Snowflake, a censorship circumvention system

using temporary WebRTC proxies
(Draft February 7, 2024)

Cecylia Bocovich Arlo Breault

David Fifield

Serene Xiaokang Wang

Authors are listed alphabetically.

Abstract

Snowflake is a system for circumventing Internet censorship.
Its blocking resistance comes from the use of numerous, ultra-
light, temporary proxies (“snowflakes”), which accept traffic
from censored clients using peer-to-peer WebRTC protocols
and forward it to a centralized bridge. The temporary proxies
are simple enough to be implemented in JavaScript, in a web
page or browser extension, making them vastly cheaper to run
than a traditional proxy or VPN server. The large and con-
stantly changing pool of proxy addresses resists enumeration
and blocking by a censor. The system is built on the assump-
tion that proxies may appear or disappear at any time: clients
discover live proxies dynamically using a secure rendezvous
protocol; when an in-use proxy goes offline, its client switches
to another on the fly, invisibly to upper network layers.

Snowflake has been deployed with success in Tor Browser
and Orbot for several years. It has been a significant circum-
vention tool during high-profile network disruptions, including
in Russia in 2021 and Iran in 2022. In this paper, we explain
the composition of Snowflake’s many parts, give a history of
deployment and blocking attempts, and reflect on implications
for circumvention generally.

1 Introduction

Censorship circumvention systems—systems to enable net-
work communication despite interference by a censor—may
be characterized on multiple axes. Some systems imitate a
common network protocol; others try not to look like any pro-
tocol in particular. Some distribute connections over numerous
proxy servers; others concentrate on a single proxy that is, for
one reason or another, difficult for a censor to block. What
all circumvention systems have in common is that they strive
to increase the cost to the censor of blocking them—whether
that cost be in research and development, human resources,

and hardware; or in the inevitable overblocking that results
when a censor tries to selectively block some connections but
not others. Snowflake, the subject of this paper, is a circum-
vention system that uses thousands of temporary proxies and
makes switching between them easy and fast. On the spectrum
of imitation to randomization, Snowflake falls on the side of
imitation; on the scale of diffuse to concentrated, it is diffuse.
What characterizes Snowflake the most is that it pushes the idea
of distributed, disposable proxies to an extreme: its proxies can
run in a web browser, and censored clients communicate with
them using WebRTC.

WebRTC is a suite of protocols intended for real-time com-
munication applications on the web [1]. Video and voice chat
are typical examples of WebRTC applications. Snowflake
exchanges WebRTC data formats in the course of establish-
ing a connection, and uses WebRTC protocols for traversal
of NAT (network address translation) and communication be-
tween clients and proxies. Crucially for Snowflake, WebRTC
APIs are available to JavaScript code in web browsers, meaning
it is possible to implement a proxy in a web page or browser
extension. WebRTC is also usable outside a browser, which is
how we implement the Snowflake client program and alterna-
tive, command line—based proxies.

As is usual in circumvention research, we assume a threat
model in which clients reside in a network controlled by a
censor. The censor has the power to inspect and interfere
with traffic that crosses the border of its network; typical real-
world censor behaviors include inspecting IP addresses and
hostnames, checking packet contents for keywords, blocking
IP addresses, and injecting false DNS responses or TCP RST
packets. The client wants to communicate with some desti-
nation outside the censor’s network, possibly with the aid of
third-party proxies. The censor is motivated to block the con-
tents of the client’s communication, or even the destination
itself. The censor is aware of the possibility of circumvention,
and therefore seeks to block not only direct communication, but
also indirect communication by way of a proxy or circumven-

tion system. Circumvention is accomplished when the client
can reliably reach any proxy, because a proxy, being outside the
censor’s control, can then forward the client’s communication
to any destination. (In Snowflake, we separate the roles of tem-
porary proxies and a stable long-term bridge, but the idea is the
same.) The censor is presumed to derive benefit from permit-
ting some forms of network access: the censor cannot trivially
“win” by shutting down all communication, but must be selec-
tive in its blocking decisions, in order to optimize some objec-
tive of its own. The art of censorship circumvention is forcing
the censor into a dilemma of overblocking or underblocking,
by making circumvention traffic difficult to distinguish from
traffic that the censor prefers not to block.

Snowflake originates in two earlier projects: flash proxy
and uProxy. Flash proxy [10], like Snowflake, used a model
of untrusted, temporary JavaScript proxies in web browsers,
but the link between client and proxy used WebSocket rather
than WebRTC. (WebSocket still finds use in Snowflake, but on
the proxy-bridge link, not the client—proxy link.) Flash proxy
was deployed in Tor Browser from 2013 to 2016, but never
saw much use, probably because the reliance on WebSocket,
which lacks the built-in NAT traversal of WebRTC, required
client users to do their own port forwarding. WebRTC was
then an emerging technology, and while it had been consid-
ered as a transport protocol for flash proxy, we decided to start
Snowflake as an independent project. uProxy [38], in one of its
early incarnations, pioneered the use of WebRTC proxies for
circumvention. uProxy’s proxies were browser-based, but its
trust and deployment models were different from flash proxy’s
and Snowflake’s. Each censored client would arrange, out
of band, for an acquaintance outside the censor’s network to
run a proxy in their browser [39]. A personal trust relation-
ship was necessary to prevent misuse, since browser proxies
fetched destination content directly—meaning the client’s ac-
tivity would be attributed to the proxy, and the proxy could
inspect the client’s traffic. Clients did not change proxies on
the fly. uProxy supported protocol obfuscation: the commu-
nications protocol was fundamentally WebRTC, but packets
could be transformed to resemble something else. This obfus-
cation was possible because of uProxy’s implementation as a
privileged browser extension, with access to real sockets. Be-
cause Snowflake uses ordinary unprivileged browser APIs, its
WebRTC can only look like WebRTC; on the other hand, for
the same reason, Snowflake proxies are easier to deploy. Like
flash proxy, uProxy was active in the years 2013-2016.

Among existing circumvention systems, the one that is most
similar to Snowflake is MassBrowser [25], which offers prox-
ying though volunteer proxies, called buddies. MassBrowser’s
architecture is similar to Snowflake’s: there is a centralized
component that coordinates connections between clients and
buddies, corresponding to a piece in Snowflake called the bro-
ker; buddies play the same role as our proxies. The trust model
is intermediate between Snowflake’s and uProxy’s. Buddies
preferentially operate as one-hop proxies, as in uProxy, but

are not limited to proxying only for trusted friends. To deter
misuse, buddies specify a policy of what categories of content
they are willing to proxy. An innovation in MassBrowser not
present in Snowflake is client-to-client proxying: clients may
act as buddies for other clients, the logic being that what is
censored for one client may not be censored for another. The
buddy software is not constrained by a web browser environ-
ment, and can, like uProxy, use protocol obfuscation on the
client-buddy link.

Protozoa [2] and Stegozoa [12] show ways of building a
point-to-point covert tunnel over WebRTC, the former by di-
rectly replacing encoded media with its own ciphertexts, the
latter using video steganography. Designs like these might
serve as alternatives for the link between client and proxy in
Snowflake. Significantly, where Snowflake now uses Web-
RTC data channels, Protozoa and Stegozoa use WebRTC me-
dia streams, which may be an advantage in blocking resistance.
We will say more on this point in Section 3. TorKameleon [40]
is a WebRTC-based transport with the dual goals of resisting
blocking (circumvention) and complicating traffic correlation
attacks (anonymity). It has the notable technical innovation
of using a draft API called WebRTC Encoded Transforms to
support efficient Protozoa-like embedding of data within media
streams, without requiring invasive modifications in a browser.

Our goal in this paper is not to exaggerate the advantages
of Snowflake, nor disproportionately emphasize the limitations
of other circumvention systems. Circumvention research is a
cooperative enterprise, and we recognize and support our col-
leagues who pursue and maintain their own designs. While
challenges remain, today’s circumvention systems by and large
accomplish their intended purpose, and are a vital element of
day-to-day Internet access for many people. With Snowflake,
we have explored a different point in the design space—a fruit-
ful one to be sure—but one with its own tradeoffs. We acknowl-
edge that Snowflake will be a better choice in some censorship
environments and worse in others; indeed, one of the ideas
we hope to convey is that blocking resistance can be meaning-
fully understood only in relation to particular censor and its
resources, costs, and motivations.

In this paper we present the design of Snowflake, discuss
various challenges and considerations, and reflect on over three
years of deployment. As of February 2024, Snowflake supports
an estimated 42,000 average concurrent users at an average total
transfer rate of 3.5 Gbit/s, which works out to around 38 TB of
circumvention traffic per day.

2 How it works

A Snowflake proxy connection proceeds in three phases. First,
there is rendezvous, in which a client indicates its need for
circumvention service and is matched with a temporary proxy.
Rendezvous is facilitated by a central server called the broker.
Then, there is connection establishment, where the client and its

BROKER

i RENDEZVOUS\ g

PEER-TO-PEER
WEBRTC

an %

CLIENT

|

v, 3 . DESTE:
x BRIDGE "’"" NATION
7" SNOWFLAKE
PROXTES
£ 0

Figure 1: Architecture of Snowflake. The client contacts the broker through a special rendezvous channel with high blocking
resistance. The broker matches the client with one of the proxies that are currently polling. The client and proxy connect to one
another using WebRTC. The proxy connects to the bridge, then begins copying traffic in both directions. If the proxy disappears,
the client does another rendezvous and resumes its session with a new proxy.

proxy connect to each other with WebRTC, using information
exchanged during rendezvous. Finally, there is data transfer,
where the proxy transports data between the client and the
bridge. The bridge is responsible for directing the client’s
traffic to its eventual destination (in our case, by feeding it into
the Tor network). Figure 1 illustrates the process.

These phases repeat as needed, as temporary proxies come
and go. Proxy failure is not an abnormal condition—it happens
whenever a proxy is running in a browser that is closed, for ex-
ample. A client builds a circumvention session over a sequence
of proxies, switching to a new one whenever the current one
stops working. State variables stored at the client and the bridge
let the session pick up where it left off. The change of proxies
is invisible to the applications using Snowflake (except for a
brief delay while rendezvous happens): the Snowflake client
presents an abstraction of a single, uninterrupted connection.

It does not avail a censor to block the broker or bridge,
because Snowflake clients never contact either one directly.
Clients reach the broker over an indirect rendezvous channel.
Access to the bridge is always mediated by a temporary proxy.

2.1 Rendezvous

A session begins with a client sending a rendezvous message
to the broker. There is an ambient population of proxies con-
stantly polling the broker to check for clients in need of service.
The broker matches the client with an available proxy, taking
into consideration factors like NAT compatibility.

The client’s rendezvous message is a bundle of data that the
broker will need to match the client with a proxy, and the proxy
will need to connect to the client. The primary element is a
Session Description Protocol (SDP) offer [28], which contains
the information necessary for a WebRTC connection, including
the client’s external IP addresses and cryptographic data to

secure a later key exchange. The broker forwards the client’s
SDP offer to the proxy, and the proxy sends back an SDP answer
with its share of connection details. The broker forwards the
proxy’s SDP answer to the client. The client and proxy then
connect to each other directly. In WebRTC terms, this offer/
answer exchange is called “signaling,” and here the broker
acts as a signaling server. To gather the information for an
SDP offer or answer, clients and proxies communicate with
third-party servers, called STUN servers, before contacting the
broker. We will say more about how this information is used in
Section 2.2. Communication with STUN servers is a normal
and expected part of WebRTC, though there are fingerprinting
considerations that we discuss in Section 3.

