

treats as if it were restricted.

Figure 3 shows that unrestricted proxies form a relatively

small fraction of the proxy population. In absolute terms,

there are enough, thanks in large part to the volunteers who

run the command-line version of the Snowflake proxy on

networks unencumbered by NAT. Though stable, long-term

proxies go somewhat against the ethos of Snowflake, it has

proved useful, as a matter of practicality, to sacrifice a mea-

3https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013
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sure of address diversity for better NAT compatibility in a

common case. We can estimate how many tries it takes a

client to be matched with a proxy, on average, by counting

failed and successful rendezvous attempts at the broker, under

the assumption that clients repeat rendezvous attempts until

getting a match. In July 2023, unrestricted clients almost al-

ways got a match on the first attempt, while restricted clients

needed an average of 1.07 attempts (standard deviation 0.05).

While the proxy is connecting to its client, it also connects

to the bridge. This connection uses WebSocket [24], which

offers a TCP-like, client–server connection layered on HTTPS.

The choice of protocol for the proxy–bridge link is arbitrary,

and could be changed without affecting the rest of the system.

It does not need to be resist blocking, it just needs to be

available to JavaScript code in web browsers. WebRTC, for

example, could be used for this link as well.

2.3 Data transfer

No complicated processing takes place at the proxy. The main

value of a Snowflake proxy is its IP address: it gives the

client a peer to connect to that is not on the censor’s address

blocklist. Having provided that, the proxy assumes a role of

pure data transfer.

Snowflake uses a stack of nested protocol layers. We will

walk though the layers and describe the purpose of each.

UDP






WebRTC

data channel






ephemeral, per proxyDTLS

SCTP

KCP
}

Turbo Tunnel






persistent, per sessionsmux

Tor protocol

application streams

This is the stack for the client–proxy link, which is the place

where WebRTC is used, and which is exposed to observation

by the censor (Figure 1). The stack for the proxy–bridge link

is the same, but with WebSocket in place of the WebRTC

data channel at the top. The layers marked “ephemeral” are

skimmed off and replaced as proxies come and go. The layers

marked “persistent” are instantiated once in each circumven-

tion session, hold long-term state, and are end-to-end between

client and bridge.

The connection between a client and its proxy is a Web-

RTC data channel [18], which provides a way to send arbitrary

binary messages between peers. A data channel is its own

stack of three protocols: UDP for network transport, DTLS

(Datagram TLS) for confidentiality and integrity, and SCTP

(Stream Control Transmission Protocol) for delimiting mes-

sage boundaries and other features like congestion control.

Working UDP port numbers will have been discovered us-

ing ICE in the previous phase. The peers authenticate one

another at the DTLS layer using certificate fingerprints that

were exchanged during rendezvous [17 §5.1].

Data channels are well-suited to Snowflake’s needs. (The

specification even lists circumvention as a use case [18 §3.2].)

But data channels are not the only option: WebRTC also offers

media streams for unreliable transport of real-time audio and

video. Which of these is used may be a fingerprinting vector.

We will take up this topic in Section 3.

If clients only ever used one proxy, a WebRTC data chan-

nel alone would be sufficient. But a Snowflake proxy might

disappear at any moment, and when that happens, its data

channel goes with it. If the client was in the middle of a long

download, for example, it should be possible to resume the

download without interruption after rendezvousing with a new

proxy. For this we need a shared notion of session state that

exists at the client and the bridge, not tied to any temporary

proxy. A lack of session continuity across proxy failures had

been an unsolved problem in flash proxy [10 §5.2].

We adopt the Turbo Tunnel design pattern [8] and in-

sert a userspace session and reliability protocol between the

ephemeral proxy data channels and the client’s own applica-

tion streams.4 This part of the protocol stack outlives any sin-

gle proxy; it belongs to the client and the bridge. Its primary

function is to attach sequence numbers and acknowledge-

ments to packets of data, so that both ends know what parts of

the data stream need to be retransmitted after a temporary loss

of proxy connectivity. The client tags its traffic with a random

session identifier string that remains consistent throughout

a session, which the bridge uses to index a map of session

variables. For the inner session layer we use a combination of

KCP [34] and smux [43]. KCP provides reliability, and smux

detects the end of idle sessions and terminates them. KCP and

smux have shown their worth in other deployments, and are

easy to program, but there is nothing about them on which we

depend essentially. Any other transport protocol that provides

the necessary features and can be implemented in userspace

would do, such as QUIC, TCP, or (another layer of) SCTP.

We prototyped successfully with QUIC before deciding on

KCP/smux.

One more protocol layer is needed inside the tunnel: an end-

to-end secure channel between the client and the bridge, using

keys unknown to the proxy. The purpose of this channel is

to let the client tell the bridge what destinations to access,

and prevent the proxy from inspecting or tampering with the

traffic it carries. Nothing special is required here: for example,

SOCKS over TLS, or any VPN protocol, would work fine. Our

deployment uses Tor as this secure channel: after removing

the WebSocket and Turbo Tunnel layers, the bridge feeds the

client’s stream into a local Tor bridge, which routes the stream

into the Tor network and eventually to its destination. Using

Tor, of course, has the advantage that not even the bridge is

trusted to see the contents of client streams or know their

destination. But Tor also has certain drawbacks, which we

will comment on in Section 4.4 and Section 6.

Snowflake may be seen as an instance of the “untrusted

4https://lists.torproject.org/pipermail/anti-censorship-team/2020-February/000059.html
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messengers” model of Feamster et al. [7 §3]. Our proxies

correspond to their messengers; our bridge is their portal.

Proxies are trusted to deliver the client’s client’s traffic to the

bridge, but not directly to the destination. An inner layer of

cryptography protects the client’s traffic from observation and

manipulation by malicious proxies. The protection goes in

the other direction as well: because proxies are programmed

to connect only to a Snowflake bridge, and they never process

anything but ciphertext, a malicious client cannot cause a

proxy to misbehave or have the client’s actions attributed to it.

Without this mutual guarantee of safety, it would be too risky

to associate a client and proxy who have no preexisting trust

relationship.

3 Protocol fingerprinting

Snowflake’s main focus is the “address blocking” side of

circumvention, but the “content blocking” part matters too.

The goal, as always, is to make circumvention traffic diffi-

cult to distinguish from traffic the censor prefers not to block.

Snowflake is tied to WebRTC, and so can only be effective

against a censor that is not willing to block WebRTC protocols

wholesale. But even within that scope, there are many varia-

tions in how WebRTC is implemented and used, which, if not

carefully considered, might enable a censor to selectively

block only Snowflake, while leaving other uses of WebRTC

undisturbed. Unfortunately for the circumvention developer,

the richness of WebRTC protocols creates a large attack sur-

face for fingerprinting. Not only that, WebRTC leaves the

details of the signaling path—the medium through which

peers exchange information needed to set up a connection—

unspecified [1 §3], leaving every application to invent its own

mechanism.

