
Running a high-performance pluggable transports Tor bridge

David Fifield Linus Nordberg

Abstract
The pluggable transports model in Tor separates the concerns
of anonymity and circumvention by running circumvention
code in a separate process, which exchanges information with
the main Tor process over local interprocess communication.
This model leads to problems with scaling, especially for
transports, like meek and Snowflake, whose blocking resis-
tance does not rely on there being numerous, independently
administered bridges, but which rather forward all traffic to
one or a few centralized bridges. We identify what bottlenecks
arise as a bridge scales from 500 to 10,000 simultaneous users,
and then from 10,000 to 50,000, and show ways of overcom-
ing them, based on our experience running a Snowflake bridge.
The key idea is running multiple Tor processes in parallel on
the bridge host, with externally synchronized identity keys.

1 Introduction

Bridges and pluggable transports are how Tor adds blocking
resistance (censorship circumvention) to its core function
of anonymity. Bridges are relays whose network addresses
are not globally known, meant to be difficult for a censor
to discover and block by address. Pluggable transports are
modular tunneling protocols that encapsulate and disguise an
inner protocol, thereby preventing a censor from recognizing
the Tor protocol and blocking connections on that basis.

Tor’s original blocking resistance design called for a large
number of “bridge” relays [3 §5], to which clients would con-
nect directly, using the ordinary TLS-based Tor protocol. The
difference between ordinary relays and bridges was only that
the network addresses of bridges are not made public in the
Tor consensus, but rather distributed one at a time, in a con-
trolled fashion. The blocking resistance of this model depends
on keeping bridge addresses secret, because there is nothing
to stop a censor from blocking a bridge by its address, once
known. When pluggable transports arrived on the scene, many
adopted the same strategy with respect to address blocking
resistance. obfs2, obfs3, FTE, ScrambleSuit, obfs4—all these

change the protocol between client and bridge, but they retain
the model of clients making TCP connections to fixed bridge
IP addresses that must be kept secret. Because this model re-
quires a large pool of bridges, it naturally achieves “horizontal”
scaling, with user traffic being distributed over hundreds of
independently operated hosts in different networks.

But other pluggable transports are not based on a model
of secret bridge addresses: meek and Snowflake are currently
deployed pluggable transports whose resistance to address-
based blocking comes about in other ways. In these transports,
the host that is the gateway to the Tor network (the “bridge”
proper) is decoupled from the means of accessing it, which is
rather via some intermediary (a CDN in meek; a temporary
browser proxy in Snowflake). Transports like these do not
benefit, in terms of blocking resistance, from having a large
number of bridges, and it is therefore convenient to run just
one, centralized bridge—whose address does not need to be
secret—to receive all the transport’s traffic. This, however,
requires attention to the “vertical” scaling of the bridge.

In this paper, we show how to do this vertical scaling of a
pluggable transports Tor bridge. The key technique is to run
multiple Tor processes on the same host with the same identity
keys. This alleviates the largest single bottleneck, namely that
of a single Tor process being CPU-limited, but also gives rise
to a few complications. Beyond that, there are other resource
constraints to consider, such as limits on file descriptors and
ephemeral port numbers. The recommendations come from
our experience running a Snowflake bridge from December
2021 to February 2023, during which time the average number
of simultaneous users grew from 2,000 to around 100,000.

2 Background on pluggable transports

The Pluggable Transports specification [10] describes how
Tor interacts with pluggable transports. It is built on a model
of separate processes and interprocess communication. The
Tor process spawns a child process; the pluggable transport
process reports status on its standard output stream; and there-

1

after user traffic is carried over localhost TCP connections.1

Refer to Figure 1. Client and server transports work similarly,
but only the server side concerns us here.