Interaction with the broker uses a “long-polling” model.
An example is shown in Figure 2. Proxies poll the broker
periodically, making an HTTPS request to a designated URL
path. The broker does not respond immediately to a proxy
poll, but instead holds the connection idle for a few seconds
to await the possible arrival of a client rendezvous message.
If none arrives, the broker sends a response saying “no clients”
and the proxy goes to sleep until its next poll. When a client
does arrive, the broker sends the SDP offer in response to the
proxy’s poll request. The proxy sends its SDP answer to the
broker in a separate HTTPS request. The broker responds to
the client’s pending request with the proxy’s SDP answer, at the
same time sending an acknowledgement to the proxy. At this
point rendezvous is finished, and the client and the proxy may
connect to one another.

The client must use an indirect, blocking-resistant channel
when communicating with the broker. What is needed, essen-
tially, is a miniature circumvention system to bootstrap the full
system. What makes rendezvous different from general circum-
vention are its different (generally more lenient) requirements,
which permit a larger solution space. Because rendezvous

Poll: any pending clients?

No pending clients

Poll: any pending clients?

Rendezvous message
(client’s WebRTC offer)

Here is a client

(forward client’s offer)
I will serve this client

(proxy’s WebRTC answer)

Rendezvous response | Acknowledged

(forward proxy’s answer)

Figure 2: The long-polling communication model of
Snowflake rendezvous. Proxies poll periodically to check for
new clients. When the broker makes a match, the proxy gets
the client’s SDP offer, then immediately re-connects to send
back its SDP answer. It all happens during one round trip from
the client’s perspective. Not shown here is the indirect channel
used by the client to access the broker through the censor’s
zone of control (shaded background).

is only a small fraction of total communication volume, and
it happens relatively infrequently, it may use techniques that
would be too slow, expensive, or complicated for real-time or
bulk data transfer. Rendezvous is separable and modular: more
than one method can be used, and the methods do not necessar-
ily need to bear any relation to the circumvention techniques of
the main system. While the assumption of WebRTC permeates
Snowflake’s design, its rendezvous modules are independent.
We currently support two rendezvous methods in Snowflake:

Domain fronting In this method, the client does an HTTPS
exchange with the broker through an intermediary web
service such as a content delivery network (CDN)), setting
the externally visible hostname (the TLS Server Name
Indication, or SNI [6 §3]) to a “front domain” different
from the broker’s. The CDN routes the HTTPS request
to the broker not according to the TLS SNI but rather the
HTTP Host header, which, under TLS encryption, reflects
the broker’s true hostname [11]. A censor cannot easily
block domain-fronted rendezvous without also blocking
unrelated connections to the front domain, which should
be selected to have high value to the censor. (But see
Section 3 for features other than the hostname that a censor
might try to use.) The well-known drawback of domain
fronting is the high cost of CDN bandwidth. Because we
use it only for rendezvous, the cost is much less than if we
were to use it for all data transfer.

AMP cache AMP is a framework for web pages written in a
restricted dialect of HTML. Part of the framework is a
free-to-use cache server [27]. The cache fetches AMP-
conformant web pages on demand, which means that it is,

effectively, a restricted sort of HTTP proxy. We have a
module that encodes rendezvous messages to AMP spec-
ifications, allowing them to be exchanged with the broker
via the AMP cache. Rendezvous through the AMP cache
is not easily blocked without blocking the cache server
as a whole.! This rendezvous method still technically re-
quires domain fronting, because the AMP cache protocol
would otherwise expose the broker’s hostname in the TLS
SNI, but it increases the number of usable intermediaries
and front domains.

Amazon SQS Amazon’s Simple Queue Service (SQS) is a
message queuing service designed for communication be-
tween microservices. Services may create queues, send
messages with up to 256KB payloads, and retrieve mes-
sages from the queues. For the Snowflake rendezvous,
we create a persistent, public broker queue that any client
may send to. The broker processes retrieved messages and
responds to the client by creating a new single-use queue
with the client’s unique ID in the queue name.? Block-
ing SQS rendezvous requires, at the very least, blocking
access to Amazon’s SQS service by region.

Anything that can be persuaded to convey a message of about
1500 bytes indirectly to the broker, and return a response of
about the same size, can work as a rendezvous module. For ex-
ample, encrypted DNS or a chat bot would serve. Though some
systems (flash proxy was one) may need only a single, outgoing
rendezvous message, Snowflake needs a two-way exchange, to
support the SDP offer and answer.

Rendezvous is not unique to Snowflake. Other examples
of rendezvous in circumvention include the DEFIANCE Ren-
dezvous Protocol [20 §3], the facilitator interaction in flash
proxy [10 §3], and the registration proxy in Conjure [13 §4.1].
A key property of Snowflake and the mentioned systems is
that they do not rely on preshared secret information. The
client needs only to acquire the necessary software; whatever
additional information is required to establish a circumvention
session is exchanged dynamically, at runtime. This stands in
contrast to another class of systems in which, prior to making a
connection, a client must acquire some secret, such as an IP ad-
dress or password, through an out-of-band channel presumed
to be unavailable to the censor—and the system’s blocking re-
sistance depends on keeping that information hidden from the
censor. A corollary of the no-secret-information property is
that an adversary—the censor—is at no special disadvantage
in attacking the system. The censor may download the client
software, run it, study its network connections—and the system
must maintain its blocking resistance despite this. The disad-
vantage of a separate rendezvous step is that it is one more
thing to get right. Not only the main circumvention channel

Lhttps://gitlab.torproject.org/tpo/anti- censorship/pluggable-transports/snowflake/-/
merge._requests/50

2https://gitlab.torproject.org/tpo/anti- censorship/pluggable-transports/snowflake/-/
merge_requests/214

 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/50
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/50
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/214
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/214

but also the rendezvous must resist blocking: the system is only
as strong as the weaker of the two.

2.2 Peer-to-peer connection establishment

Now the client and the proxy connect to each other directly.
Even in the absence of censorship, making a direct connec-
tion between two Internet peers is not always easy, because of
NAT (network address translation) and firewalls. Snowflake
clients and proxies alike run in diverse networks with varying
NATSs and ingress policies. Fortunately for us, WebRTC is de-
signed with this use case in mind, and has built-in support for
traversing NAT, in the form of ICE (Interactive Connectivity
Establishment) [19], a procedure for testing candidate pairs of
peer network addresses to find one that works. ICE makes use
of third-party STUN (Session Traversal Utilities for NAT) [29]
servers that, among other things, enable a host to learn its ex-
ternal IP addresses. The first part of ICE took place at the
beginning of rendezvous, when the client and proxy contacted
STUN servers to gather external address candidates and in-
cluded them in their respective SDP offer and answer.

There is no guarantee that two hosts will be able to make a
connection using the facilities of STUN alone. Some address
mapping and filtering setups are simply incompatible. In such
a case, ICE would normally fall back to using TURN (Traversal
Using Relays around NAT) [31], a kind of UDP proxy. Such
a fallback would be problematic for Snowflake, because the
TURN relays themselves would become a target of blocking
by the censor. But Snowflake has an advantage most WebRTC
applications do not. Most WebRTC applications want to con-
nect a particular pair of peers, whereas we are satisfied when a
client can connect to any proxy. Snowflake clients and proxies
self-measure their NAT type and report it to the broker, which
takes NAT compatibility into account and avoids cases that
would require a fallback to TURN.

We condense the possible combinations of NAT and firewall
features that impact a Snowflake client or proxy’s ability to
make a peer-to-peer connection into the following well-known
variations:

Full cone The same internal IP—port pair always maps to the
same external port. Any remote host may send a packet
to an internal IP address and port by sending a packet to
the mapped external port.

Restricted cone Like full cone, but incoming packets are al-
lowed only if there has recently been an outgoing packet
to the same remote IP address.

Port-restricted cone Like restricted cone, but incoming pack-
ets are allowed only if there has recently been an outgoing
packet to the same remote [P—port pair.

Symmetric The external port depends on both the internal [P—
port pair and the remote IP—port pair. Incoming packets

00‘\6

00 Q\'e O
& . 42D T N
$P;‘\\ 00(\%\$\Q\ \‘A@%‘o@@
WO QTR ey
NoNAT v Vv V V V
unrestricted
Fullcone v v vV vV V' (Lo
Restrictedcone v v V V V/
Port-restrictedcone v v vV V/ restricted
Symmetric v vV V- proxy
unrestricted restricted
client client

Table 1: Pairwise compatibility of NAT variants, using the
facilities of STUN alone (no fallback to TURN). The incom-
patible cases are when one peer’s NAT is symmetric and the
other’s is symmetric or port-restricted cone. Note the asym-
metry in what NAT variants we consider “restricted” in client
and proxy.

are allowed only if there has recently been an outgoing
packet to the same remote address.

Table 1 shows the pairwise compatibility of NAT variations.
As the incompatible cases always involve a symmetric NAT,
we further simplify matching by categorizing the variations
into the two types unrestricted (works with most other NATS)
and restricted (works only with more permissive NATs). Un-
restricted proxies may be matched with any client; restricted
proxies may be matched only with unrestricted clients. The
broker prefers to match unrestricted clients with restricted prox-
ies, in order to conserve unrestricted proxies for the clients that
need them. Symmetric NAT is always considered restricted,
but port-restricted cone NAT differs depending on the peer:
for proxies it is restricted, but for clients it is unrestricted. The
asymmetric categorization is an approximation to help con-
serve unrestricted proxies for clients with symmetric NATSs.
Though it creates the potential for an incompatible match, we
believe this to be uncommon in practice. In case of a connec-
tion failure, clients re-rendezvous and try again.

To self-assess their NAT type, clients use the NAT behavior
discovery feature of STUN [22]. Proxies cannot use the same
technique, because the necessary STUN features are not ex-
posed to JavaScript. Instead, we adapt a technique from Mass-
Browser [25 §V-A]: we run a centralized, always-on WebRTC
testing peer behind a simulated symmetric NAT.3 Proxies try
connecting to this peer: if the connection succeeds, the proxy’s
type is unrestricted; otherwise it is restricted. Clients and prox-
ies retest their NAT type periodically, to account for potential
changes in their local networking environment. If a client or
proxy is unable to determine its NAT type for some reason, it
reports the type “unknown,” which the broker conservatively

3https://bugs.torproject.org/tpo/anti-censorship/pluggable- transports/snowflake/40013

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013

% 75,000 Restricted

S

8 50,000

o

S 25000

g ' WMVM\J\‘MVW

) o i ! Unrestricted
0 = Untested

2022 2023 024
Figure 3: Proxy NAT types, in unique IP addresses per day.

The places in 2021 and 2022 where there is an increase in the
“unknown” NAT type and a decrease in the other types were
the result of operational problems with NAT type testing.

treats as if it were restricted.

Figure 3 shows that unrestricted proxies form a relatively
small fraction of the proxy population. In absolute terms, there
are enough, thanks in large part to the volunteers who run
the command-line version of the Snowflake proxy on networks
unencumbered by NAT. Though stable, long-term proxies go
somewhat against the ethos of Snowflake, it has proved useful,
as a matter of practicality, to sacrifice a measure of address di-
versity for better NAT compatibility in a common case. We can
estimate how many tries it takes a client to be matched with a
proxy, on average, by counting failed and successful rendezvous
attempts at the broker, under the assumption that clients repeat
rendezvous attempts until getting a match. In July 2023, unre-
stricted clients almost always got a match on the first attempt,
while restricted clients needed an average of 1.07 attempts
(standard deviation 0.05).

While the proxy is connecting to its client, it also connects to
the bridge. This connection uses WebSocket [24], which offers
a TCP-like, client—server connection layered on HTTPS. The
choice of protocol for the proxy-bridge link is arbitrary, and
could be changed without affecting the rest of the system. It
does not need to be resist blocking, it just needs to be available
to JavaScript code in web browsers. WebRTC, for example,
would work for this link too.

