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Abstract

Snowflake is a system for circumventing Internet censorship.

Its blocking resistance comes from the use of numerous, ultra-

light, temporary proxies (“snowflakes”), which accept traffic

from censored clients using peer-to-peer WebRTC protocols

and forward it to a centralized bridge. The temporary proxies

are simple enough to be implemented in JavaScript, in a web

page or browser extension, making them vastly cheaper to run

than a traditional proxy or VPN server. The large and con-

stantly changing pool of proxy addresses resists enumeration

and blocking by a censor. The system is built on the assump-

tion that proxies may appear or disappear at any time: clients

discover live proxies dynamically using a secure rendezvous

protocol; when an in-use proxy goes offline, its client switches

to another on the fly, invisibly to upper network layers.

Snowflake has been deployed with success in Tor Browser

and Orbot for several years. It has been a significant circum-

vention tool during high-profile network disruptions, including

in Russia in 2021 and Iran in 2022. In this paper, we explain

the composition of Snowflake’s many parts, give a history of

deployment and blocking attempts, and reflect on implications

for circumvention generally.

1 Introduction

Censorship circumvention systems—systems to enable net-

work communication despite interference by a censor—may

be characterized on multiple axes. Some systems imitate a

common network protocol; others try not to look like any pro-

tocol in particular. Some distribute connections over numerous

proxy servers; others concentrate on a single proxy that is, for

one reason or another, difficult for a censor to block. What

all circumvention systems have in common is that they strive

to increase the cost to the censor of blocking them—whether

that cost be in research and development, human resources,

and hardware; or in the inevitable overblocking that results

when a censor tries to selectively block some connections but

not others. Snowflake, the subject of this paper, is a circum-

vention system that uses thousands of temporary proxies and

makes switching between them easy and fast. On the spectrum

of imitation to randomization, Snowflake falls on the side of

imitation; on the scale of diffuse to concentrated, it is diffuse.

What characterizes Snowflake the most is that it pushes the idea

of distributed, disposable proxies to an extreme: its proxies can

run in a web browser, and censored clients communicate with

them using WebRTC.

WebRTC is a suite of protocols intended for real-time com-

munication applications on the web [1]. Video and voice chat

are typical examples of WebRTC applications. Snowflake

exchanges WebRTC data formats in the course of establish-

ing a connection, and uses WebRTC protocols for traversal

of NAT (network address translation) and communication be-

tween clients and proxies. Crucially for Snowflake, WebRTC

APIs are available to JavaScript code in web browsers, meaning

it is possible to implement a proxy in a web page or browser

extension. WebRTC is also usable outside a browser, which is

how we implement the Snowflake client program and alterna-

tive, command line–based proxies.

As is usual in circumvention research, we assume a threat

model in which clients reside in a network controlled by a

censor. The censor has the power to inspect and interfere

with traffic that crosses the border of its network; typical real-

world censor behaviors include inspecting IP addresses and

hostnames, checking packet contents for keywords, blocking

IP addresses, and injecting false DNS responses or TCP RST

packets. The client wants to communicate with some desti-

nation outside the censor’s network, possibly with the aid of

third-party proxies. The censor is motivated to block the con-

tents of the client’s communication, or even the destination

itself. The censor is aware of the possibility of circumvention,

and therefore seeks to block not only direct communication, but

also indirect communication by way of a proxy or circumven-
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tion system. Circumvention is accomplished when the client

can reliably reach any proxy, because a proxy, being outside the

censor’s control, can then forward the client’s communication

to any destination. (In Snowflake, we separate the roles of tem-

porary proxies and a stable long-term bridge, but the idea is the

same.) The censor is presumed to derive benefit from permit-

ting some forms of network access: the censor cannot trivially

“win” by shutting down all communication, but must be selec-

tive in its blocking decisions, in order to optimize some objec-

tive of its own. The art of censorship circumvention is forcing

the censor into a dilemma of overblocking or underblocking,

by making circumvention traffic difficult to distinguish from

traffic that the censor prefers not to block.

Snowflake originates in two earlier projects: flash proxy

and uProxy. Flash proxy [10], like Snowflake, used a model

of untrusted, temporary JavaScript proxies in web browsers,

but the link between client and proxy used WebSocket rather

than WebRTC. (WebSocket still finds use in Snowflake, but on

the proxy–bridge link, not the client–proxy link.) Flash proxy

was deployed in Tor Browser from 2013 to 2016, but never

saw much use, probably because the reliance on WebSocket,

which lacks the built-in NAT traversal of WebRTC, required

client users to do their own port forwarding. WebRTC was

then an emerging technology, and while it had been consid-

ered as a transport protocol for flash proxy, we decided to start

Snowflake as an independent project. uProxy [38], in one of its

early incarnations, pioneered the use of WebRTC proxies for

circumvention. uProxy’s proxies were browser-based, but its

trust and deployment models were different from flash proxy’s

and Snowflake’s. Each censored client would arrange, out

of band, for an acquaintance outside the censor’s network to

run a proxy in their browser [39]. A personal trust relation-

ship was necessary to prevent misuse, since browser proxies

fetched destination content directly—meaning the client’s ac-

tivity would be attributed to the proxy, and the proxy could

inspect the client’s traffic. Clients did not change proxies on

the fly. uProxy supported protocol obfuscation: the commu-

nications protocol was fundamentally WebRTC, but packets

could be transformed to resemble something else. This obfus-

cation was possible because of uProxy’s implementation as a

privileged browser extension, with access to real sockets. Be-

cause Snowflake uses ordinary unprivileged browser APIs, its

WebRTC can only look like WebRTC; on the other hand, for

the same reason, Snowflake proxies are easier to deploy. Like

flash proxy, uProxy was active in the years 2013–2016.

Among existing circumvention systems, the one that is most

similar to Snowflake is MassBrowser [25], which offers prox-

ying though volunteer proxies, called buddies. MassBrowser’s

architecture is similar to Snowflake’s: there is a centralized

component that coordinates connections between clients and

buddies, corresponding to a piece in Snowflake called the bro-

ker; buddies play the same role as our proxies. The trust model

is intermediate between Snowflake’s and uProxy’s. Buddies

preferentially operate as one-hop proxies, as in uProxy, but

are not limited to proxying only for trusted friends. To deter

misuse, buddies specify a policy of what categories of content

they are willing to proxy. An innovation in MassBrowser not

present in Snowflake is client-to-client proxying: clients may

act as buddies for other clients, the logic being that what is

censored for one client may not be censored for another. The

buddy software is not constrained by a web browser environ-

ment, and can, like uProxy, use protocol obfuscation on the

client–buddy link.

Protozoa [2] and Stegozoa [12] show ways of building a

point-to-point covert tunnel over WebRTC, the former by di-

rectly replacing encoded media with its own ciphertexts, the

latter using video steganography. Designs like these might

serve as alternatives for the link between client and proxy in

Snowflake. Significantly, where Snowflake now uses Web-

RTC data channels, Protozoa and Stegozoa use WebRTC me-

dia streams, which may be an advantage in blocking resistance.

We will say more on this point in Section 3. TorKameleon [40]

is a WebRTC-based transport with the dual goals of resisting

blocking (circumvention) and complicating traffic correlation

attacks (anonymity). It has the notable technical innovation

of using a draft API called WebRTC Encoded Transforms to

support efficient Protozoa-like embedding of data within media

streams, without requiring invasive modifications in a browser.

Our goal in this paper is not to exaggerate the advantages

of Snowflake, nor disproportionately emphasize the limitations

of other circumvention systems. Circumvention research is a

cooperative enterprise, and we recognize and support our col-

leagues who pursue and maintain their own designs. While

challenges remain, today’s circumvention systems by and large

accomplish their intended purpose, and are a vital element of

day-to-day Internet access for many people. With Snowflake,

we have explored a different point in the design space—a fruit-

ful one to be sure—but one with its own tradeoffs. We acknowl-

edge that Snowflake will be a better choice in some censorship

environments and worse in others; indeed, one of the ideas

we hope to convey is that blocking resistance can be meaning-

fully understood only in relation to particular censor and its

resources, costs, and motivations.

In this paper we present the design of Snowflake, discuss

various challenges and considerations, and reflect on over three

years of deployment. As of February 2024, Snowflake supports

an estimated 42,000 average concurrent users at an average total

transfer rate of 3.5 Gbit/s, which works out to around 38 TB of

circumvention traffic per day.

2 How it works

A Snowflake proxy connection proceeds in three phases. First,

there is rendezvous, in which a client indicates its need for

circumvention service and is matched with a temporary proxy.

Rendezvous is facilitated by a central server called the broker.

Then, there is connection establishment, where the client and its
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Figure 1: Architecture of Snowflake. The client contacts the broker through a special rendezvous channel with high blocking

resistance. The broker matches the client with one of the proxies that are currently polling. The client and proxy connect to one

another using WebRTC. The proxy connects to the bridge, then begins copying traffic in both directions. If the proxy disappears,

the client does another rendezvous and resumes its session with a new proxy.