Pluggable transports are enabled in Tor’s configuration file,
torrc. A sample configuration for a transport called “mypt”
looks like this:

ServerTransportPlugin mypt exec /usr/local/bin/mypt
ServerTransportListenAddr mypt 0.0.0.0:1234
ExtORPort auto

When Tor starts a pluggable transport, it passes configura-
tion information to the subprocess in environment variables.
The above torrc causes Tor to execute /usr/local/bin/mypt as a
subprocess, with the following variables set in its environment
(eph is a random ephemeral port):

TOR_PT_SERVER_TRANSPORTS=mypt
TOR_PT_SERVER_BINDADDR=mypt-[::]:1234
TOR_PT_EXTENDED_SERVER_PORT=127.0.0.1:eph
TOR_PT_AUTH_COOKIE_FILE=

/var/lib/tor/extended_orport_auth_cookie↪→

TOR_PT_SERVER_TRANSPORTS tells the pluggable transport
what named transports to start (because one executable may
support multiple transports). TOR_PT_SERVER_BINDADDR is
the address at which the pluggable transport should listen
for incoming connections (if such a notion makes sense for
the transport). TOR_PT_EXTENDED_SERVER_PORT is the TCP
address of Tor’s Extended ORPort [6], the interface between
the pluggable transport and the ordinary Tor network. The
pluggable transport process receives connections from the
Internet, removes the obfuscation layer, and forwards the tun-
neled stream to the Extended ORPort of the Tor process. The
Extended ORPort supports a meta-protocol to tag incoming
connections with a client IP address and a transport name,
which is used by Tor Metrics to provide country- and transport-
specific metrics. TOR_PT_AUTH_COOKIE_FILE is a path to a
file containing an authentication secret that is needed when
connecting to the Extended ORPort—synchronizing this se-
cret across multiple instances of Tor will be one of the com-
plications to deal with in the next section.

3 Multiple Tor processes

The first and most important bottleneck to overcome is the
single-threaded Tor implementation.2 A single Tor process
is limited to one CPU core: once Tor reaches 100% CPU,
the performance of the bridge is capped, no matter the speed
of the network connection or the number of CPU cores to
spare. For us, this started to be a problem at around 6,000
simultaneous users and 10 MB/s of Tor bandwidth.

1The Pluggable Transports 2.x and 3.x specifications [8], which descend
from Tor’s version 1 specification, define an “API” interface for linking
pluggable transports directly into an application, in addition to the Tor-like
“IPC” interface. Tor does not use or support these later specifications.

2It is expected that Arti, the in-progress reimplementation of Tor, will be
natively multi-threaded, which will remove this primary complication.

Tor
Extended ORPort 127.0.0.1:eph

mypt
bind 0.0.0.0

Incoming connections
from Internet

Outgoing connections
to Tor middle relays

Figure 1: The normal way of running a server pluggable
transport. The init system spawns a Tor process, which in turn
spawns a pluggable transport process. This model reaches a
performance plateau when the Tor process saturates one CPU.

Tor instance 1
Extended ORPort 127.0.4.1:eph

extor-static-cookie
Extended ORPort 127.0.3.1:10000

Tor instance 2
Extended ORPort 127.0.4.2:eph

extor-static-cookie
Extended ORPort 127.0.3.2:10000

Tor instance 3
Extended ORPort 127.0.4.3:eph

extor-static-cookie
Extended ORPort 127.0.3.3:10000

Tor instance 4
Extended ORPort 127.0.4.4:eph

extor-static-cookie
Extended ORPort 127.0.3.4:10000

HAProxy
bind 127.0.0.1:10000

mypt
bind 0.0.0.0

Figure 2: Our multi-Tor setup that permits better scaling. The
init system spawns multiple independent Tor processes and a
load balancer to distribute traffic over them. The pluggable
transport process is no longer a child of a Tor process, but
is spawned by the init system directly. The pluggable trans-
port process communicates upstream with the load balancer,
which makes the Tor instances’ several Extended ORPorts
appear as one. Each Tor process spawns an extor-static-cookie
process (in the manner of Figure 1), in order to present a con-
sistent Extended ORPort authentication secret through the
load balancer.