2.3 Data transfer

No complicated processing takes place at the proxy. The main
value of a Snowflake proxy is its IP address: it gives the client
a peer to connect to that is not on the censor’s address blocklist.
Having provided that, the proxy assumes a role of pure data
transfer.

Snowflake uses a stack of nested protocol layers. We will
walk though the layers and describe the purpose of each.

UDP

DTLS z:ft::lz}’fainel ephemeral, per proxy
SCTP

KCP Turbo Tunnel . .
smux persistent, per session

Tor protocol
application streams

This is the stack for the client—proxy link, which is the place
where WebRTC is used, and which is exposed to observation
by the censor (Figure 1). The stack for the proxy-bridge link
is the same, but with WebSocket in place of the WebRTC
data channel at the top. The layers marked “ephemeral” are
skimmed off and replaced as proxies come and go. The layers
marked “persistent” are instantiated once in each circumvention
session, hold long-term state, and are end-to-end between client
and bridge.

The connection between a client and its proxy is a WebRTC
data channel [18], which provides a way to send arbitrary bi-
nary messages between peers. A data channel is its own stack
of three protocols: UDP for network transport, DTLS (Data-
gram TLS) for confidentiality and integrity, and SCTP (Stream
Control Transmission Protocol) for delimiting message bound-
aries and other features like congestion control. Working UDP
port numbers will have been discovered using ICE in the pre-
vious phase. The peers authenticate one another at the DTLS
layer using certificate fingerprints that were exchanged during
rendezvous [17 §5.1].

Data channels are well-suited to Snowflake’s needs. (The
specification even lists circumvention as a use case [18 §3.2].)
But data channels are not the only option: WebRTC also offers
media streams for unreliable transport of real-time audio and
video. Which of these is used may be a fingerprinting vector.
We will take up this topic in Section 3.

If clients only ever used one proxy, a WebRTC data channel
alone would be sufficient. But a Snowflake proxy might disap-
pear at any moment, and when that happens, its data channel
goes with it. If the client was in the middle of a long down-
load, for example, it should be possible to resume the download
without interruption after rendezvousing with a new proxy. For
this we need a shared notion of session state that exists at the
client and the bridge, not tied to any temporary proxy. A lack of
session continuity across proxy failures had been an unsolved
problem in flash proxy [10 §5.2].

We adopt the Turbo Tunnel design pattern [8] and in-
sert a userspace session and reliability protocol between the
ephemeral proxy data channels and the client’s own applica-
tion streams.“ This part of the protocol stack outlives any single
proxy; it belongs to the client and the bridge. Its primary func-
tion is to attach sequence numbers and acknowledgements to
packets of data, so that both ends know what parts of the data
stream need to be retransmitted after a temporary loss of proxy
connectivity. The client tags its traffic with a random session

#https://lists.torproject.org/pipermail/anti-censorship-team/2020- February/000059. html

 https://lists.torproject.org/pipermail/anti-censorship-team/2020-February/000059.html

State that
“untrusted
mes-

senger”
protects
proxies as
well.

identifier string that remains consistent throughout a session,
which the bridge uses to index a map of session variables. For
the inner session layer we use a combination of KCP [34] and
smux [43]. KCP provides reliability, and smux detects the end
of idle sessions and terminates them. KCP and smux have
shown their worth in other deployments, and are easy to pro-
gram, but there is nothing about them on which we depend
essentially. Any other transport protocol that provides the nec-
essary features and can be implemented in userspace would do,
such as QUIC, TCP, or (another layer of) SCTP. We prototyped
successfully with QUIC before deciding on KCP/smux.
Snowflake can be seen as an instance of the “untrusted mes-
sengers” model of Feamster et al. [7 §3]: our proxies and
bridge correspond to their messengers and portal. Proxies are
tasked with delivering the client’s data to the bridge, but are
not permitted to tamper with or inspect it, which necessitates
an inner, end-to-end secure protocol between the client and
the bridge. In our deployment, this is Tor protocol. After re-
moving the WebSocket and Turbo Tunnel layers, the Snowflake
bridge feeds the client’s Tor streams into a Tor bridge running
on the same host. The use of Tor is an implementation choice,
not a requirement—many other protocols would work in its
place. Tor has the nice quality that not even the bridge sees the
plaintext of client streams. But Tor also has certain drawbacks,
which we will comment on in Section 4.4 and Section 6.

3 Protocol fingerprinting

Snowflake leans heavily into the “address blocking” side of
circumvention, but the “content blocking” part matters too.
The goal, as always, is to make circumvention traffic diffi-
cult to distinguish from traffic the censor prefers not to block.
Snowflake is tied to WebRTC, and can only be effective against
a censor that is not willing to block WebRTC protocols whole-
sale. But even within that scope, there are many variations in
how WebRTC is implemented and used, which, if not care-
fully considered, might enable a censor to selectively block
only Snowflake, while leaving other uses of WebRTC undis-
turbed. Unfortunately for the circumvention developer, the
richness of WebRTC protocols creates a large attack surface
for fingerprinting. Not only that, WebRTC leaves the details of
signaling—the process by which peers exchange the informa-
tion needed to set up a connection, corresponding to Snowflake
rendezvous—unspecified [1 §3], leaving every application to
invent its own mechanism.

As WebRTC is designed for the web, most implementa-
tions of WebRTC are embedded in web browsers, and are
not easily removed from that context. Snowflake originally
used a WebRTC library extracted from Chromium, but that
eventually proved unworkable for cross-platform deployment.
Since 2019, Snowflake has used Pion [30], an independent im-
plementation of WebRTC.> It is not tied to any browser, which

Shttps://bugs.torproject.org/tpo/anti-censorship/pluggable- transports/snowflake/28942

is both good and bad. The good is less development friction,
better memory safety (Pion is written in Go, while Chromium
WebRTC is C++), and a working relationship with upstream
developers that enables us to get fingerprinting-related changes
made. The bad is that the protocol fingerprints of Pion do not
automatically match the mostly browser-originated WebRTC
that Snowflake aims to blend in with.

The following is a list of fingerprinting concerns that bear
on Snowflake, and how we have tried to address them. The ex-
istence of a fingerprinting vulnerability does not automatically
invalidate a circumvention system: the question is whether the
vulnerability is reparable. Even among demonstrable vulnera-
bilities, some are more and some are less practical for a censor
to take advantage of. The important thing is to build on a solid
foundation; minor flaws may be patched up as necessary.

Selection of STUN servers It is not unusual for a WebRTC
application to use STUN, but the choice of what STUN
servers to use is up to the application. Running dedicated
STUN servers just for Snowflake would not work, because
a censor would experience no collateral harm in blocking
them. Our deployment uses a pool of public STUN servers
that are used for applications other than circumvention,
filtered for those that support the NAT behavior discovery
feature of Section 2.2. The client chooses a random subset
of servers from the pool when it makes a connection; this
is because not every STUN server is accessible under
every censor.

Format of STUN messages STUN is most often deployed
over plaintext UDP, which leaves the formatting of mes-
sages open to inspection and potential fingerprinting.
STUN messages consist of a fixed header followed by
a variable-length list of ordered attributes [29 §5]. What
attributes appear, and their order, depends on the STUN
implementation and how the application uses it.

We have not done anything in particular to disguise STUN
messages. Though plaintext UDP is the most common,
STUN specifies other transports, including encrypted
ones like DTLS. These may be options for Snowflake
in the future—of course, only if they are common enough
that their use does not stick out on its own.

Rendezvous Because the rendezvous methods of Section 2.1
are modular, each one needs its own justification as to
why it should be difficult to block. In addition, they
must be implemented in a way that does not expose acci-
dental distinguishers. For example, the domain fronting
and AMP cache rendezvous methods use HTTPS, which
is TLS, which means that TLS fingerprinting is a con-
cern [11 §5.1]. Snowflake, like many other circumven-
tion systems, uses the uTLS package [14 §VII] for a client
TLS fingerprint that is randomized or that imitates com-
mon browsers. See Section 5.2 for an account of when

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28942

domain fronting rendezvous was briefly blocked in Iran,
because we were slow in activating uTLS.

Though each rendezvous method may be difficult to block
in itself, a censor might combine a low-confidence de-
tection of rendezvous with features from other phases of
Snowflake data exchange to strengthen its guess.

DTLS The outermost layer of a WebRTC data connection,
directly exposed to a censor, is DTLS (Datagram TLS)
over UDP. DTLS is an adaptation of TLS [33 §1] to the
datagram setting, and therefore inherits the fingerprint-
ing concerns of TLS [14]. TLS/DTLS fingerprinting may
involve, for example, inspecting the ciphersuites and ex-
tensions of Client Hello messages, and their order. If a
combination is specific to a particular implementation of
a circumvention system, it may be blocked at low cost.

Due to practical considerations, Snowflake’s defenses to
DTLS fingerprinting are not very robust, and are reactive
rather than proactive. In the realm of TLS one may use
uTLS, but there is as yet no equivalent for DTLS. The
present way of altering DTLS fingerprints in Snowflake is
to submit a pull request upstream to Pion when a finger-
print feature used for blocking is identified. Section 5.1
documents how this has happened twice already, in re-
sponse to blocking in Russia.

Data channel or media stream Besides data channels, Web-
RTC offers media streams, serving the purpose of real-
time audio and video communication. Though both are
encrypted, data channels and media streams are exter-
nally distinguishable because they use different contain-
ers. Data channels use DTLS, while media streams use
DTLS-SRTP; that is, the Secure Real-Time Transport Pro-
tocol with a DTLS key exchange [32 §4.3].

Data channels are a closer match to Snowflake’s com-
munication model: media streams are meant to contain
encoded audio and video, not arbitrary binary data. But
the use of DTLS rather than DTLS-SRTP could become
a significant feature if other WebRTC applications mainly
use media streams. Although it would be less convenient,
it would be possible to adapt the WebRTC link between
client and proxy to use a media stream rather than a data
channel, either by modulating binary data into a well-
formed encoded audio or video signal in the manner of,
say, Stegozoa [12 §3.3], or by replacing encoded media
content within SRTP packets, as in Protozoa [2 §4.4] or
TorKameleon [40 §III-D].

Protocol fingerprinting is where most research on detecting
Snowflake has focused. Fifield and Gil Epner [9] studied the
network traffic of WebRTC applications, with the goal of find-
ing fingerprinting pitfalls that might affect Snowflake, which
was then in early development. Frolov et al. [14 §V-C] ob-
served that the undisguised TLS fingerprint of domain fronting

rendezvous was distinctive, and introduced the uTLS package
that Snowflake now uses to protect it.

MacMillan et al. [23] focused on the DTLS handshake, com-
paring Snowflake to three other WebRTC applications. They
correctly anticipated features of the Pion DTLS handshake that
would later be used to block Snowflake in Russia; see de-
tails in Section 5.1. Holland et al. [16 §5.3], using the bits
of UDP datagrams directly as features, demonstrated approxi-
mately equal performance on the same DTLS handshake data
set. Their automatically derived classifier assigned high fea-
ture importance to length fields in packets, and in fact did well
even when deprived of DTLS payload features.

Chen et al. [4] combined features of rendezvous and DTLS
in order to reduce false positives. Their classifier begins by
looking for DNS queries for STUN servers and front domains
typically used by Snowflake clients. They then apply a machine
learning classifier to features of a subsequent DTLS handshake.
The authors acknowledge that DTLS fingerprinting is fragile,
as the DTLS fingerprint is, in principle, controllable by the
application. The DNS prefilter may perhaps be mitigated by
alternative rendezvous methods (Section 2.1), or by smarter
selection of STUN servers. Xie et al. [42] trained a decision
tree on packet size, direction, latency, and bandwidth features,
with the aim of distinguishing Snowflake’s domain fronting
rendezvous from other forms of HTTPS. A challenge in clas-
sifying rendezvous flows is that they do not consist of many
packets, which limits the features a classifier has to work with.
Their lowest reported false positive rate of 0.25% is, in our
opinion, unworkably high, given the low base rate of Snowflake
rendezvous connections.