Make this graphic depict STUN servers and indirect rendezvous.

proxy connect to each other with WebRTC, using information

exchanged during rendezvous. Finally, there is data transfer,

where the proxy transports data between the client and the

bridge. The bridge is responsible for directing the client’s

traffic to its eventual destination (in our case, by feeding it into

the Tor network). Figure 1 illustrates the process.

These phases repeat as needed, as temporary proxies come

and go. Proxy failure is not an abnormal condition—it happens

whenever a proxy is running in a browser that is closed, for ex-

ample. A client builds a circumvention session over a sequence

of proxies, switching to a new one whenever the current one

stops working. State variables stored at the client and the bridge

let the session pick up where it left off. The change of proxies

is invisible to the applications using Snowflake (except for a

brief delay while rendezvous happens): the Snowflake client

presents an abstraction of a single, uninterrupted connection.

It does not avail a censor to block the broker or bridge,

because Snowflake clients never contact either one directly.

Clients reach the broker over an indirect rendezvous channel.

Access to the bridge is always mediated by a temporary proxy.

2.1 Rendezvous

A session begins with a client sending a rendezvous message

to the broker. There is an ambient population of proxies con-

stantly polling the broker to check for clients in need of service.

The broker matches the client with an available proxy, taking

into consideration factors like NAT compatibility.

The client’s rendezvous message is a bundle of data that the

broker will need to match the client with a proxy, and the proxy

will need to connect to the client. The primary element is a

Session Description Protocol (SDP) offer [28], which contains

the information necessary for a WebRTC connection, including

the client’s external IP addresses and cryptographic data to

secure a later key exchange. The broker forwards the client’s

SDP offer to the proxy, and the proxy sends back an SDP answer

with its share of connection details. The broker forwards the

proxy’s SDP answer to the client. The client and proxy then

connect to each other directly. In WebRTC terms, this offer/

answer exchange is called “signaling,” and here the broker

acts as a signaling server. To gather the information for an

SDP offer or answer, clients and proxies communicate with

third-party servers, called STUN servers, before contacting the

broker. We will say more about how this information is used in

Section 2.2. Communication with STUN servers is a normal

and expected part of WebRTC, though there are fingerprinting

considerations that we discuss in Section 3.

Interaction with the broker uses a “long-polling” model.

An example is shown in Figure 2. Proxies poll the broker

periodically, making an HTTPS request to a designated URL

path. The broker does not respond immediately to a proxy

poll, but instead holds the connection idle for a few seconds

to await the possible arrival of a client rendezvous message.

If none arrives, the broker sends a response saying “no clients”

and the proxy goes to sleep until its next poll. When a client

does arrive, the broker sends the SDP offer in response to the

proxy’s poll request. The proxy sends its SDP answer to the

broker in a separate HTTPS request. The broker responds to

the client’s pending request with the proxy’s SDP answer, at the

same time sending an acknowledgement to the proxy. At this

point rendezvous is finished, and the client and the proxy may

connect to one another.

The client must use an indirect, blocking-resistant channel

when communicating with the broker. What is needed, essen-

tially, is a miniature circumvention system to bootstrap the full

system. What makes rendezvous different from general circum-

vention are its different (generally more lenient) requirements,

which permit a larger solution space. Because rendezvous
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Rendezvous message

(client’s WebRTC offer)

Rendezvous response

(forward proxy’s answer)

Poll: any pending clients?

Here is a client

(forward client’s offer)

I will serve this client

(proxy’s WebRTC answer)

Acknowledged

Poll: any pending clients?

No pending clients

ProxyBrokerClient

Figure 2: The long-polling communication model of

Snowflake rendezvous. Proxies poll periodically to check for

new clients. When the broker makes a match, the proxy gets

the client’s SDP offer, then immediately re-connects to send

back its SDP answer. It all happens during one round trip from

the client’s perspective. Not shown here is the indirect channel

used by the client to access the broker through the censor’s

zone of control (shaded background).

is only a small fraction of total communication volume, and

it happens relatively infrequently, it may use techniques that

would be too slow, expensive, or complicated for real-time or

bulk data transfer. Rendezvous is separable and modular: more

than one method can be used, and the methods do not necessar-

ily need to bear any relation to the circumvention techniques of

the main system. While the assumption of WebRTC permeates

Snowflake’s design, its rendezvous modules are independent.

We currently support two rendezvous methods in Snowflake:

Domain fronting In this method, the client does an HTTPS

exchange with the broker through an intermediary web

service such as a content delivery network (CDN), setting

the externally visible hostname (the TLS Server Name

Indication, or SNI [6 §3]) to a “front domain” different

from the broker’s. The CDN routes the HTTPS request

to the broker not according to the TLS SNI but rather the

HTTP Host header, which, under TLS encryption, reflects

the broker’s true hostname [11]. A censor cannot easily

block domain-fronted rendezvous without also blocking

unrelated connections to the front domain, which should

be selected to have high value to the censor. (But see

Section 3 for features other than the hostname that a censor

might try to use.) The well-known drawback of domain

fronting is the high cost of CDN bandwidth. Because we

use it only for rendezvous, the cost is much less than if we

were to use it for all data transfer.

AMP cache AMP is a framework for web pages written in a

restricted dialect of HTML. Part of the framework is a

free-to-use cache server [27]. The cache fetches AMP-

conformant web pages on demand, which means that it is,

effectively, a restricted sort of HTTP proxy. We have a

module that encodes rendezvous messages to AMP spec-

ifications, allowing them to be exchanged with the broker

via the AMP cache. Rendezvous through the AMP cache

is not easily blocked without blocking the cache server

as a whole.1 This rendezvous method still technically re-

quires domain fronting, because the AMP cache protocol

would otherwise expose the broker’s hostname in the TLS

SNI, but it increases the number of usable intermediaries

and front domains.

Amazon SQS Amazon’s Simple Queue Service (SQS) is a

message queuing service designed for communication be-

tween microservices. Services may create queues, send

messages with up to 256KB payloads, and retrieve mes-

sages from the queues. For the Snowflake rendezvous,

we create a persistent, public broker queue that any client

may send to. The broker processes retrieved messages and

responds to the client by creating a new single-use queue

with the client’s unique ID in the queue name.2 Block-

ing SQS rendezvous requires, at the very least, blocking

access to Amazon’s SQS service by region.

Anything that can be persuaded to convey a message of about

1500 bytes indirectly to the broker, and return a response of

about the same size, can work as a rendezvous module. For ex-

ample, encrypted DNS or a chat bot would serve. Though some

systems (flash proxy was one) may need only a single, outgoing

rendezvous message, Snowflake needs a two-way exchange, to

support the SDP offer and answer.

Rendezvous is not unique to Snowflake. Other examples

of rendezvous in circumvention include the DEFIANCE Ren-

dezvous Protocol [20 §3], the facilitator interaction in flash

proxy [10 §3], and the registration proxy in Conjure [13 §4.1].

A key property of Snowflake and the mentioned systems is

that they do not rely on preshared secret information. The

client needs only to acquire the necessary software; whatever

additional information is required to establish a circumvention

session is exchanged dynamically, at runtime. This stands in

contrast to another class of systems in which, prior to making a

connection, a client must acquire some secret, such as an IP ad-

dress or password, through an out-of-band channel presumed

to be unavailable to the censor—and the system’s blocking re-

sistance depends on keeping that information hidden from the

censor. A corollary of the no-secret-information property is

that an adversary—the censor—is at no special disadvantage

in attacking the system. The censor may download the client

software, run it, study its network connections—and the system

must maintain its blocking resistance despite this. The disad-

vantage of a separate rendezvous step is that it is one more

thing to get right. Not only the main circumvention channel

1https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/
merge requests/50

2https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/
merge requests/214
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but also the rendezvous must resist blocking: the system is only

as strong as the weaker of the two.

2.2 Peer-to-peer connection establishment

Now the client and the proxy connect to each other directly.

Even in the absence of censorship, making a direct connec-

tion between two Internet peers is not always easy, because of

NAT (network address translation) and firewalls. Snowflake

clients and proxies alike run in diverse networks with varying

NATs and ingress policies. Fortunately for us, WebRTC is de-

signed with this use case in mind, and has built-in support for

traversing NAT, in the form of ICE (Interactive Connectivity

Establishment) [19], a procedure for testing candidate pairs of

peer network addresses to find one that works. ICE makes use

of third-party STUN (Session Traversal Utilities for NAT) [29]

servers that, among other things, enable a host to learn its ex-

ternal IP addresses. The first part of ICE took place at the

beginning of rendezvous, when the client and proxy contacted

STUN servers to gather external address candidates and in-

cluded them in their respective SDP offer and answer.

There is no guarantee that two hosts will be able to make a

connection using the facilities of STUN alone. Some address

mapping and filtering setups are simply incompatible. In such

a case, ICE would normally fall back to using TURN (Traversal

Using Relays around NAT) [31], a kind of UDP proxy. Such

a fallback would be problematic for Snowflake, because the

TURN relays themselves would become a target of blocking

by the censor. But Snowflake has an advantage most WebRTC

applications do not. Most WebRTC applications want to con-

nect a particular pair of peers, whereas we are satisfied when a

client can connect to any proxy. Snowflake clients and proxies

self-measure their NAT type and report it to the broker, which

takes NAT compatibility into account and avoids cases that

would require a fallback to TURN.