Our solution is to run multiple Tor processes concurrently,
and mediate the pluggable transport’s access to them with a
load balancer. (We use HAProxy, though any load balancer
will do.) Refer to Figure 2. As many Tor processes can be
run as are needed to distribute CPU load; we started with 4
and now use 12. The several Tor instances are independent, in
the sense that they do not communicate with one another; but
they all share the same long-term identity keys, so they are
equally capable of serving as the first hop in a Tor circuit for a
client that expects a certain bridge fingerprint. The pluggable
transport server receives incoming connections, as before, but
instead of forwarding connections to the Extended ORPort of
a single Tor process, it sends them to the load balancer, which
then forwards to one of the many Tor processes. The extor-
static-cookie component paired to each Tor process resolves
a complication that will be explained in Section 3.1.

This multi-instance arrangement requires subverting the
usual pluggable transports subprocess model of Section 2.

2

Normally, the operating system’s init system (e.g. systemd)
starts Tor, and Tor starts the pluggable transport server. Here,
we have the init system start the pluggable transport server, the
load balancer, and all the instances of Tor as sibling processes.
We set up the environment of the pluggable transport server as
if it had been started by Tor in the normal way, but we make
TOR_PT_EXTENDED_SERVER_PORT point to the load balancer,
rather than to any particular instance of Tor. (See Appendix A
for sample systemd and other configuration files.)

On Debian or Ubuntu, the tor-instance-create utility [7] is
a convenient way to create and manage multiple instances of
Tor with independent configuration files:

tor-instance-create mypt1
tor-instance-create mypt2
tor-instance-create mypt3
tor-instance-create mypt4

Each instance exposes an Extended ORPort interface on a
distinct, static localhost address. Those Extended ORPort
addresses are listed in the load balancer configuration file.

To make the instances all have the same identity keys, start
and stop one of them to make it generate keys for itself:

systemctl start tor@mypt1
systemctl stop tor@mypt1

Then copy that instance’s “keys” subdirectory into the data di-
rectory of the other instances, fixing permissions as necessary.
This causes the instances to be interchangeable, in terms of
being able to build circuits under the shared bridge fingerprint.

With multiple instances of Tor created and their identity
keys replicated, there are just a few more details to look after.

3.1 Extended ORPort authentication
The Extended ORPort protocol begins with an obligatory au-
thenticated handshake. Both Tor, and the pluggable transport
that connects to it, cryptographically verify that the other
has access to a secret “cookie” stored in a file [6 §2.1].
Tor regenerates the cookie file every time it is restarted,
and shares the path to the file with pluggable transports in
the TOR_PT_AUTH_COOKIE_FILE environment variable. This
poses a problem for the multi-instance Tor setup. Since every
instance of Tor generates its cookie file independently, and
the pluggable transport cannot predict which instance it will
be connected to through the load balancer, it does not know
what Extended ORPort authentication secret to use.

Tor does not expose a configuration option to control or dis-
able the regeneration of authentication cookie files. We need
a way to expose an Extended ORPort interface with a uniform
authentication secret across all Tor instances. To do this, we
insert an adapter, called extor-static-cookie [11], between the
load balancer and the actual Extended ORPort of each of the
Tor processes. The adapter acts as an Extended ORPort client
towards its parent Tor process, and an Extended ORPort server

towards the load balancer (and the server pluggable transport
in turn). As a client, extor-static-cookie communicates with
its instance of Tor using the authentication cookie specific to
that instance. As a server, it uses a static authentication cookie
file that is also made available to the server pluggable trans-
port in its TOR_PT_AUTH_COOKIE_FILE environment variable.
The copies of extor-static-cookie are spawned using the nor-
mal pluggable transports subprocess machinery of Section 2.
Extended ORPort authentication does not serve a security
purpose, so working around it in this way poses no risk.