Wails et al. [41] criticize past research on detecting cir-
cumvention systems, saying that accuracy claims do not hold
up with the low base rates of circumvention traffic in practice.
They develop classifiers for Snowflake and other circumvention
protocols that improve on the state of the art, but find them still
prohibitively imprecise at realistic base rates. They propose to
reduce false positives by combining multiple observations per
IP address—classifying hosts rather than flows—and suggest
that Snowflake’s lack of fixed proxies mitigates against this
enhancement.

4 Experience

Snowflake has now been in operation for a few years. In lieu of
a forward-looking evaluation, here we take a look back at the
history of our deployment and reflect on the experience.

4.1 Client counts and bandwidth

Snowflake became available to end users gradually, reflecting
a long development process. Development began in late 2015,
and deployment in 2017, but the system only really became us-
able in 2020. It began to attract large numbers of users (enough

()
Talk

about
traffic
shaping,
“Ground-
ing in
Empiri-

cism” [36]7
-~

Tor Browser 11.5.6 and Orbot 16.6.3
fix TLSfingerprint
TLSfingerprint blocking in Iran|

n
2 100,000 Protestsin Iran
% 80,000
8 Bridge hardware upgrade|
% 60,000 Russian invasion of Ukraine!
= Tor Browser 11.5al and 11.0.3
g 40,000 alter DTLSfingerprint Tor Browser 11.5
) ' Onset of Tor blocking automatic configuration
g inRussia| ‘
g 20,000 | Tor Browser 10.5
o includes Snowflake
S 0 5 N S S S S— e
< Jul Aug Sep Oct Nov Dec
2022
4
5
1
o 0
Figure 4:

in early July 2021, are about 200 users and 2.7 Mbit/s.

to merit a censor’s attention) in 2022, following network block-
ing events in Russia and Iran.

Snowflake shipped in the alpha release series of Tor Browser
before graduating to the stable series. The first releases
of Snowflake were for GNU/Linux in Tor Browser 7.0al
on 2017-01-24¢ and for macOS in Tor Browser 7.5a4 on
2017-08-087. But we hit a roadblock in attempting to prepare
releases for other platforms: the Chromium-derived WebRTC
library we had used to that point presented major difficulties
in Tor Browser’s cross-compiling, reproducible build environ-
ment. What let us resume making progress was a switch to
Pion WebRTC [30] in 2019. With it, we were able to release
Snowflake for Windows in Tor Browser 9.0a7 on 2019-10-018,
and for Android in Tor Browser 10.0al on 2020-06-02°.

While at this point Snowflake was available on every plat-
form supported by Tor Browser, it was not yet comfortably us-
able. Two important parts were missing: no NAT type match-
ing (Section 2.2) meant that a client could not always connect
to its assigned proxy; and a lack of persistent session state (Sec-
tion 2.3) meant that even if a proxy connection was successful,
the client’s session would end once that proxy disappeared. For
these reasons, by early 2020, the average number of concurrent
users had not risen above 40. The Turbo Tunnel session persis-
tence feature became available to users in Tor Browser 9.5a13
on 2020-05-22.1° The client part of NAT behavior detec-
tion was released with Tor Browser 10.0a5 on 2020-08-191,
and proxy support was added on 2020-11-1712. With these
changes, Snowflake became practical for daily browsing, and
the number of users began to grow into 2021.

This brings us to Figure 4, which shows the Snowflake users

Shttps://bugs. torproject.org/tpo/applications/tor-browser/20735
7https://bugs.torproject.org/tpo/applications/tor-browser/22831
8https://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/25483
https://bugs.torproject.org/tpo/applications/tor-browser/30318
10https://bugs. torproject.org/tpo/anti-censorship/pluggable- transports/snowflake/33745
Whttps://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/34 129
Zhttps://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/40013

Tor Browser 12.0 adds a second bridge

Tor Browser 12.0.3
alters DTLS fingerprint

Malfunctionin
domain fronting rendezvous

Bridge performance fix

Domain fronting
rendezvous
temporarily
blocked in'lran

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

2023 2024

e e R e e S

Estimated average simultaneous Snowflake users and bandwidth by day. The values at the far left end of the graph,

and daily bandwidth since July 2021. Be aware: the chart
does not show a count of unique clients, but rather the aver-
age number of concurrent clients per day [21]. For example,
the value of 12,000 on 2022-05-01 means that, on average,
12,000 clients were using the service at any point in time on
that day. The contribution of a client depends on how long it
uses the system each day, not how many temporary proxies it
uses. The average concurrent client count is estimated from the
number of directory requests that are published in the descrip-
tors sent by Tor bridges to the bridge authority and archived
by CollecTor.’* This method of estimating usage metrics was
developed specifically to preserve user anonymity. We discuss
the techniques and challenges of obtaining country-specific us-
age counts more in Section 5 where we provide measurements
of Snowflake usage in response to censorship events.

Snowflake’s growth began in earnest when it became part of
default installations. Orbot, a mobile app that provides a VPN-
like Tor proxy, added a Snowflake client in version 16.4.0 on
2021-01-12.% Snowflake graduated to Tor Browser’s stable
series in Tor Browser 10.5 on 2021-07-06%, becoming a third
built-in circumvention option alongside meek and obfs4. Being
part of a stable release meant that it was easily available to all
Tor users, not just a self-selected group of alpha testers. The
number of users steadily increased over the next five months,
reaching almost 2,000 by December 2021.

A network censorship event may have the effect of either
increasing or decreasing the number of users of a circumvention
system. The user count decreases when the system is not robust
enough and falls to blocking; but increases when it remains
one of a diminished number of ways to reach the outside world.
Two such censorship events, one in Russia and one in Iran,
had the effect of increasing the number of Snowflake users by
multiples.

Bhttps://metrics.torproject.org/collector.html#type-extra-info

4https://github.com/guardianproject/orbot/releases/tag/
16.4.0-RC- 1-tor-0.4.4.62021-01-12
Bhttps://blog.torproject.org/new- release- tor-browser- 105

 https://bugs.torproject.org/tpo/applications/tor-browser/20735
 https://bugs.torproject.org/tpo/applications/tor-browser/22831
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25483
 https://bugs.torproject.org/tpo/applications/tor-browser/30318
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/33745
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34129
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013
 https://metrics.torproject.org/collector.html#type-extra-info
 https://github.com/guardianproject/orbot/releases/tag/16.4.0-RC-1-tor-0.4.4.6 2021-01-12
 https://github.com/guardianproject/orbot/releases/tag/16.4.0-RC-1-tor-0.4.4.6 2021-01-12
 https://blog.torproject.org/new-release-tor-browser-105

Revisit
this when
Orbot 17

hits the
Play
Store.

On 2021-12-01, some ISPs in Russia deployed measures to
block most forms of access to Tor, including Snowflake [44].
The measures varied in their effectiveness; in the case of
Snowflake, blocking was triggered by a particular feature of
the DTLS handshake which we were able to mitigate in new re-
leases within a few weeks.¢ Over the next two months the total
number of Snowflake users quadrupled. By May 2022, about
70% of Snowflake users were in Russia. The user count in Rus-
sia got an additional small boost, visible in the graph, starting
on 2022-07-14, when Tor Browser 11.5 added the Connection
Assist feature, which automatically enables circumvention op-
tions when needed.”” We will present more details of blocking
actions in Russia and their effect on usage in Section 5.1.

The next event to have a major effect on Snowflake usage
was the nationwide protests that started in Iran on 2022-09-16.
The government imposed network shutdowns and additional
network blocking, severe even by the standards of a country
already notorious for censorship [3]. Users turned to the few
circumvention systems that continued working in the face of
the new restrictions, one of which was Snowflake. Adoption
was rapid: on 2022-09-20, Iran accounted for only 1% of
Snowflake users; by 2022-09-24 it was 67%. The influx of users
had us scrambling for a few days to implement performance
improvements. Two weeks later, on 2022-10-04, usage dropped
almost as quickly as it had risen—the cause was the blocking
of a TLS fingerprint used by the Snowflake client.’® After
we released fixes for the TLS fingerprinting issue, the user
count began to recover going into 2023. But in our haste to
deploy optimizations in September, we had introduced a bug
that harmed performance, getting worse with more users?,
which dragged the count down again, until the bug was fixed in
mid-March. Umayya et al. happened to do performance tests
of Snowflake during this time [37 §4.6]—their results bear out
the lessened reliability of connections before the performance
bug was fixed?°. More details on blocking actions in Iran will
appear in Section 5.2.

For most of this history, we ran the backend bridge on a single
server, upgrading and optimizing it as needed. But as the bridge
reached its hardware capacity, and performance improvements
got harder to achieve, we deployed a second bridge to share the
load. We discuss the challenges and design considerations of
doing so in Section 4.4. The new bridge was made available in
Tor Browser 12.0 on 2022-12-07. By July, it supported about
18% of users.

The drop in users by about half on 2023-09-20 was not
caused by censor action: rather, it was an unexpected change
in the cloud infrastructure we used for domain fronting ren-
dezvous. The front domain we had been using changed its
hosting to a different CDN, which caused client rendezvous

I6https://bugs.torproject.org/tpo/applications/tor- browser- build/40393
https://blog.torproject.org/new-release- tor-browser- 115/
Bhttps://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/40207
Bhttps://bugs. torproject.org/tpo/anti- censorship/pluggable-transports/snowflake/40260
20https://bugs.torproject.org/tpo/anti-censorship/pluggable- transports/snowflake/40262

125,000

% Browser

& 100,000 extension

k]

8 75,000

o

o 50000

=3

‘£ 25000 Orbot

] Standalone
0 \Web badge

2022 2023 2024
Figure 5: Unique proxy IP addresses per day, by proxy

type. The two steps in the graph correspond to the invasion of
Ukraine by Russia in February 2022, and network restrictions
in Iran beginning September 2022, at which times there were
campaigns to encourage running Snowflake proxies. Unknown
proxy types (amounting to fewer than 50) are not shown.

messages to fail to reach the broker.?? The user count be-
gan to recover after we made releases with alternative front
domains.??

As of 2024-02-01, Snowflake had transferred 13.9 PB of
circumvention data. We are referring to goodput: Tor TLS
traffic inside the tunnel, ignoring WebRTC, WebSocket, and
KCP/smux overhead. At that time, about 0.7% of all Tor users
(24% of bridge users) used Snowflake to connect to Tor.

4.2 Number and type of proxies

Snowflake’s effectiveness depends on its proxies, of which
there are several types. The primary type is the web browser ex-
tension, which, once installed, works in the background while
the browser is running. There is also a “web badge” version of
the proxy that does not require installation. It uses the same
JavaScript code as the extension, but runs in an ordinary web
page. Some people leave a browser tab idling on the web badge
page, rather than install a browser extension. Apart from the
web-based proxies, we provide a standalone, command-line
proxy that does not require a browser. This version is con-
venient to install on a rented VPS, for example. Running a
long-term proxy at a fixed IP address is somewhat at odds
with Snowflake’s goal of proxy address diversity and agility,
but these standalone proxies are valuable because they tend to
have less restrictive NATs, making them compatible with more
clients. Finally, Orbot, a mobile app for accessing Tor, besides
being able to use Snowflake for circumvention, can also provide
Snowflake proxy service to others, a feature called “kindness
mode.”