As WebRTC is designed for the web, most implementa-

tions of WebRTC are embedded in web browsers, and are

not easily removed from that context. Snowflake originally

used a WebRTC library extracted from Chromium, but that

eventually proved unworkable for cross-platform deployment.

Since 2019, Snowflake has used Pion [30], an independent

implementation of WebRTC.5 It is not tied to any browser,

which is both good and bad. The good features are less devel-

opment friction, better memory safety (Pion is written in Go,

Chromium WebRTC in C++), and a working relationship with

upstream developers to make fingerprinting-related changes

when needed. The bad is that the protocol fingerprints of Pion

do not automatically match the mostly browser-originated

WebRTC that Snowflake aims to blend in with.

The following is a list of the main fingerprinting concerns

in Snowflake and what we have done to address them. A fin-

gerprinting vulnerability does not automatically disqualify

a circumvention system: it depends on whether the vulnera-

bility is fixable without fundamentally changing the system.

5https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28942

Even among demonstrable vulnerabilities, some are more and

some are less practical for a censor to take advantage of. The

important thing is to build on a solid foundation. Minor flaws

may be patched up as necessary.

Selection of STUN servers It is not unusual for a WebRTC

application to use STUN, but the choice of what STUN

servers to use is up to the application. Running dedicated

STUN servers just for Snowflake would not work, be-

cause a censor would experience no collateral harm in

blocking them. Our deployment uses a pool of public

STUN servers that are used for applications other than

circumvention, filtered for those that support the NAT

behavior discovery feature of Section 2.2. The client

chooses a random subset of servers from the pool when

it makes a connection; this is because not every STUN

server is accessible under every censor.

Format of STUN messages STUN is most often deployed

over plaintext UDP, which leaves the formatting of mes-

sages open to inspection and potential fingerprinting.

STUN messages consist of a fixed header followed by a

variable-length list of ordered attributes [29 §5]. What

attributes appear, and their order, depends on the STUN

implementation and how the application uses it.

We have not done anything in particular to disguise

STUN messages. Though plaintext UDP is the most

common, STUN specifies other transports, including

encrypted ones like DTLS. These may be options for

Snowflake in the future—of course, only if they are com-

mon enough that their use does not stick out on its own.

Rendezvous Because the rendezvous methods of Section 2.1

are modular, each one needs its own justification as to

why it should be difficult to block. In addition, they must

be implemented in a way that does not expose accidental

distinguishers. For example, the domain fronting and

AMP cache rendezvous methods use HTTPS, which

is TLS, which means that TLS fingerprinting is a con-

cern [11 §5.1]. Snowflake, like many other circumven-

tion systems, uses the uTLS package [14 §VII] for a

client TLS fingerprint that is randomized or that imitates

common browsers. See Section 5.2 for an account of

when domain fronting rendezvous was briefly blocked

in Iran, because we were slow in activating uTLS.

Though each rendezvous method may be difficult to

block in itself, a censor might combine a low-confidence

detection of rendezvous with features from other phases

of Snowflake data exchange to strengthen its guess.

DTLS The outermost layer of a WebRTC data connection,

directly exposed to a censor, is DTLS (Datagram TLS)

over UDP. DTLS is an adaptation of TLS [33 §1] to the

datagram setting, and therefore inherits the fingerprinting

concerns of TLS [14]. TLS/DTLS fingerprinting may
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involve, for example, inspecting the ciphersuites and

extensions of Client Hello messages, and their order. If a

combination is specific to a particular implementation of

a circumvention system, it may be blocked at low cost.

Due to practical considerations, Snowflake’s defenses to

DTLS fingerprinting are not very robust, and are reactive

rather than proactive. In the realm of TLS one may use

uTLS, but there is as yet no equivalent for DTLS. The

present way of altering DTLS fingerprints in Snowflake

is to submit a pull request upstream to Pion when a

fingerprint feature used for blocking is identified. Sec-

tion 5.1 documents how this has happened twice already,

in response to blocking in Russia.

Data channel or media stream Besides data channels,

WebRTC offers media streams, serving the purpose

of real-time audio and video communication. Though

both are encrypted, data channels and media streams

are externally distinguishable because they use different

containers. Data channels use DTLS, while media

streams use DTLS-SRTP; that is, the Secure Real-Time

Transport Protocol with a DTLS key exchange [32 §4.3].

Data channels are a closer match to Snowflake’s commu-

nication model: media streams are meant to contain en-

coded audio and video, not arbitrary binary data. But the

use of DTLS rather than DTLS-SRTP could become a

significant feature if other WebRTC applications mainly

use media streams. Although it would be less convenient,

it would be possible to adapt the WebRTC link between

client and proxy to use a media stream rather than a data

channel, either by modulating binary data into a well-

formed encoded audio or video signal in the manner of,

say, Stegozoa [12 §3.3], or by replacing encoded media

content within SRTP packets, as in Protozoa [2 §4.4] or

TorKameleon [40 §III-D].

Protocol fingerprinting is where most research on detect-

ing Snowflake has focused. Fifield and Gil Epner [9] studied

the network traffic of WebRTC applications, with the goal

of finding fingerprinting pitfalls that might affect Snowflake,

which was then in early development. Frolov et al. [14 §V-C]

observed that the undisguised TLS fingerprint of domain

fronting rendezvous was distinctive, and introduced the uTLS

package that Snowflake now uses to protect it.

MacMillan et al. [23] focused on the DTLS handshake,

comparing Snowflake to three other WebRTC applications.

They correctly anticipated features of the Pion DTLS hand-

shake that would later be used to block Snowflake in Russia;

see details in Section 5.1. Holland et al. [16 §5.3], using the

bits of UDP datagrams directly as features, demonstrated ap-

proximately equal performance on the same DTLS handshake

data set. Their automatically derived classifier assigned high

feature importance to length fields in packets, and in fact did

well even when deprived of DTLS payload features.

Chen et al. [4] combined features of rendezvous and DTLS

in order to reduce false positives. Their classifier begins by

looking for DNS queries for STUN servers and front domains

typically used by Snowflake clients. They then apply a ma-

chine learning classifier to features of a subsequent DTLS

handshake. The authors acknowledge that DTLS fingerprint-

ing is fragile, as the DTLS fingerprint is, in principle, control-

lable by the application. The DNS prefilter may perhaps be

mitigated by alternative rendezvous methods (Section 2.1),

or by smarter selection of STUN servers.