Besides its brief intercession at the beginning of each con-
nection, extor-static-cookie does nothing but sit in the com-
munications pipeline and consume CPU resources. It would
be better to do away with it entirely. We hope a future ver-
sion of Tor or Arti will offer an alternative authentication
scheme that is more compatible with pluggable transport pro-
cesses not managed by Tor, or even just an option to disable
re-randomization of Extended ORPort authentication cookies.
We considered a few alternative solutions to the problem of
Extended ORPort authentication. It would be easy to patch Tor
to use a hardcoded cookie, say, but maintaining a fork would
complicate the deployment of security updates, which we
deemed unacceptably risky. In place of the Extended ORPort,
it is possible to use the regular, non-extended ORPort, which
does not have any kind of authentication. But the regular
ORPort does not have a way to tag connections with a client
IP address or transport name, which would mean the loss of
country- and transport-specific metrics.

3.2 Disabling onion key rotation

Besides its identity key, which never changes, a Tor relay or
bridge has medium-term onion keys that are used in circuit
construction [4 §4]. Onion keys are rotated on a fixed sched-
ule (every 28 days, as of 2023). Tor clients cache a bridge’s
onion public keys when they connect; subsequent connec-
tions only work if the cached keys are among the bridge’s
two most recently used sets of onion keys. Immediately after
being created, our multiple Tor instances have identical onion
keys, because of the manual copying operation. But without
further arrangements, the instances would eventually indepen-
dently rotate their onion keys, which would cause later circuit
creation attempts to fail.

To prevent this divergence, we disable onion key rotation.
Tor does not expose a configuration option for this, so we re-
sort to external means. We create preexisting directories at the
filesystem paths that Tor uses as the destination of file rename
operations during key rotation, secret_onion_key.old and
secret_onion_key_ntor.old. (Preexisting files are not good
enough; they must be directories to stop the rename opera-
tion from succeeding.) Tor logs an error every time thereafter
that it tries and fails to rotate its onion keys, but otherwise
continues running with the same keys.

The security consequences of onion key compromise, in the

3

worst case, would be that an attacker could impersonate the
bridge in future Tor circuits, but still would not be able to
decrypt past traffic. The upshot is that we must protect the
now long-term onion keys as carefully as identity keys.

4 Further bottlenecks

Distributing Tor processing over many CPU cores is the essen-
tial step to enable scaling. As the number of users increases,
the bridge will begin to bump into other, less restrictive limi-
tations.

File descriptor limits. Every open socket consumes a file
descriptor. Because the pluggable transports model uses sock-
ets not only for external connections but also for interprocess
communications, and the number of sockets is proportional
to the number of users, it is easy to exceed the operating sys-
tem’s default limit on the number of file descriptors. This
manifests in error messages like “too many open files.” Tor
and HAProxy automatically override the defaults and set suffi-
ciently high limits for themselves, but for the server pluggable
transport process you can use, for example, LimitNOFILE in
a systemd service file to raise the limit (see Section A.2). For
us, a limit of 64 thousand was insufficient, but we have not
had problems since raising the limit to 1 million.

Ephemeral TCP ports. TCP sockets are distinguished
from one another by a four-tuple consisting of the source
and destination IP addresses and the source and destination
port numbers. When connecting a socket, the operating sys-
tem chooses a port number from the ephemeral port range to
serve as the socket’s source port. If all ephemeral ports are
already in use, such that the socket’s four-tuple would not be
unique, the connection fails with an error like “cannot assign
requested address.”

The baseline mitigation for ephemeral port exhaustion is
expanding the range of ephemeral ports. On Linux, it looks
something like this:

sysctl -w net.ipv4.ip_local_port_range="15000 64000"

But this alone is not enough for a pluggable transports bridge.
The bridge’s outgoing connections to other Tor relays are
not the main problem—the same source port can be used
in many sockets, as long as the destination addresses are
different. The real crunch comes from the bridge’s many
localhost TCP connections, the internal links in Figure 2.
If source and destination IP addresses are both 127.0.0.1,
source and destination port numbers are all that remain to
make TCP sockets distinct.