We coordinated with the Tor Project’s network health team
to collect privacy preserving metrics at the broker during the
client and proxy polls of the Snowflake rendezvous.?*> The
resulting metrics are published at the end of every 24 hour

2 https:/forum.torproject.org/t/9346
22pttps://bugs.torproject.org/tpo/applications/tor-browser/42120
23nhttps://gitlab.torproject.org/tpo/network- health/metrics/collector/-/issues/2946 1

10

As of
2024-02-01
relay

users are
currently
inflated
due to
#59.

https://play.google.com/store/apps/details?id=org.torproject.android
https://play.google.com/store/apps/details?id=org.torproject.android
 https://bugs.torproject.org/tpo/applications/tor-browser-build/40393
 https://blog.torproject.org/new-release-tor-browser-115/
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40260
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40262
https://bugs.torproject.org/tpo/network-health/analysis/59
 https://forum.torproject.org/t/9346
 https://bugs.torproject.org/tpo/applications/tor-browser/42120
https://gitlab.torproject.org/tpo/network-health/metrics/collector/-/issues/29461

ST
Check

whether
#318 is
lowering
the esti-
mate of
running

bridges.
-

T
Find a

place to
talk about
proxy ge-
olocation
and how
proxies
are mea-
sured.

(T
Need to

give ex-
amples of
outreach,
e.g. public
talks?

collection period?* in aggregate and we do not publish or store
client or proxy IP addresses. Metrics concerning client polls
are rounded up to the nearest multiple of 8 to prevent indi-
vidual participation patterns from becoming visible in the ag-
gregate counts. The collected metrics allow us to determine
daily unique proxy IP counts, along with the associated coun-
try codes, proxy types, NAT behavior types (i.e., restricted,
unrestricted, or unknown), and how many times a proxy was
matched with a client. Figure 5 shows the daily counts of each
proxy type. Browser extension proxies predominate, represent-
ing about 80% of 140,000 daily IP addresses. For comparison,
there were about 1,900 of the more traditional style of Tor
bridge at this time. The difference is attributable to the relative
ease of running a Snowflake proxy versus a Tor bridge—though
the comparison is not quite direct, because Tor bridges have
better defenses against enumeration than do Snowflake proxies.

It was not clear, at the outset, that it would even be possi-
ble to attract enough proxies to make Snowflake meaningfully
blocking resistant and support a reasonable number of users.
Lowering the technical barriers to running a proxy was only
part of it; getting there also took intentional advocacy and
outreach. In the early days, circa 2017, the only round-the-
clock proxy support was a few standalone proxies, run by us
for the benefit of alpha tester clients. The browser extension
became available in mid-2019.2> In the latter half of 2019,
additional proxy capacity came when Cupcake, a browser ex-
tension for flash proxy with an existing user base, was repur-
posed for Snowflake.?¢6 Orbot’s Snowflake proxy feature was
added in version 16.4.1 in February 2021.27 (In Figure 5, Orbot
is counted among the standalone proxies until January 2022,
when it got its own proxy type designation.)

It is worth reflecting on the greater popularity of the browser
extension compared to the web badge. The latter had been
envisioned as the primary source of proxies in flash proxy,
the idea being that people’s browsers would automatically be-
come proxies while reading sites that had the flash proxy badge
installed, unless they checked an option to prevent it. We de-
cided, early on, that flash proxy’s opt-out permission had been
a mistake, and that Snowflake would be opt-in. In order to run
a proxy, a person must take a positive action such as installing
a browser extension or activating a toggle on a web page. Our
initial worry that this policy would reduce the number of prox-
ies turned out to be unfounded. People find an informative,
interactive proxy control panel more appealing than a non-
descript badge graphic, and install the browser extension in
greater numbers than ever used the web badge in flash proxy.

24https://metrics.torproject.org/collector.html#snowflake- stats
25https://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/
3093 1#note_2593598, https://bugs.torproject.org/tpo/anti-censorship/pluggable- transports/
snowflake/30999#note_2593718

26https://github.com/glamrock/cupcake/issues/24
27https://github.com/guardianproject/orbot/releases/tag/16.4.1-BETA-2-tor.0.4.4.6

11

150,000

Unique proxy | P addresses over the preceding 24 hours

100,000

50,000
Shared |P addresses in later
o (overlapping) 24-hour windows
Jan 02 Jan 09 Jan 16 Jan 23 Jan 30
2023
Figure 6: Proxy pool churn in January 2023. The dark

upper line shows the number of unique proxy IP addresses in
a 24-hour window starting at the point indicated. The lighter
descending lines show how many of the same IP addresses
remain in the pool, at 1-hour intervals up to 40 hours later.
It takes about 20 hours for 50% of the proxy pool to turn over.

4.3 Proxy churn

The size of the proxy pool is not the only measure of its quality.
Also important is its “churn,” the rate at which it is replenished
with fresh proxy IP addresses. Churn determines how hard a
censor would have to work to keep a blocklist of proxy IP ad-
dresses up to date; or alternatively, how quickly a momentarily
complete blocklist would lose effectiveness.

We ran an experiment?® to measure churn. Every hour, the
broker logged a record of the proxy IP addresses it had seen
in the past hour. To avoid storing real proxy IP addresses,
each record was not a transparent list, but a HyperLogLog++
sketch [15], a probabilistic data structure for estimating the
number of distinct elements in a multiset. We additionally
hashed proxy IP addresses with a secret string before adding
them to a sketch, to prevent their recovery from our published
data. A sketch supports two basic operations: count and merge.
Given a sketch X, we may compute an approximate count | X|
of its unique elements, and given two sketches X and Y, we may
merge them into a new sketch representing the union XUY. The
quantity we are interested in, the size of the intersection of two
sketches, is computed using the formula | X|+|Y|—|XUY|. Such
a computation estimates how many IP addresses are shared
across two samples of the proxy pool.

Figure 6 visualizes the results of the churn experiment. We
merged consecutive sketches over a 24-hour window to serve as
areference, then computed the size of its intersection with other
windows of the same size, offset by +1,+2,...,+40 hours.
After 1 hour, the shifted window still has, on average, 97.3%
of addresses in common with the reference; after 12 hours the
fraction has fallen to 68.8%; by the time 24 hours have elapsed,
only 38.2% of proxy IP addresses are ones that had been seen
in the previous day.

28https://bugs.torproject.org/tpo/anti-censorship/pluggable- transports/snowflake/34075

https://bugs.torproject.org/tpo/network-health/team/318
https://metrics.torproject.org/collector.html#snowflake-stats
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30931#note_2593598
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30931#note_2593598
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30999#note_2593718
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30999#note_2593718
 https://github.com/glamrock/cupcake/issues/24
 https://github.com/guardianproject/orbot/releases/tag/16.4.1-BETA-2-tor.0.4.4.6
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34075

4.4 Multiple bridges

In the abstract model of Figure 1, the bridge is a single, central-
ized entity. It can be centralized because it is never accessed
directly, but only via temporary proxies. Unlike more tra-
ditional static proxy systems, Snowflake does not benefit, in
terms of blocking resistance, from having multiple bridges.
For scalability reasons, though, it is useful for “the” bridge
to be realized as multiple servers, each handling a fraction of
client traffic.

Our deployment now uses two bridges. Generalizing from
one bridge to two required changes to the messages exchanged
between clients, proxies, and the broker. Unfortunately, the fact
of multiple bridges cannot be made fully transparent to clients,
for technical reasons related to Tor. In our design, the client
informs the broker of what bridge it wants to use, the broker
conveys the choice to the proxy, and the proxy connects to the
client’s chosen bridge. This is in contrast to other imaginable
designs where the choice of bridge is made by the broker or the
proxy. We will discuss design considerations and tradeoffs.

One minor difficulty is distributing the Turbo Tunnel layer.
Recall from Section 2.3 that Snowflake has the notion of an
end-to-end session between a client and the bridge, indepen-
dent of temporary proxy connections that carry it. This is
made possible by extensive state stored at the bridge: a table of
clients, reassembly buffers, transmission queues, timers, and
so on. While it is certainly possible to instantiate one such
bundle of state variables per bridge, a session begun in one
instance must remain with that instance—no other has the con-
text necessary to make the packets of the session meaningful.
This difficulty might be resolved by hashing the client’s session
identifier string to index a consistent bridge per session, as long
as the set of bridges does not change too frequently.

There is another difficulty that is harder to work around.
A Tor bridge is identified by a long-term identity public key.
If, on connecting to a bridge, the client finds that the bridge’s
identity is not the expected one, the client will terminate the
connection [5 §4.2]. The Tor client can configure at most one
identity per bridge; there is no way to indicate (with a certifi-
cate, for example) that multiple identities should be consid-
ered equivalent. This constraint leaves two options: either all
Snowflake bridges must share the same cryptographic identity,
or else it must be the client that makes the choice of what bridge
to use. While the former option is possible to do (by synchro-
nizing identity keys across servers), every added bridge would
increase the risk of compromising the all-important identity
keys. Our vision was that different bridge sites would run in
different locations with their own management teams, and that
any compromise of a bridge site should affect that site only.

These considerations led us to a multi-bridge design in which
clients have awareness of (at least a subset of) all bridges, and
it is the client that chooses which bridge will be used for a par-
ticular session.? The client includes a bridge identity string

29https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

in its rendezvous message to the broker (Section 2.1); then the
broker maps the identity to the WebSocket URL of the cor-
responding bridge, and conveys that URL to the proxy that’s
chosen to serve the client. We rely on clients choosing uni-
formly to equalize load across bridges. A consequence is that
every bridge must meet a minimum performance standard: we
cannot, say, centrally assign 20% of clients to one and 80% to
another according to their relative capacity. Another drawback
is that there is currently no way to instruct Tor to connect to only
one of the bridges it knows about (short of rewriting the con-
figuration file): if two bridges are configured, Tor starts two
sessions through Snowflake, each doing its own rendezvous,
which is wasteful and makes for a more conspicuous network
fingerprint. Still, this is the best solution we have found, given
the constraints. A deployment not based on Tor would have
more flexibility.

A client-chooses design risks misuse by clients, if not han-
dled carefully. Clients should only be able to select from a
limited set of known bridges, not cause proxies to connect
to arbitrary destinations—otherwise the tens of thousands of
Snowflake proxies might be weaponized to attack third parties.
The client’s bridge selection in its rendezvous message is rep-
resented not as an IP address or hostname, but as a hash of
the bridge’s public identity key. The broker maps the iden-
tity to a WebSocket URL by consulting its own local database
of known bridges, and rejects rendezvous messages that refer
to an unknown bridge. After the broker tells the proxy what
WebSocket URL to connect to, the proxy does its own check,
verifying that the hostname in the URL is a subdomain of a
known suffix reserved for Snowflake bridges. So there are two
independent safeguards against misuse.

5 Notable blocking attempts

In Section 4.1 we saw how Snowflake’s user counts have at
times been affected by the blocking actions of censors. Now
we take a closer look at selected censorship events. The effect
of censorship has usually been to increase, rather than decrease,
the number of Snowflake users. This is no paradox: as censor-
ship intensifies, users are displaced from less resilient to more
resilient systems. Snowflake’s blocking resistance has not in
every case been a success, though, and here we also reflect on
missteps and persistent challenges. The examples are taken
from Russia, Iran, China, and Turkmenistan, and are selected
for being significant and instructive. Common lessons are that
communication with affected users is invaluable in quickly
understanding and reacting to blocking; and that blocking re-
sistance is relative to a given censor, because every censor’s
cost calculus is different.

Snowflake is blockable by a censor that is willing to block
WebRTC. We would not argue otherwise. Indeed, we believe
this is how a circumvention system should be presented: not by

28651#note_2786323

12

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323

arguing its unblockability in absolute terms, but by laying out
what actions by a censor would suffice to block it—or more to
the point, what sacrifices a censor would have to make in order
to block it. Advancing the state of the art of censorship circum-
vention consists in pushing blocking beyond the capabilities of
more and more censors.