We condense the possible combinations of NAT and firewall

features that impact a Snowflake client or proxy’s ability to

make a peer-to-peer connection into the following well-known

variations:

Full cone The same internal IP–port pair always maps to the

same external port. Any remote host may send a packet

to an internal IP address and port by sending a packet to

the mapped external port.

Restricted cone Like full cone, but incoming packets are al-

lowed only if there has recently been an outgoing packet

to the same remote IP address.

Port-restricted cone Like restricted cone, but incoming pack-

ets are allowed only if there has recently been an outgoing

packet to the same remote IP–port pair.

Symmetric The external port depends on both the internal IP–

port pair and the remote IP–port pair. Incoming packets

No NAT

Full co
ne

Rest
ric

ted
co

ne

Port-
res

tri
cte

d co
ne

Symmetr
ic

No NAT 6 6 6 6 6 


unrestricted
proxyFull cone 6 6 6 6 6

Restricted cone 6 6 6 6 6

Port-restricted cone 6 6 6 6 –



restricted
proxy

Symmetric 6 6 6 – –
︸                       ︷︷                       ︸ ︸︷︷︸

unrestricted
client

restricted
client

Table 1: Pairwise compatibility of NAT variants, using the

facilities of STUN alone (no fallback to TURN). The incom-

patible cases are when one peer’s NAT is symmetric and the

other’s is symmetric or port-restricted cone. Note the asym-

metry in what NAT variants we consider “restricted” in client

and proxy.

are allowed only if there has recently been an outgoing

packet to the same remote address.

Table 1 shows the pairwise compatibility of NAT variations.

As the incompatible cases always involve a symmetric NAT,

we further simplify matching by categorizing the variations

into the two types unrestricted (works with most other NATs)

and restricted (works only with more permissive NATs). Un-

restricted proxies may be matched with any client; restricted

proxies may be matched only with unrestricted clients. The

broker prefers to match unrestricted clients with restricted prox-

ies, in order to conserve unrestricted proxies for the clients that

need them. Symmetric NAT is always considered restricted,

but port-restricted cone NAT differs depending on the peer:

for proxies it is restricted, but for clients it is unrestricted. The

asymmetric categorization is an approximation to help con-

serve unrestricted proxies for clients with symmetric NATs.

Though it creates the potential for an incompatible match, we

believe this to be uncommon in practice. In case of a connec-

tion failure, clients re-rendezvous and try again.

To self-assess their NAT type, clients use the NAT behavior

discovery feature of STUN [22]. Proxies cannot use the same

technique, because the necessary STUN features are not ex-

posed to JavaScript. Instead, we adapt a technique from Mass-

Browser [25 §V-A]: we run a centralized, always-on WebRTC

testing peer behind a simulated symmetric NAT.3 Proxies try

connecting to this peer: if the connection succeeds, the proxy’s

type is unrestricted; otherwise it is restricted. Clients and prox-

ies retest their NAT type periodically, to account for potential

changes in their local networking environment. If a client or

proxy is unable to determine its NAT type for some reason, it

reports the type “unknown,” which the broker conservatively

3https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013
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Figure 3: Proxy NAT types, in unique IP addresses per day.

The places in 2021 and 2022 where there is an increase in the

“unknown” NAT type and a decrease in the other types were

the result of operational problems with NAT type testing.

treats as if it were restricted.

Figure 3 shows that unrestricted proxies form a relatively

small fraction of the proxy population. In absolute terms, there

are enough, thanks in large part to the volunteers who run

the command-line version of the Snowflake proxy on networks

unencumbered by NAT. Though stable, long-term proxies go

somewhat against the ethos of Snowflake, it has proved useful,

as a matter of practicality, to sacrifice a measure of address di-

versity for better NAT compatibility in a common case. We can

estimate how many tries it takes a client to be matched with a

proxy, on average, by counting failed and successful rendezvous

attempts at the broker, under the assumption that clients repeat

rendezvous attempts until getting a match. In July 2023, unre-

stricted clients almost always got a match on the first attempt,

while restricted clients needed an average of 1.07 attempts

(standard deviation 0.05).

While the proxy is connecting to its client, it also connects to

the bridge. This connection uses WebSocket [24], which offers

a TCP-like, client–server connection layered on HTTPS. The

choice of protocol for the proxy–bridge link is arbitrary, and

could be changed without affecting the rest of the system. It

does not need to be resist blocking, it just needs to be available

to JavaScript code in web browsers. WebRTC, for example,

would work for this link too.

2.3 Data transfer

No complicated processing takes place at the proxy. The main

value of a Snowflake proxy is its IP address: it gives the client

a peer to connect to that is not on the censor’s address blocklist.

Having provided that, the proxy assumes a role of pure data

transfer.

Snowflake uses a stack of nested protocol layers. We will

walk though the layers and describe the purpose of each.

UDP 



WebRTC

data channel





ephemeral, per proxyDTLS

SCTP

KCP
}

Turbo Tunnel




persistent, per sessionsmux

Tor protocol

application streams

This is the stack for the client–proxy link, which is the place

where WebRTC is used, and which is exposed to observation

by the censor (Figure 1). The stack for the proxy–bridge link

is the same, but with WebSocket in place of the WebRTC

data channel at the top. The layers marked “ephemeral” are

skimmed off and replaced as proxies come and go. The layers

marked “persistent” are instantiated once in each circumvention

session, hold long-term state, and are end-to-end between client

and bridge.

The connection between a client and its proxy is a WebRTC

data channel [18], which provides a way to send arbitrary bi-

nary messages between peers. A data channel is its own stack

of three protocols: UDP for network transport, DTLS (Data-

gram TLS) for confidentiality and integrity, and SCTP (Stream

Control Transmission Protocol) for delimiting message bound-

aries and other features like congestion control. Working UDP

port numbers will have been discovered using ICE in the pre-

vious phase. The peers authenticate one another at the DTLS

layer using certificate fingerprints that were exchanged during

rendezvous [17 §5.1].

Data channels are well-suited to Snowflake’s needs. (The

specification even lists circumvention as a use case [18 §3.2].)

But data channels are not the only option: WebRTC also offers

media streams for unreliable transport of real-time audio and

video. Which of these is used may be a fingerprinting vector.

We will take up this topic in Section 3.

If clients only ever used one proxy, a WebRTC data channel

alone would be sufficient. But a Snowflake proxy might disap-

pear at any moment, and when that happens, its data channel

goes with it. If the client was in the middle of a long down-

load, for example, it should be possible to resume the download

without interruption after rendezvousing with a new proxy. For

this we need a shared notion of session state that exists at the

client and the bridge, not tied to any temporary proxy. A lack of

session continuity across proxy failures had been an unsolved

problem in flash proxy [10 §5.2].

We adopt the Turbo Tunnel design pattern [8] and in-

sert a userspace session and reliability protocol between the

ephemeral proxy data channels and the client’s own applica-

tion streams.4 This part of the protocol stack outlives any single

proxy; it belongs to the client and the bridge. Its primary func-

tion is to attach sequence numbers and acknowledgements to

packets of data, so that both ends know what parts of the data

stream need to be retransmitted after a temporary loss of proxy

connectivity. The client tags its traffic with a random session

4https://lists.torproject.org/pipermail/anti-censorship-team/2020-February/000059.html
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identifier string that remains consistent throughout a session,

which the bridge uses to index a map of session variables. For

the inner session layer we use a combination of KCP [34] and

smux [43]. KCP provides reliability, and smux detects the end

of idle sessions and terminates them. KCP and smux have

shown their worth in other deployments, and are easy to pro-

gram, but there is nothing about them on which we depend

essentially. Any other transport protocol that provides the nec-

essary features and can be implemented in userspace would do,

such as QUIC, TCP, or (another layer of) SCTP. We prototyped

successfully with QUIC before deciding on KCP/smux.

Snowflake can be seen as an instance of the “untrusted mes-

sengers” model of Feamster et al. [7 §3]: our proxies and

bridge correspond to their messengers and portal. Proxies are

tasked with delivering the client’s data to the bridge, but are

not permitted to tamper with or inspect it, which necessitates

an inner, end-to-end secure protocol between the client and

the bridge. In our deployment, this is Tor protocol. After re-

moving the WebSocket and Turbo Tunnel layers, the Snowflake

bridge feeds the client’s Tor streams into a Tor bridge running

on the same host. The use of Tor is an implementation choice,

not a requirement—many other protocols would work in its

place. Tor has the nice quality that not even the bridge sees the

plaintext of client streams. But Tor also has certain drawbacks,

which we will comment on in Section 4.4 and Section 6.State that

“untrusted

mes-

senger”

protects

proxies as

well.

3 Protocol fingerprinting

Snowflake leans heavily into the “address blocking” side of

circumvention, but the “content blocking” part matters too.

The goal, as always, is to make circumvention traffic diffi-

cult to distinguish from traffic the censor prefers not to block.