Xie et al. [42] trained a decision tree to distinguish

Snowflake’s domain fronting rendezvous from certain other

HTTPS exchanges. They achieved some success using packet

size, direction, latency, and bandwidth features, though the

lowest reported false positive rate of 0.25% would translate

into substantial overblocking at the scale of an international

Internet connection. Wails et al. [41] criticize past research on

detecting circumvention systems, saying that accuracy claims

do not hold up with the low base rates of circumvention traffic

in practice. They develop classifiers for Snowflake and other

circumvention protocols that improve on the state of the art,

but find them still prohibitively imprecise at realistic base

rates. They propose to reduce false positives by combining

multiple observations per IP address—classifying hosts, not

flows—and suggest that Snowflake’s lack of fixed proxies

mitigates against this enhancement.

Related to protocol fingerprinting is traffic analysis: clas-

sifying connections based on features like the sequence of

packet lengths and transmission times, which may differ,

in circumvention use cases, from other uses of the cover

protocol. The best classifiers in the works of the previous

paragraph use traffic analysis features. While traffic analysis

attacks are worth thinking about, we caution that academic au-

diences have historically overestimated how much they matter

in practice. Tschantz et al. [36 §VII] have observed that cen-

sors are sensitive to costs and—particularly—false positives.

They claim (and our experience bears it out) that censors

prefer to traffic classification rules that are simple, precise,

and deterministic, and avoid ones that require keeping state,

are computationally expensive, or have non-negligible false

positive rates—all of which descriptors apply to traffic anal-

ysis classifiers. Nevertheless, we have tried to future-proof

Snowflake in this regard: the protocol inside the WebRTC

data channel supports arbitrary shaping of data units inside

the tunnel, which ought to be sufficient to imitate the traffic

fingerprint of other WebRTC applications, should that become

necessary. But the feature is currently unused.

4 Experience

Snowflake has now been in operation for a few years. In lieu

of a forward-looking evaluation, here we take a look back at

the history of our deployment and reflect on the experience.
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Figure 4: Estimated average simultaneous Snowflake users and bandwidth by day. The values at the far left end of the graph,

in early July 2021, are about 200 users and 2.7 Mbit/s.

4.1 Client counts and bandwidth

Snowflake became available to end users gradually, reflect-

ing a long development process. Development began in late

2015, and deployment in 2017, but the system only really

became usable in 2020. It began to attract large numbers of

users (enough to merit a censor’s attention) in 2022, following

network blocking events in Russia and Iran.

Snowflake shipped in the alpha release series of Tor

Browser before graduating to the stable series. The

first releases of Snowflake were for GNU/Linux in Tor

Browser 7.0a1 on 2017-01-24 6 and for macOS in Tor

Browser 7.5a4 on 2017-08-08 7. But we hit a roadblock

in attempting to prepare releases for other platforms: the

Chromium-derived WebRTC library we had used to that point

presented major difficulties in Tor Browser’s cross-compiling,

reproducible build environment. What let us resume mak-

ing progress was a switch to Pion WebRTC [30] in 2019.

With it, we were able to release Snowflake for Windows in

Tor Browser 9.0a7 on 2019-10-01 8, and for Android in Tor

Browser 10.0a1 on 2020-06-02 9.

While at this point Snowflake was available on every plat-

form supported by Tor Browser, it was not yet comfortably

usable. Two important parts were missing: no NAT type

matching (Section 2.2) meant that a client could not always

connect to its assigned proxy; and a lack of persistent ses-

sion state (Section 2.3) meant that even if a proxy connec-

tion was successful, the client’s session would end once that

proxy disappeared. For these reasons, by early 2020, the av-

erage number of concurrent users had not risen above 40.

The Turbo Tunnel session persistence feature became avail-

able to users in Tor Browser 9.5a13 on 2020-05-22.10 The

6https://bugs.torproject.org/tpo/applications/tor-browser/20735
7https://bugs.torproject.org/tpo/applications/tor-browser/22831
8https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25483
9https://bugs.torproject.org/tpo/applications/tor-browser/30318

10https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/33745

client part of NAT behavior detection was released with Tor

Browser 10.0a5 on 2020-08-19 11, and proxy support was

added on 2020-11-17 12. With these changes, Snowflake be-

came practical for daily browsing, and the number of users

began to grow into 2021.

This brings us to Figure 4, which shows the Snowflake

users and daily bandwidth since July 2021. Be aware: the

chart does not show a count of unique clients, but rather the

average number of concurrent clients per day [21]. For ex-

ample, the value of 12,000 on 2022-05-01 means that, on av-

erage, 12,000 clients were using the service at any point in

time on that day. The contribution of a client depends on

how long it uses the system each day, not how many tem-

porary proxies it uses. The average concurrent client count

is estimated from the number of directory requests that are

published in the descriptors sent by Tor bridges to the bridge

authority and archived by CollecTor.13 This method of esti-

mating usage metrics was developed specifically to preserve

user anonymity. We discuss the techniques and challenges

of obtaining country-specific usage counts more in Section 5

where we provide measurements of Snowflake usage in re-

sponse to censorship events.

Snowflake’s growth began in earnest when it became part of

default installations. Orbot, a mobile app that provides a VPN-

like Tor proxy, added a Snowflake client in version 16.4.0 on

2021-01-12.14 Snowflake graduated to Tor Browser’s stable

series in Tor Browser 10.5 on 2021-07-06 15, becoming a

third built-in circumvention option alongside meek and obfs4.

Being part of a stable release meant that it was easily available

to all Tor users, not just a self-selected group of alpha testers.

The number of users steadily increased over the next five

11https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34129
12https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013
13https://metrics.torproject.org/collector.html#type-extra-info
14https://github.com/guardianproject/orbot/releases/tag/

16.4.0-RC-1-tor-0.4.4.62021-01-12
15https://blog.torproject.org/new-release-tor-browser-105
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months, reaching almost 2,000 by December 2021.

A network censorship event may have the effect of either

increasing or decreasing the number of users of a circumven-

tion system. The user count decreases when the system is

not robust enough and falls to blocking; but increases when

it remains one of a diminished number of ways to reach the

outside world. Two such censorship events, one in Russia

and one in Iran, had the effect of increasing the number of

Snowflake users by multiples.

On 2021-12-01, some ISPs in Russia deployed measures to

block most forms of access to Tor, including Snowflake [44].

The measures varied in their effectiveness; in the case of

Snowflake, blocking was triggered by a particular feature of

the DTLS handshake which we were able to mitigate in new

releases within a few weeks.16 Over the next two months

the total number of Snowflake users quadrupled. By May

2022, about 70% of Snowflake users were in Russia. The user

count in Russia got an additional small boost, visible in the

graph, starting on 2022-07-14, when Tor Browser 11.5 added

the Connection Assist feature, which automatically enables

circumvention options when needed.17 We will present more

details of blocking actions in Russia and their effect on usage

in Section 5.1.