Tor bridges report aggregate binned counts by country code
of connected unique IP addresses per day in the descriptors
uploaded to the bridge authority. We use the Tor Metrics
method of combining the distribution of counts by country
code with the number of directory requests to obtain an estimate
of the average number of concurrent clients per day for each
location [21]. The mapping of IP addresses to country codes
is not without flaws. During the time of the measurements
shown here, Tor uses the IPFire location database.3© There is
at least one instance where we were able to detect geolocation
inaccuracies after noting a significant drop in Snowflake users
thought to be located in the US that correlated directly with a
blocking event in Iran.3

5.1 Blocking in Russia

Snowflake, along with other common ways of accessing Tor,
was blocked in a subset of ISPs in Russia on 2021-12-01 [44].
The event was evidently coordinated and targeted, as it hap-
pened suddenly and affected many Tor-related protocols at
once. Besides Snowflake, a portion of Tor relays and bridges,
as well as some servers of the circumvention transports meek
and obfs4, were blocked, at least temporarily. The blocking
campaign was less than totally successful—one of its effects
was to substantially increase the number of users accessing Tor
via circumvention transports, Snowflake among them.

We benefited from established relationships with develop-
ers and users in Russia, one of whom, through manual test-
ing, found what traffic feature was being used to distinguish
Snowflake. It was DTLS fingerprinting, of the kind cautioned
about in Section 3.32 Specifically, it was the presence of a
supported_groups extension in the DTLS Server Hello mes-
sage produced by Pion. The extension being present in Server
Hello was a bug33—but one that afforded the censor a feature
to distinguish DTLS connections with a Pion implementation
in the server role from other forms of DTLS. The process of
finding the flaw, fixing it, and shipping new releases of Tor
Browser took a few weeks34, after which the user count rose
quickly: from the beginning to the end of December 2021, the
number of users in Russia grew from about 400 to over 4,000
(Figure 7). Snowflake was to become a significant tool amid
the general intensification of censorship in Russia following
the invasion of Ukraine in February 2022.

30https://www.ipfire.org/projects/location/

3thttps://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/
40207#note_2844116

3Zhttps://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/
40014#note 2765074

33https://github.com/pion/dtls/issues/409
34https://gitlab.torproject.org/tpo/applications/tor-browser- build/- /merge_requests/375

13

15,000
10,000

5,000

oo

NDJFMAMJJASONDJFMAMIJIIJ
2022 2023

Figure 7: Snowflake users in Russia (average concurrent).
Events discussed in the text are marked. The attempted
blocking of Tor-related transports in December 2021 led to
Snowflake’s first surge in usage. The decrease in September—
October 2022 coincided with an even larger influx from Iran.

60,000
40,000

20,000

NDJFMAMJJASONDJFMAMIIJ
2022 2023

Figure 8: Snowflake users in Iran. Heightened censorship
beginning in September 2022 caused Iran to become the single
biggest source of Snowflake users. The drop in October 2022
was the result of TLS fingerprint blocking, which interfered
with rendezvous and took some time to mitigate.

3,000
2,000

1,000

NDJFMAMIJIJASONDJFMAMIJIIJ
2022 2023

Figure 9: Snowflake users in China. Though no sustained
blocking is evident, disruption of domain fronting rendezvous
for three days in May 2023 briefly depressed user numbers.

30

JFMAMJJASONDIJFMAMIJIJASDO
2021 2022

Figure 10: Snowflake users in Turkmenistan. This graph
shows a different range of dates than the other three. Though
there have never been many Snowflake users in Turkmenistan,
blocking events are evident on 2021-10-24 and 2022-08-03.

 https://www.ipfire.org/projects/location/
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207#note_2844116
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207#note_2844116
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40014#note_2765074
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40014#note_2765074
 https://github.com/pion/dtls/issues/409
 https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/375

The Server Hello supported_groups distinguisher had been
discovered and documented by MacMillan et al. [23 §3] al-
ready in 2020. We might have avoided this blocking event
by proactively fixing the known distinguisher—but it was not
necessarily the wrong call not to have done so. There is always
more to do than time to do it; one must consider the opportu-
nity cost of preempting specific blocking that may not come to
pass. In this case, a reactive approach by us was enough: the
loss was minor, and we were able to patch the problem quickly.
Even in ISPs where the blocking rule was present, it did not
block 100% of Snowflake connections, because of the how it
targeted a quirk in Pion, and only in Server Hello. When the
DTLS server role in the WebRTC data channel was played by
a non-Pion peer, such as a web browser proxy, the feature was
not present.

In May 2022 we got a report of a new detection rule, this
time keying on not just the presence, but the contents of the
supported_groups extension, at a byte offset suggesting that
it targeted the Client Hello message, not Server Hello.35 The
presence of a supported_groups extension in Client Hello is not
at all unusual, but the specific groups offered by Pion’s imple-
mentation differed from those of common browsers. Though
we confirmed the existence of the blocking rule, testers re-
ported that Snowflake continued to work—which may have
something to do with the fact that the Snowflake client does
not always play the client role in DTLS. If the Snowflake client
is the DTLS server, and the DTLS client is a browser proxy,
then the byte pattern looked for by the blocking rule does not
appear. We developed a mitigation, but by the time we prepared
a testing release in July 2022, the new rule had apparently been
removed and replaced by another. We can only speculate as
to reasons, but it may be that the old rule had too many false
positives, or was just not effective enough.

The detection rule that replaced supported_groups in Client
Hello looked for the presence of a Hello Verify Request mes-
sage.3¢ Hello Verify Request is an anti-denial-of-service fea-
ture in DTLS, in which the server sends a random cookie to
the client, and the client sends a second Client Hello message,
this one containing a copy of the cookie [33 §5.1]. It is not an
error to send Hello Verify Request (it is a “MAY” in the RFC),
but because the Pion implementation in Snowflake sent it, and
major browsers did not, it was a reliable indicator of Snowflake
connections. (Those, at least, in which the DTLS server role
was played by a Snowflake client or standalone proxy.) This
distinguisher, too, had been anticipated by MacMillan et al. in
2020 [23 §3]. The first reports of the blocking rule arrived in
July 2022; but as you can see in Figure 7, it had no apparent
immediate effect. It is hard to say whether the drastic decline
in October 2022 was a consequence of this rule, or some other,
unidentified one. That decline coincided with an explosion of
users from Iran, which temporarily affected the usability of the
whole system. We deployed a mitigation to remove the Hello

35https://bugs. torproject.org/tpo/anti- censorship/censorship-analysis/40030
36https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030#note 2823140

14

Verify Request message from Snowflake, regrettably, only in
February 202337, after which the number of users in Russia
began to recover.

The case of Snowflake in Russia illustrates some of the com-
plexity of censorship measurement. The answer to a question
like “Does Snowflake work in Russia?” is not a simple yes
or no. It may depend on the date, the ISP, and even such factors
as which endpoint plays the DTLS server role.

5.2 Blocking in Iran

In late September 2022, users from Iran became the major-
ity of Snowflake users almost overnight, only to fall just as
quickly two weeks later. See Figure 8. The cause of the
rise was extraordinary new network restrictions amid mass
protests [3]; the cause of the decline was TLS fingerprint block-
ing, which stopped Snowflake rendezvous from working. The
crypto/tls package of the Go programming language (in which
the Snowflake client is written) may produce several slightly
different TLS fingerprints, depending on hardware capabilities
and how it was compiled.38 It was one of these fingerprints that
was blocked. Because the blocking rule was so specific, some
users were affected and others were not. Why would a cen-
sor block only one (even if the most common) TLS fingerprint?
It may have been a simple oversight. On the other hand, it is not
certain that the blocking was meant for Snowflake specifically.
Go is a popular language for implementing circumvention sys-
tems; Snowflake may have been caught up in blocking that was
intended for another system.

The fact that simple TLS fingerprinting worked to block
Snowflake rendezvous was carelessness on our part. Aware of
the possibility, we had already implemented TLS camouflage
using uTLS in the Snowflake client, but failed to turn it on by
default. Activating the feature required only a small config-
uration change3®, but we had to wait for new releases of Tor
Browser and Orbot to get it into the hands of users: see the
September—November 2022 interval in Figure 8.

After repairing the TLS fingerprinting flaw, the number of
users from Iran gradually recovered to near its former peak.
We are aware of only minor disruptions after this time. The
default rendezvous front domain was blocked (by TLS SNI) in
some ISPs between 2023-01-16 and 2023-01-244°, which we
confirmed using data from the censorship measurement plat-
form OONI. A reduction in users is visible at this time. AMP
cache rendezvous continued to work. OONI measurements in
the weeks after the block was lifted showed sporadic failures
to connect to the front domain. If these were further attempts
at blocking, they did not have much of an effect.

37https://gitlab.torproject.org/tpo/applications/tor- browser- build/- /merge requests/637
33https://bugs.torproject.org/tpo/anti-censorship/pluggable- transports/snowflake/
40207#note_2844163

39https://gitlab.torproject.org/tpo/applications/tor-browser- build/- /merge_requests/540
4Ohttps://bugs.torproject.org/tpo/anti- censorship/team/1 1 5#note 2873040

 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030
 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030#note_2823140
 https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/637
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207#note_2844163
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207#note_2844163
 https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/540
 https://bugs.torproject.org/tpo/anti-censorship/team/115#note_2873040

5.3 Blocking in China

The user count graph from China, Figure 9, does not show
any drastic changes like others we have seen so far. There is
a modest but respectable number of Snowflake users in China.
Though there have been no singular, sustained events, we have
seen evidence of short-term or tentative blocking attempts.

In May 2019, when Snowflake was still in alpha release,
a user in China reported a failure to connect. Investigation
revealed that the cause was IP address blocking of the few
proxies that existed at the time.# Rendezvous happened, and
the STUN exchange worked, but the client and proxy could
not establish a connection. We experimented with running a
proxy at a previously unused IP address: clients in China could
connect when they were assigned that proxy by the broker. This
was back before the web browser extension proxy existed, and
the only consistent proxy support was a few standalone proxies
that we, the developers, ran at a static IP address. It ceased to
be an issue as the proxy pool grew in size.

That same month, we noticed blocking of the default STUN
server, of which there was only one at the time.#? The solution
was to add more STUN servers43, and select a subset of them
on each rendezvous attempt#4. Curiously, it seems that when
the STUN server was blocked, the standalone proxies that had
been blocked earlier in the month became unblocked.*>

The next incidents we are aware of did not occur until
2023, recent enough to appear in Figure 9. On May 12, 13,
and 14, a few users reported problems with domain fronting
rendezvous.#® We could not get systematic measurements, but
it appeared that censorship was triggered by observing multi-
ple (two or three) HTTPS connections with the same TLS SNI
to certain IP addresses within a short time. It is possible that
Snowflake was not the target of this blocking behavior, and
was affected only as a side effect. If it indeed had to do with
Snowflake, our best guess is that it was aimed at the multiple
rendezvous mentioned in Section 4.4—though such a policy
would certainly also affect a large number of non-Snowflake
connections. The user count from China was about halved dur-
ing those three days. On May 15, the blocking went away and
user counts returned to normal.

Also in May 2023, one user reported apparent throttling
(artificial reduction in speed by packet dropping) of TLS-in-
DTLS connections, based on packet size and timing features.*’
Such a policy would affect Snowflake, because it transports Tor
TLS inside DTLS data channels. Reportedly, adding padding
to the first few packets to disrupt the size and timing signature
was enough to prevent throttling. Our own speed tests run at the

#https://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/
30350#note 2593274

42https://bugs. torproject.org/tpo/anti- censorship/pluggable-transports/snowflake/
30368#note_2593357

43https://bugs.torproject.org/tpo/anti-censorship/pluggable- transports/snowflake/30579

44https://gitlab.torproject.org/tpo/anti- censorship/pluggable-transports/snowflake/-/
merge._requests/7

45https:/bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/
30368#note_2593360

46https://bugs. torproject.org/tpo/anti- censorship/censorship-analysis/40038
4Thttps://github.com/netdpeople/bbs/issues/255

15

time did not show evidence of throttling, with or without added
padding.#® There was no obvious reduction in the number of
users. It may have been a localized, ISP-specific phenomenon.