Snowflake is tied to WebRTC, and can only be effective against

a censor that is not willing to block WebRTC protocols whole-

sale. But even within that scope, there are many variations in

how WebRTC is implemented and used, which, if not care-

fully considered, might enable a censor to selectively block

only Snowflake, while leaving other uses of WebRTC undis-

turbed. Unfortunately for the circumvention developer, the

richness of WebRTC protocols creates a large attack surface

for fingerprinting. Not only that, WebRTC leaves the details of

signaling—the process by which peers exchange the informa-

tion needed to set up a connection, corresponding to Snowflake

rendezvous—unspecified [1 §3], leaving every application to

invent its own mechanism.

As WebRTC is designed for the web, most implementa-

tions of WebRTC are embedded in web browsers, and are

not easily removed from that context. Snowflake originally

used a WebRTC library extracted from Chromium, but that

eventually proved unworkable for cross-platform deployment.

Since 2019, Snowflake has used Pion [30], an independent im-

plementation of WebRTC.5 It is not tied to any browser, which

5https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28942

is both good and bad. The good is less development friction,

better memory safety (Pion is written in Go, while Chromium

WebRTC is C++), and a working relationship with upstream

developers that enables us to get fingerprinting-related changes

made. The bad is that the protocol fingerprints of Pion do not

automatically match the mostly browser-originated WebRTC

that Snowflake aims to blend in with.

The following is a list of fingerprinting concerns that bear

on Snowflake, and how we have tried to address them. The ex-

istence of a fingerprinting vulnerability does not automatically

invalidate a circumvention system: the question is whether the

vulnerability is reparable. Even among demonstrable vulnera-

bilities, some are more and some are less practical for a censor

to take advantage of. The important thing is to build on a solid

foundation; minor flaws may be patched up as necessary.

Selection of STUN servers It is not unusual for a WebRTC

application to use STUN, but the choice of what STUN

servers to use is up to the application. Running dedicated

STUN servers just for Snowflake would not work, because

a censor would experience no collateral harm in blocking

them. Our deployment uses a pool of public STUN servers

that are used for applications other than circumvention,

filtered for those that support the NAT behavior discovery

feature of Section 2.2. The client chooses a random subset

of servers from the pool when it makes a connection; this

is because not every STUN server is accessible under

every censor.

Format of STUN messages STUN is most often deployed

over plaintext UDP, which leaves the formatting of mes-

sages open to inspection and potential fingerprinting.

STUN messages consist of a fixed header followed by

a variable-length list of ordered attributes [29 §5]. What

attributes appear, and their order, depends on the STUN

implementation and how the application uses it.

We have not done anything in particular to disguise STUN

messages. Though plaintext UDP is the most common,

STUN specifies other transports, including encrypted

ones like DTLS. These may be options for Snowflake

in the future—of course, only if they are common enough

that their use does not stick out on its own.

Rendezvous Because the rendezvous methods of Section 2.1

are modular, each one needs its own justification as to

why it should be difficult to block. In addition, they

must be implemented in a way that does not expose acci-

dental distinguishers. For example, the domain fronting

and AMP cache rendezvous methods use HTTPS, which

is TLS, which means that TLS fingerprinting is a con-

cern [11 §5.1]. Snowflake, like many other circumven-

tion systems, uses the uTLS package [14 §VII] for a client

TLS fingerprint that is randomized or that imitates com-

mon browsers. See Section 5.2 for an account of when
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domain fronting rendezvous was briefly blocked in Iran,

because we were slow in activating uTLS.

Though each rendezvous method may be difficult to block

in itself, a censor might combine a low-confidence de-

tection of rendezvous with features from other phases of

Snowflake data exchange to strengthen its guess.

DTLS The outermost layer of a WebRTC data connection,

directly exposed to a censor, is DTLS (Datagram TLS)

over UDP. DTLS is an adaptation of TLS [33 §1] to the

datagram setting, and therefore inherits the fingerprint-

ing concerns of TLS [14]. TLS/DTLS fingerprinting may

involve, for example, inspecting the ciphersuites and ex-

tensions of Client Hello messages, and their order. If a

combination is specific to a particular implementation of

a circumvention system, it may be blocked at low cost.

Due to practical considerations, Snowflake’s defenses to

DTLS fingerprinting are not very robust, and are reactive

rather than proactive. In the realm of TLS one may use

uTLS, but there is as yet no equivalent for DTLS. The

present way of altering DTLS fingerprints in Snowflake is

to submit a pull request upstream to Pion when a finger-

print feature used for blocking is identified. Section 5.1

documents how this has happened twice already, in re-

sponse to blocking in Russia.

Data channel or media stream Besides data channels, Web-

RTC offers media streams, serving the purpose of real-

time audio and video communication. Though both are

encrypted, data channels and media streams are exter-

nally distinguishable because they use different contain-

ers. Data channels use DTLS, while media streams use

DTLS-SRTP; that is, the Secure Real-Time Transport Pro-

tocol with a DTLS key exchange [32 §4.3].

Data channels are a closer match to Snowflake’s com-

munication model: media streams are meant to contain

encoded audio and video, not arbitrary binary data. But

the use of DTLS rather than DTLS-SRTP could become

a significant feature if other WebRTC applications mainly

use media streams. Although it would be less convenient,

it would be possible to adapt the WebRTC link between

client and proxy to use a media stream rather than a data

channel, either by modulating binary data into a well-

formed encoded audio or video signal in the manner of,

say, Stegozoa [12 §3.3], or by replacing encoded media

content within SRTP packets, as in Protozoa [2 §4.4] or

TorKameleon [40 §III-D].

Protocol fingerprinting is where most research on detecting

Snowflake has focused. Fifield and Gil Epner [9] studied the

network traffic of WebRTC applications, with the goal of find-

ing fingerprinting pitfalls that might affect Snowflake, which

was then in early development. Frolov et al. [14 §V-C] ob-

served that the undisguised TLS fingerprint of domain fronting

rendezvous was distinctive, and introduced the uTLS package

that Snowflake now uses to protect it.

MacMillan et al. [23] focused on the DTLS handshake, com-

paring Snowflake to three other WebRTC applications. They

correctly anticipated features of the Pion DTLS handshake that

would later be used to block Snowflake in Russia; see de-

tails in Section 5.1. Holland et al. [16 §5.3], using the bits

of UDP datagrams directly as features, demonstrated approxi-

mately equal performance on the same DTLS handshake data

set. Their automatically derived classifier assigned high fea-

ture importance to length fields in packets, and in fact did well

even when deprived of DTLS payload features.

Chen et al. [4] combined features of rendezvous and DTLS

in order to reduce false positives. Their classifier begins by

looking for DNS queries for STUN servers and front domains

typically used by Snowflake clients. They then apply a machine

learning classifier to features of a subsequent DTLS handshake.

The authors acknowledge that DTLS fingerprinting is fragile,

as the DTLS fingerprint is, in principle, controllable by the

application. The DNS prefilter may perhaps be mitigated by

alternative rendezvous methods (Section 2.1), or by smarter

selection of STUN servers. Xie et al. [42] trained a decision

tree on packet size, direction, latency, and bandwidth features,

with the aim of distinguishing Snowflake’s domain fronting

rendezvous from other forms of HTTPS. A challenge in clas-

sifying rendezvous flows is that they do not consist of many

packets, which limits the features a classifier has to work with.

Their lowest reported false positive rate of 0.25% is, in our

opinion, unworkably high, given the low base rate of Snowflake

rendezvous connections.

Wails et al. [41] criticize past research on detecting cir-

cumvention systems, saying that accuracy claims do not hold

up with the low base rates of circumvention traffic in practice.

They develop classifiers for Snowflake and other circumvention

protocols that improve on the state of the art, but find them still

prohibitively imprecise at realistic base rates. They propose to

reduce false positives by combining multiple observations per

IP address—classifying hosts rather than flows—and suggest

that Snowflake’s lack of fixed proxies mitigates against this

enhancement. Talk

about

traffic

shaping,

“Ground-

ing in

Empiri-

cism” [36]?

4 Experience

Snowflake has now been in operation for a few years. In lieu of

a forward-looking evaluation, here we take a look back at the

history of our deployment and reflect on the experience.

4.1 Client counts and bandwidth

Snowflake became available to end users gradually, reflecting

a long development process. Development began in late 2015,

and deployment in 2017, but the system only really became us-

able in 2020. It began to attract large numbers of users (enough
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Figure 4: Estimated average simultaneous Snowflake users and bandwidth by day. The values at the far left end of the graph,

in early July 2021, are about 200 users and 2.7 Mbit/s.

to merit a censor’s attention) in 2022, following network block-

ing events in Russia and Iran.

Snowflake shipped in the alpha release series of Tor Browser

before graduating to the stable series. The first releases

of Snowflake were for GNU/Linux in Tor Browser 7.0a1

on 2017-01-246 and for macOS in Tor Browser 7.5a4 on

2017-08-087. But we hit a roadblock in attempting to prepare

releases for other platforms: the Chromium-derived WebRTC

library we had used to that point presented major difficulties

in Tor Browser’s cross-compiling, reproducible build environ-

ment. What let us resume making progress was a switch to

Pion WebRTC [30] in 2019. With it, we were able to release

Snowflake for Windows in Tor Browser 9.0a7 on 2019-10-018,

and for Android in Tor Browser 10.0a1 on 2020-06-029.