The next event to have a major effect on Snowflake usage

was the nationwide protests that started in Iran on 2022-09-16.

The government imposed network shutdowns and additional

network blocking, severe even by the standards of a country

already notorious for censorship [3]. Users turned to the few

circumvention systems that continued working in the face

of the new restrictions, one of which was Snowflake. Adop-

tion was rapid: on 2022-09-20, Iran accounted for only 1%

of Snowflake users; by 2022-09-24 it was 67%. The influx

of users had us scrambling for a few days to implement per-

formance improvements. Two weeks later, on 2022-10-04,

usage dropped almost as quickly as it had risen—the cause

was the blocking of a TLS fingerprint used by the Snowflake

client.18 After we released fixes for the TLS fingerprinting

issue, the user count began to recover going into 2023. But

in our haste to deploy optimizations in September, we had

introduced a bug that harmed performance, getting worse with

more users19, which dragged the count down again, until the

bug was fixed in mid-March. Umayya et al. happened to do

performance tests of Snowflake during this time [37 §4.6]—

their results bear out the lessened reliability of connections

before the performance bug was fixed20. More details on

blocking actions in Iran will appear in Section 5.2.

For most of this history, we ran the backend bridge on a

single server, upgrading and optimizing it as needed. But as

the bridge reached its hardware capacity, and performance

improvements got harder to achieve, we deployed a second

16https://bugs.torproject.org/tpo/applications/tor-browser-build/40393
17https://blog.torproject.org/new-release-tor-browser-115/
18https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207
19https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40260
20https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40262

Browser
extension

Orbot
Standalone
Web badge0

25,000

50,000

75,000

100,000

125,000

2022 2023 2024

U
ni

qu
e 

IP
 a

dd
re

ss
es

Figure 5: Unique proxy IP addresses per day, by proxy type.

The two steps in the graph correspond to the invasion of

Ukraine by Russia in February 2022, and network restric-

tions in Iran beginning September 2022, at which times there

were campaigns to encourage running Snowflake proxies. Un-

known proxy types (fewer than 50 instances) are not shown.

bridge to share the load. We discuss the challenges and design

considerations of doing so in Section 4.4. The new bridge was

made available in Tor Browser 12.0 on 2022-12-07. By July,

it supported about 18% of users and 20% of bandwidth.

The drop in users by about half on 2023-09-20 was not

caused by censor action: rather, it was an unexpected change

in the cloud infrastructure we used for domain fronting ren-

dezvous. The front domain we had been using changed its

hosting to a different CDN, which caused client rendezvous

messages to fail to reach the broker.21 The user count be-

gan to recover after we made releases with alternative front

domains.22

As of 2024-02-01, Snowflake had transferred 13.9 PB of

circumvention data. We are referring to goodput: Tor TLS

traffic inside the tunnel, ignoring WebRTC, WebSocket, and

KCP/smux overhead. At that time, about 0.7% of all Tor users

(24% of bridge users) used Snowflake to connect to Tor.

4.2 Number and type of proxies

Snowflake’s effectiveness depends on its proxies, of which

there are several types. The primary type is the web browser

extension, which, once installed, works in the background

while the browser is running. There is also a “web badge”

version of the proxy that does not require installation. It uses

the same JavaScript code as the extension, but runs in an

ordinary web page. Some people leave a browser tab idling

on the web badge page, rather than install a browser extension.

Apart from the web-based proxies, we provide a standalone,

command-line proxy that does not require a browser. This

version is convenient to install on a rented VPS, for example.

Running a long-term proxy at a fixed IP address is somewhat

at odds with Snowflake’s goal of proxy address diversity and

agility, but these standalone proxies are valuable because they

tend to have less restrictive NATs, making them compatible

with more clients. Finally, Orbot, a mobile app for accessing

21https://forum.torproject.org/t/9346
22https://bugs.torproject.org/tpo/applications/tor-browser/42120
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Tor, besides being able to use Snowflake for circumvention,

can also provide Snowflake proxy service to others, a feature

called “kindness mode.”

We coordinated with the Tor Project’s network health team

to collect privacy-preserving metrics at the broker during the

client and proxy polls of the Snowflake rendezvous.23 The

resulting metrics are published at the end of every 24-hour

collection period24 in aggregate and we do not publish or

store client or proxy IP addresses. Metrics concerning client

polls are rounded up to the nearest multiple of 8 to prevent

individual participation patterns from becoming visible in

the aggregate counts. The collected metrics allow us to deter-

mine daily unique proxy IP counts, along with the associated

country codes, proxy types, NAT behavior types (restricted,

unrestricted, or unknown), and how many times a proxy was

matched with a client. Figure 5 shows the daily counts of

each proxy type. Browser extension proxies predominate,

representing about 80% of 140,000 daily IP addresses. For

comparison, there were about 1,900 of the more traditional

style of Tor bridge at this time. The difference is attributable

to the relative ease of running a Snowflake proxy versus a Tor

bridge—though the comparison is not quite direct, because

Tor bridges have better defenses against enumeration than do

Snowflake proxies.Find a

place to

talk about

proxy ge-

olocation

and how

proxies

are mea-

sured.

It was not clear, at the outset, that it would even be possible

to attract enough proxies to make Snowflake meaningfully

blocking resistant and support a reasonable number of users.

Lowering the technical barriers to running a proxy was only

part of it; getting there also took intentional advocacy and

outreach. In the early days, circa 2017, the only round-the-

clock proxy support was a few standalone proxies, run by us

for the benefit of alpha tester clients. The browser extension

became available in mid-2019.25, 26 In the latter half of 2019,

additional proxy capacity came when Cupcake, a browser

extension for flash proxy with an existing user base, was re-

purposed for Snowflake.27 Orbot’s Snowflake proxy feature

was added in version 16.4.1 in February 2021.28 (In Fig-

ure 5, Orbot is counted among the standalone proxies until

January 2022, when it got its own proxy type designation.)

It is worth reflecting on the greater popularity of the

browser extension compared to the web badge. The latter

had been envisioned as the primary source of proxies in flash

proxy, the idea being that people’s browsers would automat-

ically become proxies while reading sites that had the flash

proxy badge installed, unless they checked an option to pre-

vent it. We decided, early on, that flash proxy’s opt-out per-

mission had been a mistake, and that Snowflake would be

opt-in. In order to run a proxy, a person must take a positive

23https://bugs.torproject.org/tpo/network-health/metrics/collector/29461
24https://metrics.torproject.org/collector.html#snowflake-stats
25https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

30931#note_2593598
26https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

30999#note_2593718
27https://github.com/glamrock/cupcake/issues/24
28https://github.com/guardianproject/orbot/releases/tag/16.4.1-BETA-2-tor.0.4.4.6
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Figure 6: Proxy pool churn in January 2023. The dark upper

line shows the number of unique proxy IP addresses in a

24-hour window starting at the point indicated. The lighter

descending lines show how many of the same IP addresses

remain in the pool, at 1-hour intervals up to 40 hours later.