5.4 Blocking in Turkmenistan

There have never been more than a few tens of Snowflake
users in Turkmenistan. Even so, it has happened at least twice
that the number of users dropped suddenly to zero, as shown
in Figure 10. We found a variety of causes: domain name
blocking by DNS and TCP RST injection; and blocking of
certain UDP port numbers commonly used for STUN.

Turkmenistan is a particularly challenging environment for
circumvention. Though relatively unsophisticated, censorship
there is more severe and indiscriminate than in the other places
we have discussed. Only a small fraction of the population has
access to the Internet at all, which makes it hard to communicate
with volunteer testers and lengthens testing cycles. We have
been able to mitigate Snowflake blocking in Turkmenistan, but
only partially, and after protracted effort.

The drop on 2021-10-24 was caused by blocking of the de-
fault broker front domain.4® We determined this by taking
advantage of the bidirectionality of the Turkmenistan firewall.
Nourin et al. [26 §2] provide more details; we will state just
the essential information here. Among the censorship tech-
niques used in Turkmenistan are DNS response injection and
TCP RST injection. DNS queries for filtered hostnames re-
ceive an injected response containing a false IP address; TLS
handshakes with a filtered SNI receive an injected TCP RST
packet that tears down the connection. Conveniently for anal-
ysis, it works in both directions: packets that enter the country
are subject to injection just as those that exit it are. By sending
probes into the country from outside, we found that the default
broker front domain was blocked at both the DNS and TLS
layers. It was some time—not until August 2022—before we
got confirmation from testers that an alternative front domain
worked to get around the block of the broker.

The increase in the number of users from May to August
2022 was caused by a partial unblocking of the broker front
domain on 2023-05-03. We realized this only in retrospect,
from examination of data from Censored Planet [35], a censor-
ship measurement platform that had continuous measurements
of the domain at that time, in one autonomous system in Turk-
menistan. There was a shift from RST responses to successful
TLS connections on that date. DNS measurements did not
catch the moment of the shift, but they also showed no signs
of blocking after that date. Evidently, some users were then
able to connect. But the unblocking must not have been every-
where, because as late as 2022-08-18, users reported that RST
injection was still in place for them (though DNS injection had
stopped).

48https://bugs.torproject.org/tpo/anti- censorship/pluggable-transports/snowflake/
402514#note_2906723
49https://bugs.torproject.org/tpo/anti- censorship/censorship- analysis/40024

T
Document

resolu-
tion of
“Default
Snowflake
bridges
in Tor
browser
13.0.8
stopped
working”
if avail-
able.

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30350#note_2593274
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30350#note_2593274
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30368#note_2593357
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30368#note_2593357
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30579
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/7
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/7
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30368#note_2593360
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30368#note_2593360
 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40038
 https://github.com/net4people/bbs/issues/255
https://github.com/net4people/bbs/issues/325
https://github.com/net4people/bbs/issues/325
https://github.com/net4people/bbs/issues/325
https://github.com/net4people/bbs/issues/325
https://github.com/net4people/bbs/issues/325
https://github.com/net4people/bbs/issues/325
https://github.com/net4people/bbs/issues/325
https://github.com/net4people/bbs/issues/325
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40251#note_2906723
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40251#note_2906723
 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024

There was yet another layer to the blocking. Even if they
could contact the broker (at the default or an alternative front
domain), clients could not then establish a connection with a
proxy. Testing revealed blocking of the default STUN port,
UDP 3478. A client that cannot communicate with a STUN
server cannot find its ICE candidate addresses (Section 2.2),
without which most WebRTC proxy connections will fail.
(The exceptions are proxies without NAT or ingress filtering.
While there are some such proxies, censorship in Turkmenistan
also outright blocks large parts of IP address space, including
data center address ranges where those proxies tend to run.)
As chance would have it, the NAT discovery feature we rely
on for testing the NAT type of clients requires STUN servers
to open a second, functionally equivalent listener on a different
port [22 §6], commonly 3479. Changing to those alterna-
tive port numbers enabled some users to connect to Snowflake
again. Specifically, STUN servers on port 3479 worked in
AGTS, one of two major affected ISPs. The workaround did
not work in Turkmentelecom, the other ISP, where port 3479
was blocked. Though we do not have continuous measure-
ments to be sure, we suspect that the STUN port blocking
began on 2022-08-03 and precipitated the drop seen on that
date in Figure 10.

The blocking techniques described in this section are crude,
and surely result in significant overblocking—but they never-
theless offer greater challenges to circumvention than the more
considered blocking of Russia and Iran. We highlight this to
make the point that blocking resistance cannot be defined in
absolute terms, but only relative to a particular censor. Censors
differ not only in resources (time, money, equipment, person-
nel), but also in tolerance for the social and economic harms
of overblocking. Circumvention can only respond to and act
within these constraints. The government of Turkmenistan has
evidently chosen to prioritize political control over a function-
ing network, to an extreme degree. To paraphrase one of our
collaborators: “What they have in Turkmenistan can hardly
be called an Internet.”>® In a network already damaged by
oppressive policy, the additional harm caused by the clumsy
blocking of this or that circumvention system is comparatively
small. This shows the sense in which a resource-poor cen-
sor can “afford” certain blocking actions that a richer, more
capable censor cannot.

6 Future work

A natural extension of Snowflake would be to have it access
systems other than Tor—ordinary VPN, for example. Tor has
its benefits: an existing user base, a standard (pluggable trans-
ports) for integrating circumvention modules, and exit nodes
separate from entry nodes, which relieve the circumvention
developer of the concerns associated with actually exiting traf-
fic to its destination. But Tor has drawbacks as well, notably

SOhttps://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024#note 2889792

its lower speed and lack of support for UDP and other non-
TCP protocols. Nothing inherently ties Snowflake to Tor, and
it might easily be adapted to other systems. One question
is whether every Snowflake-like deployment should manage
its own pool of proxies, or if proxies can somehow be shared.
Building Snowflake’s population of proxies has been a substan-
tial undertaking in itself—for every project to have to repeat
the process from scratch would be a regrettable duplication of
effort. There is no reason why one proxy might not serve mul-
tiple projects, the client expressing its preference in the same
way it now signals which Tor bridge to use (Section 4.4). But
there would be design issues to work out. While some proxy
operators may be happy to donate bandwidth to a free-to-use
project like Tor, they may need more incentive than altruism to
help a commercial VPN. A shared deployment would impose
additional friction on development (making it harder to alter
the proxy protocol, for example). Rather than retrofit the cur-
rent Tor-based proxies with support for other systems, a next-
generation proxy pool might be designed from the ground up
with multiple cooperating projects in mind. If it proved suc-
cessful, the Tor deployment could migrate to it.

The Turbo Tunnel reliability layer of Section 2.3 was nec-
essary for providing a continuous session abstraction over a
sequence of unreliable proxies. But it might do even more:
in particular, it should be possible for a client to multiplex its
traffic over multiple proxies not just sequentially, but in par-
allel. (Something like multipath TCP.) Sequence numbers in
the inner reliability layer would ensure a reliable stream, even
when proxies have different lifetimes and performance char-
acteristics. Multiplexing could increase performance by using
the sum of the bandwidths of the individual proxies, and reduce
variability by hedging against the client being assigned one very
slow proxy. Using two or more proxies at once would eliminate
the brief pause for re-rendezvous between consecutive proxies
that now occurs. Our experiments with multiplexing have so
far not shown enough benefit to justify the change, though it
may be a matter of tuning.® And of course, analysis would be
required to determine whether simultaneous WebRTC connec-
tions form a distinctive network fingerprint.

Availability
The project web site, https://snowflake.torproject.org/, has

links to source code and instructions for installing the proxy
browser extensions.

Acknowledgements

The Snowflake project has been made possible by the cooper-
ation and support of many people and organizations. We want

Sthttps://bugs.torproject.org/tpo/anti- censorship/pluggable- transports/snowflake/
25723#note_2718643

16

Present
research

questions.

(TTTETT
Add Git

clone
URL or
similar for
the paper
itself. Say
it shows
how to
repro-
duce our
figures.
Must

also in-
clude the
churn logs
of Sec-
tion 4.3.

 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024#note_2889792
https://snowflake.torproject.org/
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25723#note_2718643
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25723#note_2718643

to thank particularly: Chris Ball, Griffin Boyce, Roger Dingle-
dine, Sean DuBois, Arthur Edelstein, Mia Gil Epner, gus-
tavo gus, J. Alex Halderman, Haz £ 41, Jordan Holland,
Armin Huremagic, Ximin Luo, Kyle MacMillan, Ivan Markin,
meskio, Prateek Mittal, Erik Nordberg, Linus Nordberg, Vern
Paxson, Sukhbir Singh, Aaron Swartz, ValdikSS, Vort, Philipp
Winter, WofWca, Censored Planet, the Counter-Power Lab at
UC Berkeley, Greenhost, Guardian Project, Mullvad VPN, the
Net4People BBS and NTC forums, OONI, the Open Tech-
nology Fund, Pion, the Tor Project, financial donors, and the
volunteers who run Snowflake proxies.

References

[1] Harald T. Alvestrand. Overview: Real-time protocols for
browser-based applications. RFC 8825, January 2021.
https://www.rfc-editor.org/info/rfc8825.

[2] Diogo Barradas, Nuno Santos, Luis Rodrigues, and
Vitor Nunes. Poking a hole in the wall: Efficient
censorship-resistant Internet communications by
parasitizing on WebRTC. In Computer and
Communications Security. ACM, 2020.
https://www.gsd.inesc-id.pt/~nsantos/papers/

barradas_ccs20.pdf.
(31

Simone Basso, Maria Xynou, Arturo Filastd, and
Amanda Meng. Iran blocks social media, app stores and
encrypted DNS amid Mahsa Amini protests, September
2022. https://ooni.org/post/

2022-iran-blocks-social-media-mahsa-amini-protests/.

[4] Jungiang Chen, Guang Cheng, and Hantao Mei.
F-ACCUMUL: A protocol fingerprint and accumulative
payload length sample-based Tor-Snowflake
traffic-identifying framework. Applied Sciences, 13(1),

2023. https://www.mdpi.com/2076-3417/13/1/622.

[5] Roger Dingledine and Nick Mathewson. Tor protocol
specification, March 2023.

https://spec.torproject.org/tor-spec.

[6] Donald E. Eastlake 3rd. Transport Layer Security (TLS)
extensions: Extension definitions. RFC 6066, January

2011. https://www.rfc-editor.org/info/rfc6066.
(7]

Nick Feamster, Magdalena Balazinska, Winston Wang,
Hari Balakrishnan, and David Karger. Thwarting web
censorship with untrusted messenger discovery. In
Privacy Enhancing Technologies. Springer, 2003.

http://nms.csail.mit.edu/papers/disc-pet2003.pdf.

[8] David Fifield. Turbo Tunnel, a good way to design
censorship circumvention protocols. In Free and Open
Communications on the Internet. USENIX, 2020.

https://www.bamsoftware.com/papers/turbotunnel/.

17

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

David Fifield and Mia Gil Epner. Fingerprintability of
WebRTC. CoRR, abs/1605.08805, 2016.
https://arxiv.org/abs/1605.08805.

David Fifield, Nate Hardison, Jonathan Ellithorpe,
Emily Stark, Roger Dingledine, Phil Porras, and Dan
Boneh. Evading censorship with browser-based proxies.
In Privacy Enhancing Technologies. Springer, 2012.
https://crypto.stanford.edu/flashproxy/flashproxy.pdf.