While at this point Snowflake was available on every plat-

form supported by Tor Browser, it was not yet comfortably us-

able. Two important parts were missing: no NAT type match-

ing (Section 2.2) meant that a client could not always connect

to its assigned proxy; and a lack of persistent session state (Sec-

tion 2.3) meant that even if a proxy connection was successful,

the client’s session would end once that proxy disappeared. For

these reasons, by early 2020, the average number of concurrent

users had not risen above 40. The Turbo Tunnel session persis-

tence feature became available to users in Tor Browser 9.5a13

on 2020-05-22.10 The client part of NAT behavior detec-

tion was released with Tor Browser 10.0a5 on 2020-08-1911,

and proxy support was added on 2020-11-1712. With these

changes, Snowflake became practical for daily browsing, and

the number of users began to grow into 2021.

This brings us to Figure 4, which shows the Snowflake users

6https://bugs.torproject.org/tpo/applications/tor-browser/20735

7https://bugs.torproject.org/tpo/applications/tor-browser/22831

8https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25483

9https://bugs.torproject.org/tpo/applications/tor-browser/30318

10https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/33745

11https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34129

12https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013

and daily bandwidth since July 2021. Be aware: the chart

does not show a count of unique clients, but rather the aver-

age number of concurrent clients per day [21]. For example,

the value of 12,000 on 2022-05-01 means that, on average,

12,000 clients were using the service at any point in time on

that day. The contribution of a client depends on how long it

uses the system each day, not how many temporary proxies it

uses. The average concurrent client count is estimated from the

number of directory requests that are published in the descrip-

tors sent by Tor bridges to the bridge authority and archived

by CollecTor.13 This method of estimating usage metrics was

developed specifically to preserve user anonymity. We discuss

the techniques and challenges of obtaining country-specific us-

age counts more in Section 5 where we provide measurements

of Snowflake usage in response to censorship events.

Snowflake’s growth began in earnest when it became part of

default installations. Orbot, a mobile app that provides a VPN-

like Tor proxy, added a Snowflake client in version 16.4.0 on

2021-01-12.14 Snowflake graduated to Tor Browser’s stable

series in Tor Browser 10.5 on 2021-07-0615, becoming a third

built-in circumvention option alongside meek and obfs4. Being

part of a stable release meant that it was easily available to all

Tor users, not just a self-selected group of alpha testers. The

number of users steadily increased over the next five months,

reaching almost 2,000 by December 2021.

A network censorship event may have the effect of either

increasing or decreasing the number of users of a circumvention

system. The user count decreases when the system is not robust

enough and falls to blocking; but increases when it remains

one of a diminished number of ways to reach the outside world.

Two such censorship events, one in Russia and one in Iran,

had the effect of increasing the number of Snowflake users by

multiples.

13https://metrics.torproject.org/collector.html#type-extra-info

14https://github.com/guardianproject/orbot/releases/tag/
16.4.0-RC-1-tor-0.4.4.62021-01-12

15https://blog.torproject.org/new-release-tor-browser-105
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On 2021-12-01, some ISPs in Russia deployed measures to

block most forms of access to Tor, including Snowflake [44].

The measures varied in their effectiveness; in the case of

Snowflake, blocking was triggered by a particular feature of

the DTLS handshake which we were able to mitigate in new re-

leases within a few weeks.16 Over the next two months the total

number of Snowflake users quadrupled. By May 2022, about

70% of Snowflake users were in Russia. The user count in Rus-

sia got an additional small boost, visible in the graph, starting

on 2022-07-14, when Tor Browser 11.5 added the Connection

Assist feature, which automatically enables circumvention op-

tions when needed.17 We will present more details of blocking

actions in Russia and their effect on usage in Section 5.1.

The next event to have a major effect on Snowflake usage

was the nationwide protests that started in Iran on 2022-09-16.

The government imposed network shutdowns and additional

network blocking, severe even by the standards of a country

already notorious for censorship [3]. Users turned to the few

circumvention systems that continued working in the face of

the new restrictions, one of which was Snowflake. Adoption

was rapid: on 2022-09-20, Iran accounted for only 1% of

Snowflake users; by 2022-09-24 it was 67%. The influx of users

had us scrambling for a few days to implement performance

improvements. Two weeks later, on 2022-10-04, usage dropped

almost as quickly as it had risen—the cause was the blocking

of a TLS fingerprint used by the Snowflake client.18 After

we released fixes for the TLS fingerprinting issue, the user

count began to recover going into 2023. But in our haste to

deploy optimizations in September, we had introduced a bug

that harmed performance, getting worse with more users19,

which dragged the count down again, until the bug was fixed in

mid-March. Umayya et al. happened to do performance tests

of Snowflake during this time [37 §4.6]—their results bear out

the lessened reliability of connections before the performance

bug was fixed20. More details on blocking actions in Iran will

appear in Section 5.2.

For most of this history, we ran the backend bridge on a single

server, upgrading and optimizing it as needed. But as the bridge

reached its hardware capacity, and performance improvements

got harder to achieve, we deployed a second bridge to share the

load. We discuss the challenges and design considerations of

doing so in Section 4.4. The new bridge was made available in

Tor Browser 12.0 on 2022-12-07. By July, it supported about

18% of users.Revisit

this when

Orbot 17

hits the

Play

Store.

The drop in users by about half on 2023-09-20 was not

caused by censor action: rather, it was an unexpected change

in the cloud infrastructure we used for domain fronting ren-

dezvous. The front domain we had been using changed its

hosting to a different CDN, which caused client rendezvous

16https://bugs.torproject.org/tpo/applications/tor-browser-build/40393

17https://blog.torproject.org/new-release-tor-browser-115/

18https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207

19https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40260

20https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40262
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Figure 5: Unique proxy IP addresses per day, by proxy

type. The two steps in the graph correspond to the invasion of

Ukraine by Russia in February 2022, and network restrictions

in Iran beginning September 2022, at which times there were

campaigns to encourage running Snowflake proxies. Unknown

proxy types (amounting to fewer than 50) are not shown.

messages to fail to reach the broker.21 The user count be-

gan to recover after we made releases with alternative front

domains.22

As of 2024-02-01, Snowflake had transferred 13.9 PB of

circumvention data. We are referring to goodput: Tor TLS

traffic inside the tunnel, ignoring WebRTC, WebSocket, and

KCP/smux overhead. At that time, about 0.7% of all Tor users As of

2024-02-01,

relay

users are

currently

inflated

due to

#59.

(24% of bridge users) used Snowflake to connect to Tor.

4.2 Number and type of proxies

Snowflake’s effectiveness depends on its proxies, of which

there are several types. The primary type is the web browser ex-

tension, which, once installed, works in the background while

the browser is running. There is also a “web badge” version of

the proxy that does not require installation. It uses the same

JavaScript code as the extension, but runs in an ordinary web

page. Some people leave a browser tab idling on the web badge

page, rather than install a browser extension. Apart from the

web-based proxies, we provide a standalone, command-line

proxy that does not require a browser. This version is con-

venient to install on a rented VPS, for example. Running a

long-term proxy at a fixed IP address is somewhat at odds

with Snowflake’s goal of proxy address diversity and agility,

but these standalone proxies are valuable because they tend to

have less restrictive NATs, making them compatible with more

clients. Finally, Orbot, a mobile app for accessing Tor, besides

being able to use Snowflake for circumvention, can also provide

Snowflake proxy service to others, a feature called “kindness

mode.”

We coordinated with the Tor Project’s network health team

to collect privacy preserving metrics at the broker during the

client and proxy polls of the Snowflake rendezvous.23 The

resulting metrics are published at the end of every 24 hour

21https://forum.torproject.org/t/9346

22https://bugs.torproject.org/tpo/applications/tor-browser/42120

23https://gitlab.torproject.org/tpo/network-health/metrics/collector/-/issues/29461
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collection period24 in aggregate and we do not publish or store

client or proxy IP addresses. Metrics concerning client polls

are rounded up to the nearest multiple of 8 to prevent indi-

vidual participation patterns from becoming visible in the ag-

gregate counts. The collected metrics allow us to determine

daily unique proxy IP counts, along with the associated coun-

try codes, proxy types, NAT behavior types (i.e., restricted,

unrestricted, or unknown), and how many times a proxy was

matched with a client. Figure 5 shows the daily counts of each

proxy type. Browser extension proxies predominate, represent-

ing about 80% of 140,000 daily IP addresses. For comparison,

there were about 1,900 of the more traditional style of Tor

bridge at this time. The difference is attributable to the relativeCheck

whether

#318 is

lowering

the esti-

mate of

running

bridges.

ease of running a Snowflake proxy versus a Tor bridge—though

the comparison is not quite direct, because Tor bridges have

better defenses against enumeration than do Snowflake proxies.

Find a

place to

talk about

proxy ge-

olocation

and how

proxies

are mea-

sured.