It takes about 20 hours for 50% of the proxy pool to turn over.

action such as installing a browser extension or activating a

toggle on a web page. Our initial worry that this policy would

reduce the number of proxies turned out to be unfounded.

People find an informative, interactive proxy control panel

more appealing than a nondescript badge graphic, and install

the browser extension in greater numbers than ever used the

web badge in flash proxy.

4.3 Proxy churn

The size of the proxy pool is not the only measure of its

quality. Also important is its “churn,” the rate at which it is

replenished with fresh proxy IP addresses. Churn determines

how hard a censor would have to work to keep a blocklist of

proxy IP addresses up to date; or alternatively, how quickly a

momentarily complete blocklist would lose effectiveness.

We ran an experiment29 to measure churn. Every hour, the

broker logged a record of the proxy IP addresses it had seen

in the past hour. To avoid storing real proxy IP addresses,

each record was not a transparent list, but a HyperLogLog++

sketch [15], a probabilistic data structure for estimating the

number of distinct elements in a multiset. We additionally

hashed proxy IP addresses with a secret string before adding

them to a sketch, to prevent their recovery from our published

data. A sketch supports two basic operations: count and merge.

Given a sketch X , we may compute an approximate count

|X | of its unique elements, and given two sketches X and Y ,

we may merge them into a new sketch representing the union

X ∪Y . The quantity we are interested in, the size of the in-

tersection of two sketches, is computed using the formula

|X |+ |Y |− |X ∪Y |. Such a computation estimates how many

IP addresses are shared across two samples of the proxy pool.

Figure 6 visualizes the results of the churn experiment. We

merged consecutive sketches over a 24-hour window to serve

as a reference, then computed the size of its intersection with

other windows of the same size, offset by +1,+2, . . . ,+40

29https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34075
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hours. After 1 hour, the shifted window still has, on aver-

age, 97.3% of addresses in common with the reference; after

12 hours the fraction has fallen to 68.8%; by the time 24 hours

have elapsed, only 38.2% of proxy IP addresses are ones that

had been seen in the previous day.

4.4 Multiple bridges

In the abstract model of Figure 1, the bridge is a single, central-

ized entity. It can be centralized because it is never accessed

directly, but only via temporary proxies. Unlike more tradi-

tional static proxy systems, Snowflake does not benefit, in

terms of blocking resistance, from having multiple bridges.

For scalability reasons, though, it is useful for “the” bridge

to be realized as multiple servers, each handling a fraction of

client traffic.

Our deployment now uses two bridges. Generalizing from

one bridge to two required changes to the messages exchanged

between clients, proxies, and the broker. Unfortunately, the

fact of multiple bridges cannot be made fully transparent to

clients, for technical reasons related to Tor. In our design,

the client informs the broker of what bridge it wants to use,

the broker conveys the choice to the proxy, and the proxy

connects to the client’s chosen bridge. This is in contrast

to other imaginable designs where the choice of bridge is

made by the broker or the proxy. We will discuss design

considerations and tradeoffs.

One minor difficulty is distributing the Turbo Tunnel layer.

Recall from Section 2.3 that Snowflake has the notion of an

end-to-end session between a client and the bridge, indepen-

dent of temporary proxy connections that carry it. This is

made possible by extensive state stored at the bridge: a table

of clients, reassembly buffers, transmission queues, timers,

and so on. While it is certainly possible to instantiate one

such bundle of state variables per bridge, a session begun

in one instance must remain with that instance—no other

has the context necessary to make the packets of the session

meaningful. This difficulty might be resolved by hashing the

client’s session identifier string to index a consistent bridge

per session, as long as the set of bridges does not change too

frequently.

There is another difficulty that is harder to work around.

A Tor bridge is identified by a long-term identity public key.

If, on connecting to a bridge, the client finds that the bridge’s

identity is not the expected one, the client will terminate the

connection [5 §4.2]. The Tor client can configure at most

one identity per bridge; there is no way to indicate (with

a certificate, for example) that multiple identities should be

considered equivalent. This constraint leaves two options: ei-

ther all Snowflake bridges must share the same cryptographic

identity, or else it must be the client that makes the choice

of what bridge to use. While the former option is possible

to do (by synchronizing identity keys across servers), every

added bridge would increase the risk of compromising the all-

important identity keys. Our vision was that different bridge

sites would run in different locations with their own manage-

ment teams, and that any compromise of a bridge site should

affect that site only.

These considerations led us to a multi-bridge design in

which clients have awareness of (at least a subset of) all

bridges, and it is the client that chooses which bridge will

be used for a particular session.30 The client includes a bridge

identity string in its rendezvous message to the broker (Sec-

tion 2.1); then the broker maps the identity to the WebSocket

URL of the corresponding bridge, and conveys that URL

to the proxy that’s chosen to serve the client. We rely on

clients choosing uniformly to equalize load across bridges.

A consequence is that every bridge must meet a minimum

performance standard: we cannot, say, centrally assign 20%

of clients to one and 80% to another according to their relative

capacity. Another drawback is that there is currently no way Think

about

this more:

snowflake-

02 in

fact has

a consis-

tent 15%

of users

and 25%

of band-

width.

to instruct Tor to connect to only one of the bridges it knows

about (short of rewriting the configuration file): if two bridges

are configured, Tor starts two sessions through Snowflake,

each doing its own rendezvous, which is wasteful and makes

for a more conspicuous network fingerprint. Still, this is the

best solution we have found, given the constraints. A deploy-

ment not based on Tor would have more flexibility.

A client-chooses design risks misuse by clients, if not han-

dled carefully. Clients should only be able to select from a

limited set of known bridges, not cause proxies to connect

to arbitrary destinations—otherwise the tens of thousands of

Snowflake proxies might be weaponized to attack third par-

ties. The client’s bridge selection in its rendezvous message is

represented not as an IP address or hostname, but as a hash of

the bridge’s public identity key. The broker maps the identity

to a WebSocket URL by consulting its own local database of

known bridges, and rejects rendezvous messages that refer

to an unknown bridge. After the broker tells the proxy what

WebSocket URL to connect to, the proxy does its own check,

verifying that the hostname in the URL is a subdomain of

a known suffix reserved for Snowflake bridges. So there are

two independent safeguards against misuse.