Part of the solution is using different localhost IP addresses
for different server sockets. Not only 127.0.0.1, but the entire
127.0.0.0/8 range is dedicated to localhost [1 §2.2.2]. We use
127.0.0.1 for HAProxy, but 127.0.3.N for the Nth instance of

extor-static-cookie, and 127.0.4.N for the Nth Tor instance’s
Extended ORPort. This provides some variation in the destina-
tion addresses of socket four-tuples, but it still is not enough:
we must also diversify source addresses. In HAProxy we use
the source option to use 127.0.2.N as the source address
when connecting to the Nth instance of extor-static-cookie
(see Section A.3); this expands the number of possible simul-
taneous connections by a factor equal to the number of Tor in-
stances. For the bottleneck connection between the pluggable
transport and the load balancer, we added a custom option
orport-srcaddr to the pluggable transport (Section A.2);
that instructs it to choose a random source address in the
127.0.1.0/24 range when connecting to the load balancer,
which increases the number of usable source addresses by a
factor of 256. The extor-static-cookie adapter also supports
the orport-srcaddr option (Section A.1), which we set to
use the range 127.0.5.0/24, though it is less necessary there,
since each instance of extor-static-cookie sees only a 1/N
fraction of all connections.

Firewall connection tracking. The connection tracking
(conntrack) feature of the Linux firewall has a default limit of
262,144 connections in Linux 5.15. When the number of con-
nections reaches that limit, new connections will be dropped.
Our experiments showed that the number of connections was
getting close to the limit during the busiest times of day, so
we doubled the size of the connection tracking table:

sysctl -w net.netfilter.nf_conntrack_max=524288
sysctl -w net.netfilter.nf_conntrack_buckets=524288

5 Discussion

The multiple-Tor architecture described in this paper may be
useful also for non–pluggable transport relays, such as large
exit relays. We hope, though, that a future version of Tor or
Arti will make our workaround obsolete.

The pluggable transports model of interprocess commu-
nication over TCP sockets is suitable for clients and low-
to medium-use servers, but it starts to become awkward for
high-use servers, principally because of TCP ephemeral port
exhaustion. Future designs should consider alternatives, such
as Unix domain sockets, or the in-process API of later plug-
gable transports specifications [8].

The architecture described in this paper will allow full use
of server hardware, but hardware is still the ultimate limiter.
In Snowflake, we are now in a situation where we have ex-
hausted the capacity of one bridge server. In order to continue
scaling, we have had to deploy a second Snowflake bridge
on separate hardware. This is partly because Snowflake is a
particularly demanding server pluggable transport, requiring
much RAM and CPU (more than the Tor processes). A less
complex server transport would be able to support more users
on the same hardware.

4

Acknowledgements

The basic architecture described in this paper was worked out
in a thread on the tor-relays mailing list [5]. We thank Roger
Dingledine for confirming that running multiple instances
of Tor with synchronized identity keys would be feasible,
suggesting a similarity with the “router twins” [2] concept
from the early history of Tor, and anticipating the problem
of onion key rotation. Nick Mathewson answered questions
about onion keys and future development plans. Silvia Puglisi
and Georg Koppen enhanced Tor Metrics to be aware of re-
lays that publish multiple independent descriptors for the
same relay fingerprint [9]. Greenhost provided hosting for
the Snowflake bridge during the initial transition to the load-
balanced configuration. We thank donors and financial sup-
porters: particularly the Open Technology Fund, for a short-
term grant to support operational costs when we moved the
bridge to a dedicated server; Mullvad VPN, for a donation
of hardware for the new server; and OBE.NET, for providing
hardware colocation and at-cost bandwidth.

Availability

Step-by-step instructions for installing a load-balanced bridge
configuration for Snowflake are available in the Tor anti-
censorship team’s Snowflake Bridge Installation Guide:
https://gitlab.torproject.org/tpo/anti-censorship/team/-/wikis
/Survival-Guides/Snowflake-Bridge-Installation-Guide.

The extor-static-cookie adapter program is available from
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-
transports/extor-static-cookie.

The home page of this article is https://www.bamsoftware.
com/papers/pt-bridge-hiperf/. It has the source code of the
article as well as any updates.

References

[1] Michelle Cotton, Leo Vegoda, Ron Bonica, and Brian
Haberman. Special-purpose IP address registries. RFC
6890, April 2013.
https://www.rfc-editor.org/rfc/rfc6890.