It was not clear, at the outset, that it would even be possi-

ble to attract enough proxies to make Snowflake meaningfully

blocking resistant and support a reasonable number of users.

Lowering the technical barriers to running a proxy was only

part of it; getting there also took intentional advocacy and

outreach. In the early days, circa 2017, the only round-the-

Need to

give ex-

amples of

outreach,

e.g. public

talks?

clock proxy support was a few standalone proxies, run by us

for the benefit of alpha tester clients. The browser extension

became available in mid-2019.25 In the latter half of 2019,

additional proxy capacity came when Cupcake, a browser ex-

tension for flash proxy with an existing user base, was repur-

posed for Snowflake.26 Orbot’s Snowflake proxy feature was

added in version 16.4.1 in February 2021.27 (In Figure 5, Orbot

is counted among the standalone proxies until January 2022,

when it got its own proxy type designation.)

It is worth reflecting on the greater popularity of the browser

extension compared to the web badge. The latter had been

envisioned as the primary source of proxies in flash proxy,

the idea being that people’s browsers would automatically be-

come proxies while reading sites that had the flash proxy badge

installed, unless they checked an option to prevent it. We de-

cided, early on, that flash proxy’s opt-out permission had been

a mistake, and that Snowflake would be opt-in. In order to run

a proxy, a person must take a positive action such as installing

a browser extension or activating a toggle on a web page. Our

initial worry that this policy would reduce the number of prox-

ies turned out to be unfounded. People find an informative,

interactive proxy control panel more appealing than a non-

descript badge graphic, and install the browser extension in

greater numbers than ever used the web badge in flash proxy.

24https://metrics.torproject.org/collector.html#snowflake-stats

25https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
30931#note 2593598, https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/
snowflake/30999#note 2593718

26https://github.com/glamrock/cupcake/issues/24

27https://github.com/guardianproject/orbot/releases/tag/16.4.1-BETA-2-tor.0.4.4.6
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Figure 6: Proxy pool churn in January 2023. The dark

upper line shows the number of unique proxy IP addresses in

a 24-hour window starting at the point indicated. The lighter

descending lines show how many of the same IP addresses

remain in the pool, at 1-hour intervals up to 40 hours later.

It takes about 20 hours for 50% of the proxy pool to turn over.

4.3 Proxy churn

The size of the proxy pool is not the only measure of its quality.

Also important is its “churn,” the rate at which it is replenished

with fresh proxy IP addresses. Churn determines how hard a

censor would have to work to keep a blocklist of proxy IP ad-

dresses up to date; or alternatively, how quickly a momentarily

complete blocklist would lose effectiveness.

We ran an experiment28 to measure churn. Every hour, the

broker logged a record of the proxy IP addresses it had seen

in the past hour. To avoid storing real proxy IP addresses,

each record was not a transparent list, but a HyperLogLog++

sketch [15], a probabilistic data structure for estimating the

number of distinct elements in a multiset. We additionally

hashed proxy IP addresses with a secret string before adding

them to a sketch, to prevent their recovery from our published

data. A sketch supports two basic operations: count and merge.

Given a sketch Ĕ , we may compute an approximate count |Ĕ |

of its unique elements, and given two sketches Ĕ andĕ , we may

merge them into a new sketch representing the union Ĕ∪ĕ . The

quantity we are interested in, the size of the intersection of two

sketches, is computed using the formula |Ĕ |+|ĕ |−|Ĕ∪ĕ |. Such

a computation estimates how many IP addresses are shared

across two samples of the proxy pool.

Figure 6 visualizes the results of the churn experiment. We

merged consecutive sketches over a 24-hour window to serve as

a reference, then computed the size of its intersection with other

windows of the same size, offset by +1, +2, . . . , +40 hours.

After 1 hour, the shifted window still has, on average, 97.3%

of addresses in common with the reference; after 12 hours the

fraction has fallen to 68.8%; by the time 24 hours have elapsed,

only 38.2% of proxy IP addresses are ones that had been seen

in the previous day.

28https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34075

11

https://bugs.torproject.org/tpo/network-health/team/318
https://metrics.torproject.org/collector.html#snowflake-stats
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30931#note_2593598
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30931#note_2593598
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30999#note_2593718
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30999#note_2593718
 https://github.com/glamrock/cupcake/issues/24 
 https://github.com/guardianproject/orbot/releases/tag/16.4.1-BETA-2-tor.0.4.4.6 
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34075 


4.4 Multiple bridges

In the abstract model of Figure 1, the bridge is a single, central-

ized entity. It can be centralized because it is never accessed

directly, but only via temporary proxies. Unlike more tra-

ditional static proxy systems, Snowflake does not benefit, in

terms of blocking resistance, from having multiple bridges.

For scalability reasons, though, it is useful for “the” bridge

to be realized as multiple servers, each handling a fraction of

client traffic.

Our deployment now uses two bridges. Generalizing from

one bridge to two required changes to the messages exchanged

between clients, proxies, and the broker. Unfortunately, the fact

of multiple bridges cannot be made fully transparent to clients,

for technical reasons related to Tor. In our design, the client

informs the broker of what bridge it wants to use, the broker

conveys the choice to the proxy, and the proxy connects to the

client’s chosen bridge. This is in contrast to other imaginable

designs where the choice of bridge is made by the broker or the

proxy. We will discuss design considerations and tradeoffs.

One minor difficulty is distributing the Turbo Tunnel layer.

Recall from Section 2.3 that Snowflake has the notion of an

end-to-end session between a client and the bridge, indepen-

dent of temporary proxy connections that carry it. This is

made possible by extensive state stored at the bridge: a table of

clients, reassembly buffers, transmission queues, timers, and

so on. While it is certainly possible to instantiate one such

bundle of state variables per bridge, a session begun in one

instance must remain with that instance—no other has the con-

text necessary to make the packets of the session meaningful.

This difficulty might be resolved by hashing the client’s session

identifier string to index a consistent bridge per session, as long

as the set of bridges does not change too frequently.

There is another difficulty that is harder to work around.

A Tor bridge is identified by a long-term identity public key.

If, on connecting to a bridge, the client finds that the bridge’s

identity is not the expected one, the client will terminate the

connection [5 §4.2]. The Tor client can configure at most one

identity per bridge; there is no way to indicate (with a certifi-

cate, for example) that multiple identities should be consid-

ered equivalent. This constraint leaves two options: either all

Snowflake bridges must share the same cryptographic identity,

or else it must be the client that makes the choice of what bridge

to use. While the former option is possible to do (by synchro-

nizing identity keys across servers), every added bridge would

increase the risk of compromising the all-important identity

keys. Our vision was that different bridge sites would run in

different locations with their own management teams, and that

any compromise of a bridge site should affect that site only.

These considerations led us to a multi-bridge design in which

clients have awareness of (at least a subset of) all bridges, and

it is the client that chooses which bridge will be used for a par-

ticular session.29 The client includes a bridge identity string

29https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

in its rendezvous message to the broker (Section 2.1); then the

broker maps the identity to the WebSocket URL of the cor-

responding bridge, and conveys that URL to the proxy that’s

chosen to serve the client. We rely on clients choosing uni-

formly to equalize load across bridges. A consequence is that

every bridge must meet a minimum performance standard: we

cannot, say, centrally assign 20% of clients to one and 80% to

another according to their relative capacity. Another drawback

is that there is currently no way to instruct Tor to connect to only

one of the bridges it knows about (short of rewriting the con-

figuration file): if two bridges are configured, Tor starts two

sessions through Snowflake, each doing its own rendezvous,

which is wasteful and makes for a more conspicuous network

fingerprint. Still, this is the best solution we have found, given

the constraints. A deployment not based on Tor would have

more flexibility.

A client-chooses design risks misuse by clients, if not han-

dled carefully. Clients should only be able to select from a

limited set of known bridges, not cause proxies to connect

to arbitrary destinations—otherwise the tens of thousands of

Snowflake proxies might be weaponized to attack third parties.

The client’s bridge selection in its rendezvous message is rep-

resented not as an IP address or hostname, but as a hash of

the bridge’s public identity key. The broker maps the iden-

tity to a WebSocket URL by consulting its own local database

of known bridges, and rejects rendezvous messages that refer

to an unknown bridge. After the broker tells the proxy what

WebSocket URL to connect to, the proxy does its own check,

verifying that the hostname in the URL is a subdomain of a

known suffix reserved for Snowflake bridges. So there are two

independent safeguards against misuse.

5 Notable blocking attempts

In Section 4.1 we saw how Snowflake’s user counts have at

times been affected by the blocking actions of censors. Now

we take a closer look at selected censorship events. The effect

of censorship has usually been to increase, rather than decrease,

the number of Snowflake users. This is no paradox: as censor-

ship intensifies, users are displaced from less resilient to more

resilient systems. Snowflake’s blocking resistance has not in

every case been a success, though, and here we also reflect on

missteps and persistent challenges. The examples are taken

from Russia, Iran, China, and Turkmenistan, and are selected

for being significant and instructive. Common lessons are that

communication with affected users is invaluable in quickly

understanding and reacting to blocking; and that blocking re-

sistance is relative to a given censor, because every censor’s

cost calculus is different.