5 Notable blocking attempts

In Section 4.1 we saw how Snowflake’s user counts have at

times been affected by the blocking actions of censors. Now

we take a closer look at selected censorship events. The ef-

fect of censorship has usually been to increase, rather than

decrease, the number of Snowflake users. This is no para-

dox: as censorship intensifies, users are displaced from less

resilient to more resilient systems. Snowflake’s blocking resis-

tance has not in every case been a success, though, and here

we also reflect on missteps and persistent challenges. The ex-

amples are taken from Russia, Iran, China, and Turkmenistan,

30https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
28651#note_2786323
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and are selected for being significant and instructive. Com-

mon lessons are that communication with affected users is

invaluable in quickly understanding and reacting to block-

ing; and that blocking resistance is relative to a given censor,

because every censor’s cost calculus is different.

Snowflake is blockable by a censor that is willing to block

WebRTC. We would not argue otherwise. Indeed, we believe

this is how a circumvention system should be presented: not

by arguing its unblockability in absolute terms, but by lay-

ing out what actions by a censor would suffice to block it—

or more to the point, what sacrifices a censor would have to

make in order to block it. Advancing the state of the art of cen-

sorship circumvention consists in pushing blocking beyond

the capabilities of more and more censors.

Tor bridges report aggregate binned counts by country code

of connected unique IP addresses per day in the descriptors up-

loaded to the bridge authority. We use the Tor Metrics method

of combining the distribution of counts by country code with

the number of directory requests to obtain an estimate of

the average number of concurrent clients per day for each

location [21]. The mapping of IP addresses to country codes

is not without flaws. During the time of the measurements

shown here, Tor uses the IPFire location database.31 There is

at least one instance where we were able to detect geolocation

inaccuracies after noting a significant drop in Snowflake users

thought to be located in the US that correlated directly with a

blocking event in Iran.32

5.1 Blocking in Russia

Snowflake, along with other common ways of accessing Tor,

was blocked in a subset of ISPs in Russia on 2021-12-01 [44].

The event was evidently coordinated and targeted, as it hap-

pened suddenly and affected many Tor-related protocols at

once. Besides Snowflake, a portion of Tor relays and bridges,

as well as some servers of the circumvention transports meek

and obfs4, were blocked, at least temporarily. The blocking

campaign was less than totally successful—one of its effects

was to substantially increase the number of users accessing

Tor via circumvention transports, Snowflake among them.

We benefited from established relationships with develop-

ers and users in Russia, one of whom, through manual test-

ing, found what traffic feature was being used to distinguish

Snowflake. It was DTLS fingerprinting, of the kind cautioned

about in Section 3.33 Specifically, it was the presence of a

supported_groups extension in the DTLS Server Hello mes-

sage produced by Pion. The extension being present in Server

Hello was a bug34—but one that afforded the censor a feature

to distinguish DTLS connections with a Pion implementation

31https://www.ipfire.org/projects/location/
32https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

40207#note_2844116
33https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

40014#note_2765074
34https://github.com/pion/dtls/issues/409
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Figure 7: Snowflake users in Russia (average concurrent).

Events discussed in the text are marked. The attempted

blocking of Tor-related transports in December 2021 led to

Snowflake’s first surge in usage. The decrease in September–

October 2022 coincided with an even larger influx from Iran.
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Figure 8: Snowflake users in Iran. Heightened censorship

beginning in September 2022 caused Iran to become the single

biggest source of Snowflake users. The drop in October 2022

was the result of TLS fingerprint blocking, which interfered

with rendezvous and took some time to mitigate.
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Figure 9: Snowflake users in China. Though no sustained

blocking is evident, disruption of domain fronting rendezvous

for three days in May 2023 briefly depressed user numbers.
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Figure 10: Snowflake users in Turkmenistan. This graph

shows a different range of dates than the other three. Though

there have never been many Snowflake users in Turkmenistan,

blocking events are evident on 2021-10-24 and 2022-08-03.
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in the server role from other forms of DTLS. The process of

finding the flaw, fixing it, and shipping new releases of Tor

Browser took a few weeks35, after which the user count rose

quickly: from the beginning to the end of December 2021, the

number of users in Russia grew from about 400 to over 4,000

(Figure 7). Snowflake was to become a significant tool amid

the general intensification of censorship in Russia following

the invasion of Ukraine in February 2022.

The Server Hello supported_groups distinguisher had been

discovered and documented by MacMillan et al. [23 §3] al-

ready in 2020. We might have avoided this blocking event

by proactively fixing the known distinguisher—but it was

not necessarily the wrong call not to have done so. There is

always more to do than time to do it; one must consider the

opportunity cost of preempting specific blocking that may

not come to pass. In this case, a reactive approach by us was

enough: the loss was minor, and we were able to patch the

problem quickly. Even in ISPs where the blocking rule was

present, it did not block 100% of Snowflake connections, be-

cause of the how it targeted a quirk in Pion, and only in Server

Hello. When the DTLS server role in the WebRTC data chan-

nel was played by a non-Pion peer, such as a web browser

proxy, the feature was not present.

In May 2022 we got a report of a new detection rule, this

time keying on not just the presence, but the contents of the

supported_groups extension, at a byte offset suggesting that

it targeted the Client Hello message, not Server Hello.36 The

presence of a supported_groups extension in Client Hello is

not at all unusual, but the specific groups offered by Pion’s

implementation differed from those of common browsers.

Though we confirmed the existence of the blocking rule,

testers reported that Snowflake continued to work—which

may have something to do with the fact that the Snowflake

client does not always play the client role in DTLS. If the

Snowflake client is the DTLS server, and the DTLS client

is a browser proxy, then the byte pattern looked for by the

blocking rule does not appear. We developed a mitigation,

but by the time we prepared a testing release in July 2022,

the new rule had apparently been removed and replaced by

another. We can only speculate as to reasons, but it may be

that the old rule had too many false positives, or was just not

effective enough.

The detection rule that replaced supported_groups in Client

Hello looked for the presence of a Hello Verify Request mes-

sage.37 Hello Verify Request is an anti-denial-of-service fea-

ture in DTLS, in which the server sends a random cookie to

the client, and the client sends a second Client Hello message,

this one containing a copy of the cookie [33 §5.1]. It is not

an error to send Hello Verify Request (it is a “MAY” in the

RFC), but because the Pion implementation in Snowflake

sent it, and major browsers did not, it was a reliable indica-

35https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/375
36https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030
37https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030#note_2823140

tor of Snowflake connections. (Those, at least, in which the

DTLS server role was played by a Snowflake client or stan-

dalone proxy.) This distinguisher, too, had been anticipated by

MacMillan et al. in 2020 [23 §3]. The first reports of the block-

ing rule arrived in July 2022; but as you can see in Figure 7,

it had no apparent immediate effect. It is hard to say whether

the drastic decline in October 2022 was a consequence of

this rule, or some other, unidentified one. That decline coin-

cided with an explosion of users from Iran, which temporarily

affected the usability of the whole system. We deployed a

mitigation to remove the Hello Verify Request message from

Snowflake, regrettably, only in February 2023 38, after which

the number of users in Russia began to recover.