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-resistant communication
through domain fronting. Privacy Enhancing
Technologies, 2015(2), 2015.
https://www.bamsoftware.com/papers/fronting/.

Gabriel Figueira, Diogo Barradas, and Nuno Santos.
Stegozoa: Enhancing WebRTC covert channels with
video steganography for Internet censorship
circumvention. In Asia CCS. ACM, 2022.
https://dl.acm.org/doi/10.1145/3488932.3517419.

Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex
Halderman, Nikita Borisov, and Eric Wustrow. Conjure:
Summoning proxies from unused address space. In
Computer and Communications Security. ACM, 2019.
https://jhalderm.com/pub/papers/conjure-ccs19.pdf.

Sergey Frolov and Eric Wustrow. The use of TLS in
censorship circumvention. In Network and Distributed
System Security. The Internet Society, 2019.
https://tlsfingerprint.io/static/frolov2019.pdf.

Stefan Heule, Marc Nunkesser, and Alex Hall.
HyperLoglLog in practice: Algorithmic engineering of a
state of the art cardinality estimation algorithm. In
Extending Database Technology. ACM, 2013.
https://research.google/pubs/pub40671/.

Jordan Holland, Paul Schmitt, Nick Feamster, and
Prateek Mittal. New directions in automated traffic
analysis. In Computer and Communications Security.
ACM, 2021.
https://dl.acm.org/doi/10.1145/3460120.3484758.

Christer Holmberg and Roman Shpount. Session
Description Protocol (SDP) offer/answer considerations
for Datagram Transport Layer Security (DTLS) and
Transport Layer Security (TLS). RFC 8842, January
2021. https://www.rfc-editor.org/info/rfc8842.

Randell Jesup, Salvatore Loreto, and Michael Tiixen.
WebRTC data channels. RFC 8831, January 2021.
https://www.rfc-editor.org/info/rfc8831.

Ari Kerédnen, Christer Holmberg, and Jonathan
Rosenberg. Interactive Connectivity Establishment
(ICE): A protocol for network address translator (NAT)

https://www.rfc-editor.org/info/rfc8825
https://www.gsd.inesc-id.pt/~nsantos/papers/barradas_ccs20.pdf
https://www.gsd.inesc-id.pt/~nsantos/papers/barradas_ccs20.pdf
https://ooni.org/post/2022-iran-blocks-social-media-mahsa-amini-protests/
https://ooni.org/post/2022-iran-blocks-social-media-mahsa-amini-protests/
https://www.mdpi.com/2076-3417/13/1/622
https://spec.torproject.org/tor-spec
https://www.rfc-editor.org/info/rfc6066
http://nms.csail.mit.edu/papers/disc-pet2003.pdf
https://www.bamsoftware.com/papers/turbotunnel/
https://arxiv.org/abs/1605.08805
https://crypto.stanford.edu/flashproxy/flashproxy.pdf
https://www.bamsoftware.com/papers/fronting/
https://dl.acm.org/doi/10.1145/3488932.3517419
https://jhalderm.com/pub/papers/conjure-ccs19.pdf
https://tlsfingerprint.io/static/frolov2019.pdf
https://research.google/pubs/pub40671/
https://dl.acm.org/doi/10.1145/3460120.3484758
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8831

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

traversal. RFC 8445, July 2018.
https://www.rfc-editor.org/info/rfc8445.

Patrick Lincoln, Ian Mason, Phillip Porras, Vinod
Yegneswaran, Zachary Weinberg, Jeroen Massar,
William Simpson, Paul Vixie, and Dan Boneh.
Bootstrapping communications into an anti-censorship
system. In Free and Open Communications on the
Internet. USENIX, 2012.
https://www.usenix.org/conference/focil2/
workshop-program/presentation/lincoln.

Karsten Loesing. Counting daily bridge users. Technical
Report 2012-10-001, The Tor Project, October 2012.
https://research.torproject.org/techreports/
counting-daily-bridge-users-2012-10-24.pdf.

Derek MacDonald and Bruce Lowekamp. NAT
behavior discovery using session traversal utilities for
NAT (STUN). RFC 5780, May 2010.
https://www.rfc-editor.org/info/rfc5780.

Kyle MacMillan, Jordan Holland, and Prateek Mittal.
Evaluating Snowflake as an indistinguishable censorship
circumvention tool. CoRR, abs/2008.03254, 2020.
https://arxiv.org/abs/2008.03254.

Alexey Melnikov and Ian Fette. The WebSocket
protocol. RFC 6455, December 2011.
https://www.rfc-editor.org/info/rfc6455.

Milad Nasr, Hadi Zolfaghari, Amir Houmansadr, and
Amirhossein Ghafari. MassBrowser: Unblocking the
censored web for the masses, by the masses. In Network
and Distributed System Security. The Internet Society,
2020. https://www.ndss-symposium.org/ndss-paper/
massbrowser-unblocking-the-censored-web-for-the-
masses-by-the-masses/.

Sadia Nourin, Van Tran, Xi Jiang, Kevin Bock, Nick
Feamster, Nguyen Phong Hoang, and Dave Levin.
Measuring and evading Turkmenistan’s Internet
censorship. In The International World Wide Web
Conference. ACM, 2023.
https://dl.acm.org/doi/abs/10.1145/3543507.3583189.

OpenJS Foundation. How AMP pages are cached.
https://amp.dev/documentation/guides-and- tutorials/
learn/amp-caches-and-cors/how_amp_pages_are_cached
[cited 2023-06-10].

Marc Petit-Huguenin, Suhas Nandakumar, Christer
Holmberg, Ari Kerdnen, and Roman Shpount. Session
Description Protocol (SDP) offer/answer procedures for
Interactive Connectivity Establishment (ICE). RFC
8839, January 2021.
https://www.rfc-editor.org/info/rfc8839.

18

(29]

(30]
(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]
(39]

(40]

Marc Petit-Huguenin, Gonzalo Salgueiro, Jonathan
Rosenberg, Dan Wing, Rohan Mahy, and Philip
Matthews. Session Traversal Utilities for NAT (STUN).
RFC 8489, February 2020.
https://www.rfc-editor.org/info/rfc8489.

Pion WebRTC. https://github.com/pion/webrtc.

Tirumaleswar Reddy, Alan Johnston, Philip Matthews,
and Jonathan Rosenberg. Traversal Using Relays around
NAT (TURN): Relay extensions to Session Traversal
Utilities for NAT (STUN). RFC 8656, February 2020.
https://www.rfc-editor.org/info/rfc8656.

Eric Rescorla. WebRTC security architecture. RFC
8827, January 2021.
https://www.rfc-editor.org/info/rfc8827.

Eric Rescorla, Hannes Tschofenig, and Nagendra
Modadugu. The Datagram Transport Layer Security
(DTLS) protocol version 1.3. RFC 9147, April 2022.
https://www.rfc-editor.org/info/rfc9147.

skywind3000. KCP - A fast and reliable ARQ protocol,
January 2020. https://github.com/skywind3000/kcp/
blob/1.7/README.en.md.

Ram Sundara Raman, Prerana Shenoy, Katharina Kohls,
and Roya Ensafi. Censored Planet: An Internet-wide,
longitudinal censorship observatory. In Computer and
Communications Security. ACM, 2020.
https://censoredplanet.org/censoredplanet.

Michael Carl Tschantz, Sadia Afroz, Anonymous, and
Vern Paxson. SoK: Towards grounding censorship
circumvention in empiricism. In Symposium on Security
& Privacy. IEEE, 2016. https://
internet-freedom-science.org/circumvention-survey/.

Zeya Umayya, Dhruv Malik, Devashish Gosain, and
Piyush Kumar Sharma. PTPerf: On the performance
evaluation of Tor pluggable transports. In Internet
Measurement Conference. ACM, 2023.
https://ptperf.github.io/.

uProxy. https://www.uproxy.org/.

uProxy v1.2.5 - design doc. Archived at
https://archive.org/details/uProxy-Design-Doc-v1.2.5.
https://docs.google.com/document/d/
1t_30vX7RcrEGuWwceg(0Jub-
HiNIOKo03kBOyqXgrQN3Kw [cited 2023-02-25].

Jodo Afonso Vilalonga, Joao S. Resende, and Henrique
Domingos. TorKameleon: Improving Tor’s censorship
resistance with K-anonymization and media-based
covert channels. CoRR, abs/2303.17544, 2023.
https://arxiv.org/abs/2303.17544.

https://www.rfc-editor.org/info/rfc8445
https://www.usenix.org/conference/foci12/workshop-program/presentation/lincoln
https://www.usenix.org/conference/foci12/workshop-program/presentation/lincoln
https://research.torproject.org/techreports/counting-daily-bridge-users-2012-10-24.pdf
https://research.torproject.org/techreports/counting-daily-bridge-users-2012-10-24.pdf
https://www.rfc-editor.org/info/rfc5780
https://arxiv.org/abs/2008.03254
https://www.rfc-editor.org/info/rfc6455
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://dl.acm.org/doi/abs/10.1145/3543507.3583189
https://amp.dev/documentation/guides-and-tutorials/learn/amp-caches-and-cors/how_amp_pages_are_cached
https://amp.dev/documentation/guides-and-tutorials/learn/amp-caches-and-cors/how_amp_pages_are_cached
https://www.rfc-editor.org/info/rfc8839
https://www.rfc-editor.org/info/rfc8489
https://github.com/pion/webrtc
https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8827
https://www.rfc-editor.org/info/rfc9147
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://censoredplanet.org/censoredplanet
https://internet-freedom-science.org/circumvention-survey/
https://internet-freedom-science.org/circumvention-survey/
https://ptperf.github.io/
https://www.uproxy.org/
https://archive.org/details/uProxy-Design-Doc-v1.2.5
https://docs.google.com/document/d/1t_30vX7RcrEGuWwcg0Jub-HiNI0Ko3kBOyqXgrQN3Kw
https://docs.google.com/document/d/1t_30vX7RcrEGuWwcg0Jub-HiNI0Ko3kBOyqXgrQN3Kw
https://docs.google.com/document/d/1t_30vX7RcrEGuWwcg0Jub-HiNI0Ko3kBOyqXgrQN3Kw
https://arxiv.org/abs/2303.17544

[41]

[42]

[43]

[44]

Ryan Wails, George Arnold Sullivan, Micah Sherr, and
Rob Jansen. On precisely detecting censorship
circumvention in real-world networks. In Network and
Distributed System Security Symposium. The Internet
Society, 2024. https://www.robgjansen.com/
publications/precisedetect-ndss2024.html.

Yibo Xie, Gaopeng Gou, Gang Xiong, Zhen Li, and
Mingxin Cui. Covertness analysis of Snowflake proxy
request. In International Conference on Computer
Supported Cooperative Work in Design. IEEE, 2023.
https://ieeexplore.ieee.org/document/10152736.

xtaci. smux, February 2023.
https://github.com/xtaci/smux.

Maria Xynou and Arturo Filasto. Russia started
blocking Tor, December 2021.
https://ooni.org/post/2021-russia-blocks-tor/.

19

https://www.robgjansen.com/publications/precisedetect-ndss2024.html
https://www.robgjansen.com/publications/precisedetect-ndss2024.html
https://ieeexplore.ieee.org/document/10152736
https://github.com/xtaci/smux
https://ooni.org/post/2021-russia-blocks-tor/

	Introduction
	How it works
	Rendezvous
	Peer-to-peer connection establishment
	Data transfer

	Protocol fingerprinting
	Experience
	Client counts and bandwidth
	Number and type of proxies
	Proxy churn
	Multiple bridges

	Notable blocking attempts
	Blocking in Russia
	Blocking in Iran
	Blocking in China
	Blocking in Turkmenistan

	Future work