Snowflake is blockable by a censor that is willing to block

WebRTC. We would not argue otherwise. Indeed, we believe

this is how a circumvention system should be presented: not by

28651#note 2786323
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arguing its unblockability in absolute terms, but by laying out

what actions by a censor would suffice to block it—or more to

the point, what sacrifices a censor would have to make in order

to block it. Advancing the state of the art of censorship circum-

vention consists in pushing blocking beyond the capabilities of

more and more censors.

Tor bridges report aggregate binned counts by country code

of connected unique IP addresses per day in the descriptors

uploaded to the bridge authority. We use the Tor Metrics

method of combining the distribution of counts by country

code with the number of directory requests to obtain an estimate

of the average number of concurrent clients per day for each

location [21]. The mapping of IP addresses to country codes

is not without flaws. During the time of the measurements

shown here, Tor uses the IPFire location database.30 There is

at least one instance where we were able to detect geolocation

inaccuracies after noting a significant drop in Snowflake users

thought to be located in the US that correlated directly with a

blocking event in Iran.31

5.1 Blocking in Russia

Snowflake, along with other common ways of accessing Tor,

was blocked in a subset of ISPs in Russia on 2021-12-01 [44].

The event was evidently coordinated and targeted, as it hap-

pened suddenly and affected many Tor-related protocols at

once. Besides Snowflake, a portion of Tor relays and bridges,

as well as some servers of the circumvention transports meek

and obfs4, were blocked, at least temporarily. The blocking

campaign was less than totally successful—one of its effects

was to substantially increase the number of users accessing Tor

via circumvention transports, Snowflake among them.

We benefited from established relationships with develop-

ers and users in Russia, one of whom, through manual test-

ing, found what traffic feature was being used to distinguish

Snowflake. It was DTLS fingerprinting, of the kind cautioned

about in Section 3.32 Specifically, it was the presence of a

supported groups extension in the DTLS Server Hello mes-

sage produced by Pion. The extension being present in Server

Hello was a bug33—but one that afforded the censor a feature

to distinguish DTLS connections with a Pion implementation

in the server role from other forms of DTLS. The process of

finding the flaw, fixing it, and shipping new releases of Tor

Browser took a few weeks34, after which the user count rose

quickly: from the beginning to the end of December 2021, the

number of users in Russia grew from about 400 to over 4,000

(Figure 7). Snowflake was to become a significant tool amid

the general intensification of censorship in Russia following

the invasion of Ukraine in February 2022.

30https://www.ipfire.org/projects/location/

31https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
40207#note 2844116

32https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
40014#note 2765074

33https://github.com/pion/dtls/issues/409

34https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge requests/375
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Figure 7: Snowflake users in Russia (average concurrent).

Events discussed in the text are marked. The attempted

blocking of Tor-related transports in December 2021 led to

Snowflake’s first surge in usage. The decrease in September–

October 2022 coincided with an even larger influx from Iran.
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Figure 8: Snowflake users in Iran. Heightened censorship

beginning in September 2022 caused Iran to become the single

biggest source of Snowflake users. The drop in October 2022

was the result of TLS fingerprint blocking, which interfered

with rendezvous and took some time to mitigate.
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Figure 9: Snowflake users in China. Though no sustained

blocking is evident, disruption of domain fronting rendezvous

for three days in May 2023 briefly depressed user numbers.
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Figure 10: Snowflake users in Turkmenistan. This graph

shows a different range of dates than the other three. Though

there have never been many Snowflake users in Turkmenistan,

blocking events are evident on 2021-10-24 and 2022-08-03.
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The Server Hello supported groups distinguisher had been

discovered and documented by MacMillan et al. [23 §3] al-

ready in 2020. We might have avoided this blocking event

by proactively fixing the known distinguisher—but it was not

necessarily the wrong call not to have done so. There is always

more to do than time to do it; one must consider the opportu-

nity cost of preempting specific blocking that may not come to

pass. In this case, a reactive approach by us was enough: the

loss was minor, and we were able to patch the problem quickly.

Even in ISPs where the blocking rule was present, it did not

block 100% of Snowflake connections, because of the how it

targeted a quirk in Pion, and only in Server Hello. When the

DTLS server role in the WebRTC data channel was played by

a non-Pion peer, such as a web browser proxy, the feature was

not present.

In May 2022 we got a report of a new detection rule, this

time keying on not just the presence, but the contents of the

supported groups extension, at a byte offset suggesting that

it targeted the Client Hello message, not Server Hello.35 The

presence of a supported groups extension in Client Hello is not

at all unusual, but the specific groups offered by Pion’s imple-

mentation differed from those of common browsers. Though

we confirmed the existence of the blocking rule, testers re-

ported that Snowflake continued to work—which may have

something to do with the fact that the Snowflake client does

not always play the client role in DTLS. If the Snowflake client

is the DTLS server, and the DTLS client is a browser proxy,

then the byte pattern looked for by the blocking rule does not

appear. We developed a mitigation, but by the time we prepared

a testing release in July 2022, the new rule had apparently been

removed and replaced by another. We can only speculate as

to reasons, but it may be that the old rule had too many false

positives, or was just not effective enough.

The detection rule that replaced supported groups in Client

Hello looked for the presence of a Hello Verify Request mes-

sage.36 Hello Verify Request is an anti-denial-of-service fea-

ture in DTLS, in which the server sends a random cookie to

the client, and the client sends a second Client Hello message,

this one containing a copy of the cookie [33 §5.1]. It is not an

error to send Hello Verify Request (it is a “MAY” in the RFC),

but because the Pion implementation in Snowflake sent it, and

major browsers did not, it was a reliable indicator of Snowflake

connections. (Those, at least, in which the DTLS server role

was played by a Snowflake client or standalone proxy.) This

distinguisher, too, had been anticipated by MacMillan et al. in

2020 [23 §3]. The first reports of the blocking rule arrived in

July 2022; but as you can see in Figure 7, it had no apparent

immediate effect. It is hard to say whether the drastic decline

in October 2022 was a consequence of this rule, or some other,

unidentified one. That decline coincided with an explosion of

users from Iran, which temporarily affected the usability of the

whole system. We deployed a mitigation to remove the Hello

35https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030

36https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030#note 2823140

Verify Request message from Snowflake, regrettably, only in

February 202337, after which the number of users in Russia

began to recover.

The case of Snowflake in Russia illustrates some of the com-

plexity of censorship measurement. The answer to a question

like “Does Snowflake work in Russia?” is not a simple yes

or no. It may depend on the date, the ISP, and even such factors

as which endpoint plays the DTLS server role.

5.2 Blocking in Iran

In late September 2022, users from Iran became the major-

ity of Snowflake users almost overnight, only to fall just as

quickly two weeks later. See Figure 8. The cause of the

rise was extraordinary new network restrictions amid mass

protests [3]; the cause of the decline was TLS fingerprint block-

ing, which stopped Snowflake rendezvous from working. The

crypto/tls package of the Go programming language (in which

the Snowflake client is written) may produce several slightly

different TLS fingerprints, depending on hardware capabilities

and how it was compiled.38 It was one of these fingerprints that

was blocked. Because the blocking rule was so specific, some

users were affected and others were not. Why would a cen-

sor block only one (even if the most common) TLS fingerprint?

It may have been a simple oversight. On the other hand, it is not

certain that the blocking was meant for Snowflake specifically.

Go is a popular language for implementing circumvention sys-

tems; Snowflake may have been caught up in blocking that was

intended for another system.

The fact that simple TLS fingerprinting worked to block

Snowflake rendezvous was carelessness on our part. Aware of

the possibility, we had already implemented TLS camouflage

using uTLS in the Snowflake client, but failed to turn it on by

default. Activating the feature required only a small config-

uration change39, but we had to wait for new releases of Tor

Browser and Orbot to get it into the hands of users: see the

September–November 2022 interval in Figure 8.

After repairing the TLS fingerprinting flaw, the number of

users from Iran gradually recovered to near its former peak.

We are aware of only minor disruptions after this time. The

default rendezvous front domain was blocked (by TLS SNI) in

some ISPs between 2023-01-16 and 2023-01-2440, which we

confirmed using data from the censorship measurement plat-

form OONI. A reduction in users is visible at this time. AMP

cache rendezvous continued to work. OONI measurements in

the weeks after the block was lifted showed sporadic failures

to connect to the front domain. If these were further attempts

at blocking, they did not have much of an effect.

37https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge requests/637

38https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
40207#note 2844163

39https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge requests/540

40https://bugs.torproject.org/tpo/anti-censorship/team/115#note 2873040
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5.3 Blocking in China

The user count graph from China, Figure 9, does not show

any drastic changes like others we have seen so far. There is

a modest but respectable number of Snowflake users in China.

Though there have been no singular, sustained events, we have

seen evidence of short-term or tentative blocking attempts.