The case of Snowflake in Russia illustrates some of the

complexity of censorship measurement. The answer to a ques-

tion like “Does Snowflake work in Russia?” is not a simple

yes or no. It may depend on the date, the ISP, and even such

factors as which endpoint plays the DTLS server role.

5.2 Blocking in Iran

In late September 2022, users from Iran became the major-

ity of Snowflake users almost overnight, only to fall just as

quickly two weeks later. See Figure 8. The cause of the

rise was extraordinary new network restrictions amid mass

protests [3]; the cause of the decline was TLS fingerprint

blocking, which stopped Snowflake rendezvous from work-

ing. The crypto/tls package of the Go programming language

(in which the Snowflake client is written) may produce several

slightly different TLS fingerprints, depending on hardware

capabilities and how it was compiled.39 It was one of these fin-

gerprints that was blocked. Because the blocking rule was so

specific, some users were affected and others were not. Why

would a censor block only one (even if the most common)

TLS fingerprint? It may have been a simple oversight. On the

other hand, it is not certain that the blocking was meant for

Snowflake specifically. Go is a popular language for imple-

menting circumvention systems; Snowflake may have been

caught up in blocking that was intended for another system.

The fact that simple TLS fingerprinting worked to block

Snowflake rendezvous was carelessness on our part. Aware

of the possibility, we had already implemented TLS camou-

flage using uTLS in the Snowflake client, but failed to turn

it on by default. Activating the feature required only a small

configuration change40, but we had to wait for new releases

of Tor Browser and Orbot to get it into the hands of users: see

the September–November 2022 interval in Figure 8.

After repairing the TLS fingerprinting flaw, the number of

users from Iran gradually recovered to near its former peak.

We are aware of only minor disruptions after this time. The

default rendezvous front domain was blocked (by TLS SNI)

38https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/637
39https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

40207#note_2844163
40https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/540
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in some ISPs between 2023-01-16 and 2023-01-24 41, which

we confirmed using data from the censorship measurement

platform OONI. A reduction in users is visible at this time.

AMP cache rendezvous continued to work. OONI measure-

ments in the weeks after the block was lifted showed sporadic

failures to connect to the front domain. If these were further

attempts at blocking, they did not have much of an effect.

5.3 Blocking in China

The user count graph from China, Figure 9, does not show

any drastic changes like others we have seen so far. There is a

modest but respectable number of Snowflake users in China.

Though there have been no singular, sustained events, we have

seen evidence of short-term or tentative blocking attempts.

In May 2019, when Snowflake was still in alpha release,

a user in China reported a failure to connect. Investigation

revealed that the cause was IP address blocking of the few

proxies that existed at the time.42 Rendezvous happened, and

the STUN exchange worked, but the client and proxy could

not establish a connection. We experimented with running

a proxy at a previously unused IP address: clients in China

could connect when they were assigned that proxy by the bro-

ker. This was back before the web browser extension proxy

existed, and the only consistent proxy support was a few stan-

dalone proxies that we, the developers, ran at a static IP ad-

dress. It ceased to be an issue as the proxy pool grew in size.

That same month, we noticed blocking of the default STUN

server, of which there was only one at the time.43 The solution

was to add more STUN servers44, and select a subset of them

on each rendezvous attempt45. Curiously, it seems that when

the STUN server was blocked, the standalone proxies that

had been blocked earlier in the month became unblocked.46

The next incidents we are aware of did not occur until

2023, recent enough to appear in Figure 9. On May 12, 13,

and 14, a few users reported problems with domain fronting

rendezvous.47 We could not get systematic measurements, but

it appeared that censorship was triggered by observing multi-

ple (two or three) HTTPS connections with the same TLS SNI

to certain IP addresses within a short time. It is possible that

Snowflake was not the target of this blocking behavior, and

was affected only as a side effect. If it indeed had to do with

Snowflake, our best guess is that it was aimed at the multiple

rendezvous mentioned in Section 4.4—though such a policy

would certainly also affect a large number of non-Snowflake

connections. The user count from China was about halved

41https://bugs.torproject.org/tpo/anti-censorship/team/115#note_2873040
42https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

30350#note_2593274
43https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

30368#note_2593357
44https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30579
45https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/

merge_requests/7
46https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

30368#note_2593360
47https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40038

during those three days. On May 15, the blocking went away

and user counts returned to normal.

Also in May 2023, one user reported apparent throttling

(artificial reduction in speed by packet dropping) of TLS-

in-DTLS connections, based on packet size and timing fea-

tures.48 Such a policy would affect Snowflake, because it

transports Tor TLS inside DTLS data channels. Reportedly,

adding padding to the first few packets to disrupt the size and

timing signature was enough to prevent throttling. Our own

speed tests run at the time did not show evidence of throttling,

with or without added padding.49 There was no obvious re-

duction in the number of users. It may have been a localized,

ISP-specific phenomenon. Document

resolu-

tion of

“Default

Snowflake

bridges

in Tor

browser

13.0.8

stopped

working”

if avail-

able.

5.4 Blocking in Turkmenistan

There have never been more than a few tens of Snowflake

users in Turkmenistan. Even so, it has happened at least twice

that the number of users dropped suddenly to zero, as shown

in Figure 10. We found a variety of causes: domain name

blocking by DNS and TCP RST injection; and blocking of

certain UDP port numbers commonly used for STUN.

Turkmenistan is a particularly challenging environment

for circumvention. Though relatively unsophisticated, censor-

ship there is more severe and indiscriminate than in the other

places we have discussed. Only a small fraction of the pop-

ulation has access to the Internet at all, which makes it hard

to communicate with volunteer testers and lengthens testing

cycles. We have been able to mitigate Snowflake blocking in

Turkmenistan, but only partially, and after protracted effort.

The drop on 2021-10-24 was caused by blocking of the

default broker front domain.50 We determined this by taking

advantage of the bidirectionality of the Turkmenistan fire-

wall. Nourin et al. [26 §2] provide more details; we will state

just the essential information here. Among the censorship

techniques used in Turkmenistan are DNS response injection

and TCP RST injection. DNS queries for filtered hostnames

receive an injected response containing a false IP address;

TLS handshakes with a filtered SNI receive an injected TCP

RST packet that tears down the connection. Conveniently for

analysis, it works in both directions: packets that enter the

country are subject to injection just as those that exit it are.