[2] Roger Dingledine. Router twins. tor-dev mailing list,
July 2002. https://lists.torproject.org/pipermail/tor-dev/
2002-July/001122.html.

[3] Roger Dingledine and Nick Mathewson. Design of a
blocking-resistant anonymity system. Technical Report
2006-11-001, The Tor Project, November 2006.
https://research.torproject.org/techreports/
blocking-2006-11.pdf.

[4] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion router. In

USENIX Security Symposium. USENIX, August 2004.
https://spec.torproject.org/tor-design.

[5] David Fifield. How to reduce tor CPU load on a single
bridge? tor-relays mailing list, December 2021.
https://forum.torproject.org/t/1483.

[6] George Kadianakis and Nick Mathewson. Extended
ORPort for pluggable transports, October 2021.
https://spec.torproject.org/ext-orport-spec.

[7] Peter Palfrader. tor-instance-create. Debian, December
2023. https://manpages.debian.org/bookworm/tor/
tor-instance-create.8.en.html.

[8] Pluggable Transport Steering Committee. Pluggable
transports spec v3.0, January 2022. https://github.com/
Pluggable-Transports/Pluggable-Transports-spec/tree/
main/releases/PTSpecV3.0.

[9] Silvia Puglisi. userstats-bridge-country graph is
undercounting users. https://bugs.torproject.org/tpo/
network-health/metrics/website/40047.

[10] The Tor Project. Pluggable Transport specification
(version 1), February 2022.
https://spec.torproject.org/pt-spec.

[11] Tor anti-censorship team. extor-static-cookie, May
2023. https://gitlab.torproject.org/tpo/anti-censorship/
pluggable-transports/extor-static-cookie.

5

https://gitlab.torproject.org/tpo/anti-censorship/team/-/wikis/Survival-Guides/Snowflake-Bridge-Installation-Guide
https://gitlab.torproject.org/tpo/anti-censorship/team/-/wikis/Survival-Guides/Snowflake-Bridge-Installation-Guide
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/extor-static-cookie
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/extor-static-cookie
https://www.bamsoftware.com/papers/pt-bridge-hiperf/
https://www.bamsoftware.com/papers/pt-bridge-hiperf/
https://www.rfc-editor.org/rfc/rfc6890
https://lists.torproject.org/pipermail/tor-dev/2002-July/001122.html
https://lists.torproject.org/pipermail/tor-dev/2002-July/001122.html
https://research.torproject.org/techreports/blocking-2006-11.pdf
https://research.torproject.org/techreports/blocking-2006-11.pdf
https://spec.torproject.org/tor-design
https://forum.torproject.org/t/1483
https://spec.torproject.org/ext-orport-spec
https://manpages.debian.org/bookworm/tor/tor-instance-create.8.en.html
https://manpages.debian.org/bookworm/tor/tor-instance-create.8.en.html
https://github.com/Pluggable-Transports/Pluggable-Transports-spec/tree/main/releases/PTSpecV3.0
https://github.com/Pluggable-Transports/Pluggable-Transports-spec/tree/main/releases/PTSpecV3.0
https://github.com/Pluggable-Transports/Pluggable-Transports-spec/tree/main/releases/PTSpecV3.0
https://bugs.torproject.org/tpo/network-health/metrics/website/40047
https://bugs.torproject.org/tpo/network-health/metrics/website/40047
https://spec.torproject.org/pt-spec
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/extor-static-cookie
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/extor-static-cookie

A Configuration files

A.1 Per-instance torrc files
This is a template for per-instance torrc configuration files. If using tor-instance-create [7] with instance name prefix “mypt”,
the file for instance N will be at the path /etc/tor/instances/myptN/torrc. Replace the highlighted text with appropriate values.
NICKNAME and EMAIL are the same for all instances; N is the instance number. It is important to give every instance a distinct
nickname, because that is how Tor Metrics disambiguates multiple descriptors with the same relay fingerprint.