In May 2019, when Snowflake was still in alpha release,

a user in China reported a failure to connect. Investigation

revealed that the cause was IP address blocking of the few

proxies that existed at the time.41 Rendezvous happened, and

the STUN exchange worked, but the client and proxy could

not establish a connection. We experimented with running a

proxy at a previously unused IP address: clients in China could

connect when they were assigned that proxy by the broker. This

was back before the web browser extension proxy existed, and

the only consistent proxy support was a few standalone proxies

that we, the developers, ran at a static IP address. It ceased to

be an issue as the proxy pool grew in size.

That same month, we noticed blocking of the default STUN

server, of which there was only one at the time.42 The solution

was to add more STUN servers43, and select a subset of them

on each rendezvous attempt44. Curiously, it seems that when

the STUN server was blocked, the standalone proxies that had

been blocked earlier in the month became unblocked.45

The next incidents we are aware of did not occur until

2023, recent enough to appear in Figure 9. On May 12, 13,

and 14, a few users reported problems with domain fronting

rendezvous.46 We could not get systematic measurements, but

it appeared that censorship was triggered by observing multi-

ple (two or three) HTTPS connections with the same TLS SNI

to certain IP addresses within a short time. It is possible that

Snowflake was not the target of this blocking behavior, and

was affected only as a side effect. If it indeed had to do with

Snowflake, our best guess is that it was aimed at the multiple

rendezvous mentioned in Section 4.4—though such a policy

would certainly also affect a large number of non-Snowflake

connections. The user count from China was about halved dur-

ing those three days. On May 15, the blocking went away and

user counts returned to normal.

Also in May 2023, one user reported apparent throttling

(artificial reduction in speed by packet dropping) of TLS-in-

DTLS connections, based on packet size and timing features.47

Such a policy would affect Snowflake, because it transports Tor

TLS inside DTLS data channels. Reportedly, adding padding

to the first few packets to disrupt the size and timing signature

was enough to prevent throttling. Our own speed tests run at the

41https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
30350#note 2593274

42https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
30368#note 2593357

43https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30579

44https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/
merge requests/7

45https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
30368#note 2593360

46https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40038

47https://github.com/net4people/bbs/issues/255

time did not show evidence of throttling, with or without added

padding.48 There was no obvious reduction in the number of

users. It may have been a localized, ISP-specific phenomenon. Document

resolu-

tion of

“Default

Snowflake

bridges

in Tor

browser

13.0.8

stopped

working”

if avail-

able.

5.4 Blocking in Turkmenistan

There have never been more than a few tens of Snowflake

users in Turkmenistan. Even so, it has happened at least twice

that the number of users dropped suddenly to zero, as shown

in Figure 10. We found a variety of causes: domain name

blocking by DNS and TCP RST injection; and blocking of

certain UDP port numbers commonly used for STUN.

Turkmenistan is a particularly challenging environment for

circumvention. Though relatively unsophisticated, censorship

there is more severe and indiscriminate than in the other places

we have discussed. Only a small fraction of the population has

access to the Internet at all, which makes it hard to communicate

with volunteer testers and lengthens testing cycles. We have

been able to mitigate Snowflake blocking in Turkmenistan, but

only partially, and after protracted effort.

The drop on 2021-10-24 was caused by blocking of the de-

fault broker front domain.49 We determined this by taking

advantage of the bidirectionality of the Turkmenistan firewall.

Nourin et al. [26 §2] provide more details; we will state just

the essential information here. Among the censorship tech-

niques used in Turkmenistan are DNS response injection and

TCP RST injection. DNS queries for filtered hostnames re-

ceive an injected response containing a false IP address; TLS

handshakes with a filtered SNI receive an injected TCP RST

packet that tears down the connection. Conveniently for anal-

ysis, it works in both directions: packets that enter the country

are subject to injection just as those that exit it are. By sending

probes into the country from outside, we found that the default

broker front domain was blocked at both the DNS and TLS

layers. It was some time—not until August 2022—before we

got confirmation from testers that an alternative front domain

worked to get around the block of the broker.

The increase in the number of users from May to August

2022 was caused by a partial unblocking of the broker front

domain on 2023-05-03. We realized this only in retrospect,

from examination of data from Censored Planet [35], a censor-

ship measurement platform that had continuous measurements

of the domain at that time, in one autonomous system in Turk-

menistan. There was a shift from RST responses to successful

TLS connections on that date. DNS measurements did not

catch the moment of the shift, but they also showed no signs

of blocking after that date. Evidently, some users were then

able to connect. But the unblocking must not have been every-

where, because as late as 2022-08-18, users reported that RST

injection was still in place for them (though DNS injection had

stopped).

48https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
40251#note 2906723

49https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024
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There was yet another layer to the blocking. Even if they

could contact the broker (at the default or an alternative front

domain), clients could not then establish a connection with a

proxy. Testing revealed blocking of the default STUN port,

UDP 3478. A client that cannot communicate with a STUN

server cannot find its ICE candidate addresses (Section 2.2),

without which most WebRTC proxy connections will fail.

(The exceptions are proxies without NAT or ingress filtering.

While there are some such proxies, censorship in Turkmenistan

also outright blocks large parts of IP address space, including

data center address ranges where those proxies tend to run.)

As chance would have it, the NAT discovery feature we rely

on for testing the NAT type of clients requires STUN servers

to open a second, functionally equivalent listener on a different

port [22 §6], commonly 3479. Changing to those alterna-

tive port numbers enabled some users to connect to Snowflake

again. Specifically, STUN servers on port 3479 worked in

AGTS, one of two major affected ISPs. The workaround did

not work in Turkmentelecom, the other ISP, where port 3479

was blocked. Though we do not have continuous measure-

ments to be sure, we suspect that the STUN port blocking

began on 2022-08-03 and precipitated the drop seen on that

date in Figure 10.

The blocking techniques described in this section are crude,

and surely result in significant overblocking—but they never-

theless offer greater challenges to circumvention than the more

considered blocking of Russia and Iran. We highlight this to

make the point that blocking resistance cannot be defined in

absolute terms, but only relative to a particular censor. Censors

differ not only in resources (time, money, equipment, person-

nel), but also in tolerance for the social and economic harms

of overblocking. Circumvention can only respond to and act

within these constraints. The government of Turkmenistan has

evidently chosen to prioritize political control over a function-

ing network, to an extreme degree. To paraphrase one of our

collaborators: “What they have in Turkmenistan can hardly

be called an Internet.”50 In a network already damaged by

oppressive policy, the additional harm caused by the clumsy

blocking of this or that circumvention system is comparatively

small. This shows the sense in which a resource-poor cen-

sor can “afford” certain blocking actions that a richer, more

capable censor cannot.

6 Future work

A natural extension of Snowflake would be to have it access

systems other than Tor—ordinary VPNs, for example. Tor has

its benefits: an existing user base, a standard (pluggable trans-

ports) for integrating circumvention modules, and exit nodes

separate from entry nodes, which relieve the circumvention

developer of the concerns associated with actually exiting traf-

fic to its destination. But Tor has drawbacks as well, notably

50https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024#note 2889792

its lower speed and lack of support for UDP and other non-

TCP protocols. Nothing inherently ties Snowflake to Tor, and

it might easily be adapted to other systems. One question

is whether every Snowflake-like deployment should manage

its own pool of proxies, or if proxies can somehow be shared.

Building Snowflake’s population of proxies has been a substan-

tial undertaking in itself—for every project to have to repeat

the process from scratch would be a regrettable duplication of

effort. There is no reason why one proxy might not serve mul-

tiple projects, the client expressing its preference in the same

way it now signals which Tor bridge to use (Section 4.4). But

there would be design issues to work out. While some proxy

operators may be happy to donate bandwidth to a free-to-use

project like Tor, they may need more incentive than altruism to

help a commercial VPN. A shared deployment would impose

additional friction on development (making it harder to alter

the proxy protocol, for example). Rather than retrofit the cur-

rent Tor-based proxies with support for other systems, a next-

generation proxy pool might be designed from the ground up

with multiple cooperating projects in mind. If it proved suc-

cessful, the Tor deployment could migrate to it.

The Turbo Tunnel reliability layer of Section 2.3 was nec-

essary for providing a continuous session abstraction over a

sequence of unreliable proxies. But it might do even more:

in particular, it should be possible for a client to multiplex its

traffic over multiple proxies not just sequentially, but in par-

allel. (Something like multipath TCP.) Sequence numbers in

the inner reliability layer would ensure a reliable stream, even

when proxies have different lifetimes and performance char-

acteristics. Multiplexing could increase performance by using

the sum of the bandwidths of the individual proxies, and reduce

variability by hedging against the client being assigned one very

slow proxy. Using two or more proxies at once would eliminate

the brief pause for re-rendezvous between consecutive proxies

that now occurs. Our experiments with multiplexing have so

far not shown enough benefit to justify the change, though it

may be a matter of tuning.51 And of course, analysis would be

required to determine whether simultaneous WebRTC connec-

tions form a distinctive network fingerprint. Present

research

questions.

Availability

The project web site, https://snowflake.torproject.org/, has

links to source code and instructions for installing the proxy

browser extensions. Add Git

clone

URL or

similar for

the paper

itself. Say

it shows

how to

repro-

duce our

figures.

Must

also in-

clude the

churn logs

of Sec-

tion 4.3.
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