By sending probes into the country from outside, we found

that the default broker front domain was blocked at both the

DNS and TLS layers. It was some time—not until August

2022—before we got confirmation from testers that an alter-

native front domain worked to get around the block of the

broker.

The increase in the number of users from May to August

2022 was caused by a partial unblocking of the broker front

domain on 2023-05-03. We realized this only in retrospect,

48https://github.com/net4people/bbs/issues/255
49https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

40251#note_2906723
50https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024
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from examination of data from Censored Planet [35], a cen-

sorship measurement platform that had continuous measure-

ments of the domain at that time, in one autonomous system

in Turkmenistan. There was a shift from RST responses to

successful TLS connections on that date. DNS measurements

did not catch the moment of the shift, but they also showed no

signs of blocking after that date. Evidently, some users were

then able to connect. But the unblocking must not have been

everywhere, because as late as 2022-08-18, users reported

that RST injection was still in place for them (though DNS

injection had stopped).

There was yet another layer to the blocking. Even if they

could contact the broker (at the default or an alternative front

domain), clients could not then establish a connection with

a proxy. Testing revealed blocking of the default STUN port,

UDP 3478. A client that cannot communicate with a STUN

server cannot find its ICE candidate addresses (Section 2.2),

without which most WebRTC proxy connections will fail.

(The exceptions are proxies without NAT or ingress filter-

ing. While there are some such proxies, censorship in Turk-

menistan also outright blocks large parts of IP address space,

including data center address ranges where those proxies tend

to run.) As chance would have it, the NAT discovery fea-

ture we rely on for testing the NAT type of clients requires

STUN servers to open a second, functionally equivalent lis-

tener on a different port [22 §6], commonly 3479. Changing

to those alternative port numbers enabled some users to con-

nect to Snowflake again. Specifically, STUN servers on port

3479 worked in AGTS, one of two major affected ISPs. The

workaround did not work in Turkmentelecom, the other ISP,

where port 3479 was blocked. Though we do not have con-

tinuous measurements to be sure, we suspect that the STUN

port blocking began on 2022-08-03 and precipitated the drop

seen on that date in Figure 10.

The blocking techniques described in this section are crude,

and surely result in significant overblocking—but they nev-

ertheless offer greater challenges to circumvention than the

more considered blocking of Russia and Iran. We highlight

this to make the point that blocking resistance cannot be

defined in absolute terms, but only relative to a particular

censor. Censors differ not only in resources (time, money,

equipment, personnel), but also in tolerance for the social and

economic harms of overblocking. Circumvention can only

respond to and act within these constraints. The government

of Turkmenistan has evidently chosen to prioritize political

control over a functioning network, to an extreme degree. To

paraphrase one of our collaborators: “What they have in Turk-

menistan can hardly be called an Internet.”51 In a network

already damaged by oppressive policy, the additional harm

caused by the clumsy blocking of this or that circumvention

system is comparatively small. This shows the sense in which

a resource-poor censor can “afford” certain blocking actions

that a richer, more capable censor cannot.

51https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024#note_2889792

6 Future work

The uniqueness and scale of Snowflake’s current deployment

provides an interesting context for the exploration of several

open research questions in the anti-censorship space:

How might proxy enumeration attacks be inhibited?

Snowflake draws much of its circumvention strength from

its diffuse and distributed nature. Our measurements indicate

a high degree of address churn; the large and ever-changing

pool of proxy IP addresses is itself a deterrent to enumeration

and blocking. However, significant enumeration attacks are

still possible, and it is worth considering both the impact of

and possible defences to such attacks.

What is a good (family of) traffic shapes? We discuss at

the end of Section 3 the yet-unused feature of the WebRTC-

encapsulated protocol in Snowflake for shaping traffic to im-

itate popular WebRTC applications. While traffic analysis

attacks have been extensively covered in academia, frame-

works for proposing and evaluating traffic shaping techniques

have been under-explored.

What is the design space of alternative models of

Snowflake deployment? A natural extension of Snowflake

would be to have it access systems other than Tor—ordinary

VPNs, for example. Tor has its benefits: an existing user base,

a standard (pluggable transports) for integrating circumven-

tion modules, and exit nodes separate from entry nodes, which

relieve the circumvention developer of the concerns associ-

ated with actually exiting traffic to its destination. But Tor has

drawbacks as well, notably its lower speed and lack of support

for UDP and other non-TCP protocols. Nothing inherently

ties Snowflake to Tor, and it might easily be adapted to other

systems. One question is whether every Snowflake-like de-

ployment should manage its own pool of proxies, or if proxies

can somehow be shared. Building Snowflake’s population of

proxies has been a substantial undertaking in itself—for every

project to have to repeat the process from scratch would be a

regrettable duplication of effort. There is no reason why one

proxy might not serve multiple projects, the client express-

ing its preference in the same way it now signals which Tor

bridge to use (Section 4.4). But there would be design issues

to work out. While some proxy operators may be happy to

donate bandwidth to a free-to-use project like Tor, they may

need more incentive than altruism to help a commercial VPN.

A shared deployment would impose additional friction on

development (making it harder to alter the proxy protocol,

for example). Rather than retrofit the current Tor-based prox-

ies with support for other systems, a next-generation proxy

pool might be designed from the ground up with multiple

cooperating projects in mind. If it proved successful, the Tor

deployment could migrate to it.
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Can traffic splitting improve performance or blocking re-

sistance? The Turbo Tunnel reliability layer of Section 2.3

was necessary for providing a continuous session abstrac-

tion over a sequence of unreliable proxies. But it might do

even more: in particular, it should be possible for a client

to multiplex its traffic over multiple proxies not just sequen-

tially, but in parallel. (Something like multipath TCP.) Se-

quence numbers in the inner reliability layer would ensure a

reliable stream, even when proxies have different lifetimes

and performance characteristics. Multiplexing could increase

performance by using the sum of the bandwidths of the in-

dividual proxies, and reduce variability by hedging against

the client being assigned one very slow proxy. Using two

or more proxies at once would eliminate the brief pause for

re-rendezvous between consecutive proxies that now occurs.

Our experiments with multiplexing have so far not shown

enough benefit to justify the change, though it may be a mat-

ter of tuning.52 And of course, analysis would be required to

determine whether simultaneous WebRTC connections form

a distinctive network fingerprint.

Availability

The project web site, https://snowflake.torproject.org/, has

links to source code and instructions for installing the proxy

browser extensions.Add Git

clone

URL or

similar for

the paper

itself. Say

it shows

how to

reproduce

our fig-

ures. Must

also in-

clude the

churn logs

of Sec-

tion 4.3.
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