The orport-srcaddr transport option is not a universal standard; it is a special feature in extor-static-cookie to avoid
ephemeral port exhaustion as described in Section 4. When connecting to the Tor process’s Extended ORPort, extor-static-cookie
will choose a random source IP address in the range 127.0.5.0/24.
BridgeRelay 1
AssumeReachable 1
BridgeDistribution none
ORPort 127.0.0.1:auto # unused
ExtORPort 127.0.4.N :auto
SocksPort 0
ServerTransportPlugin mypt exec extor-static-cookie /etc/extor-static-cookie/static_extended_orport_auth_cookie
ServerTransportListenAddr mypt 127.0.3.N :10000
ServerTransportOptions mypt orport-srcaddr=127.0.5.0/24
Nickname NICKNAME N
ContactInfo EMAIL

A.2 Pluggable transport systemd service file
Install this file as /etc/systemd/system/mypt.service. Enable it with systemctl enable mypt and use systemctl start mypt
to start it running. The service file assumes the existence of a user called “mypt” (adduser --system mypt).

The Environment variables set up a simulated pluggable transports environment, with TOR_PT_EXTENDED_SERVER_PORT
pointing at the load balancer. PORT is the pluggable transport server’s external listening port. As with extor-static-cookie, the
orport-srcaddr transport option whose purpose is to conserve ephemeral ports is a special addition we have implemented, not
a part of pluggable transports or any other standard.
[Unit]
Description=DESCRIPTION

[Service]
Type=exec
Restart=on-failure
User=mypt
StateDirectory=mypt
LogsDirectory=mypt
Use CAP_NET_BIND_SERVICE if the server needs to bind to a privileged port.
AmbientCapabilities=CAP_NET_BIND_SERVICE
NoNewPrivileges=true
ProtectHome=true
ProtectSystem=strict
PrivateTmp=true
PrivateDevices=true
ProtectClock=true
ProtectKernelModules=true
ProtectKernelLogs=true
LimitNOFILE=1048576
Environment=TOR_PT_MANAGED_TRANSPORT_VER=1
Environment=TOR_PT_SERVER_TRANSPORTS=mypt
Environment=TOR_PT_SERVER_BINDADDR=mypt-[::]:PORT
Environment=TOR_PT_EXTENDED_SERVER_PORT=127.0.0.1:10000
Environment=TOR_PT_AUTH_COOKIE_FILE=/etc/extor-static-cookie/static_extended_orport_auth_cookie
Environment=TOR_PT_SERVER_TRANSPORT_OPTIONS=mypt:orport-srcaddr=127.0.1.0/24
Environment=TOR_PT_STATE_LOCATION=%S/mypt/pt_state
Environment=TOR_PT_EXIT_ON_STDIN_CLOSE=0
ExecStart=/usr/local/bin/mypt

[Install]
WantedBy=multi-user.target

6

A.3 HAProxy configuration file
The below configuration defines a frontend listener at 127.0.0.1:10000, which forwards to a backend consisting of the multiple
Tor instances (actually their extor-static-cookie adapters). Each backend connection uses a different source IP address, to help
conserve ephemeral ports. There is no need for any kind of backend affinity; simple round-robin balancing is sufficient. This
configuration should be added to any defaults already present in /etc/haproxy/haproxy.cfg.

frontend tor
mode tcp
bind 127.0.0.1:10000
default_backend tor-instances
option dontlog-normal
timeout client 600s

backend tor-instances
mode tcp
timeout server 600s
server mypt1 127.0.3.1:10000 source 127.0.2.1
server mypt1 127.0.3.2:10000 source 127.0.2.2
server mypt1 127.0.3.3:10000 source 127.0.2.3
server mypt1 127.0.3.4:10000 source 127.0.2.4

7

	Introduction
	Background on pluggable transports
	Multiple Tor processes
	Extended ORPort authentication
	Disabling onion key rotation

	Further bottlenecks
	Discussion
	Configuration files
	Per-instance torrc files
	Pluggable transport systemd service file
	HAProxy configuration file

