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Abstract

The pluggable transports model in Tor separates the concerns
of anonymity and circumvention by running circumvention
code in a separate process, which exchanges information with
the main Tor process using local interprocess communication.
This model leads to problems with scaling, especially for
transports, like meek and Snowflake, that do not rely on the
existence of numerous, independently administered bridges
for blocking resistance, but rather forward all traffic to one or
a few centralized bridges. We identify what bottlenecks arise
as a bridge scales from 500 to 10,000 simultaneous users, and
then from 10,000 to 50,000, and show how to overcome them,
based on our experience running a bridge for Snowflake. The
key idea is running multiple Tor processes in parallel on the
bridge host, with synchronized identity keys.

1 Introduction

Bridges and pluggable transports are how Tor adds blocking
resistance (censorship circumvention) to its core function
of anonymity. Bridges are relays whose network addresses
are not globally known, meant to be difficult for a censor
to discover and block by address. Pluggable transports are
modular tunneling protocols that encapsulate and disguise an
inner protocol, thereby preventing a censor from recognizing
the Tor protocol and blocking connections on that basis.
Tor’s original blocking resistance design called for a large
number of “bridge” relays [2 §5], which clients would con-
nect to directly, using the ordinary TLS-based Tor protocol.
The difference between ordinary relays and bridges is that the
network addresses of bridges are not made public in the Tor
consensus, but rather are distributed one at a time, in some
controlled fashion. The blocking resistance of this model de-
pends on keeping bridge addresses secret, because there is
nothing to stop a censor from blocking a bridge by its address,
once known. When pluggable transports arrived on the scene,
many adopted the same strategy with respect to address block-
ing resistance. obfs2, obfs3, FTE, ScrambleSuit, obfs4—all

Linus Nordberg

these change the protocol between client and bridge, but they
retain the model of clients making TCP connections to fixed
bridge IP addresses that must be kept secret. Because the
blocking resistance of this model depends on the existence
of a large pool of bridges, it naturally achieves “horizontal”
scaling, with user traffic being distributed over hundreds of
independently operated hosts in different networks.

But other pluggable transports are not based on a model
of secret bridge addresses: meek and Snowflake are currently
deployed pluggable transports whose resistance to address-
based blocking comes about in a different way. In these trans-
ports, the host that is the gateway to the Tor network (the
“bridge” proper) is decoupled from the means of accessing it,
which is rather via some intermediary (a CDN in meek; a tem-
porary browser proxy in Snowflake). Transports like these
do not benefit, in terms of blocking resistance, from having
a large number of bridges, and it is therefore convenient to
run just one, centralized bridge—whose address need not be
secret—to receive all the transport’s traffic. This, however,
requires attention to the “vertical” scaling of the bridge.

In this paper, we show how to do this vertical scaling of a
pluggable transports Tor bridge. The key technique is to run
multiple Tor processes on the same host with the same identity
keys. This alleviates the largest single bottleneck, namely that
of any single Tor process being CPU-bound, but also gives rise
to a few complications. Beyond that, there are other resource
constraints to consider, such as limits on file descriptors and
ephemeral port numbers. The recommendations come from
our experience running the Snowflake bridge from December
2021 to February 2023, during which time the average number
of simultaneous users grew from 2,000 to around 100,000.

2 Background on pluggable transports

Tor’s Pluggable Transports specification [10] describes how
Tor interacts with its pluggable transports. It is built around a
model of separate processes and interprocess communication.
The Tor process spawns a child process, giving it its config-
uration in the form of environment variables; the pluggable
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transport process reports status on its standard output stream;
and thereafter user traffic is carried over localhost TCP con-
nections.' Refer to Figure 1. Client and server transports work
similarly, but only the server side concerns us here.

Pluggable transports are enabled in Tor’s configuration file,
torrc. A sample configuration for a transport called “mypt”
looks like this:

ServerTransportPlugin mypt exec /usr/local/bin/mypt
ServerTransportListenAddr mypt 0.0.0.0:1234
ExtORPort auto

When Tor starts a pluggable transport, it passes configura-
tion information to the subprocess in environment variables.
The above torrc causes Tor to execute /ust/local/bin/mypt as
a subprocess, with the following environment variables (eph
is a random ephemeral port):

TOR_PT_SERVER_TRANSPORTS=mypt
TOR_PT_SERVER_BINDADDR=mypt-[::]:1234
TOR_PT_EXTENDED_SERVER_PORT=127.0.0.1:eph
TOR_PT_AUTH_COOKIE_FILE=

— /var/lib/tor/extended_orport_auth_cookie

TOR_PT_SERVER_TRANSPORTS tells the pluggable transport
what named transports to start (because one executable may
support multiple transports). TOR_PT_SERVER_BINDADDR is
the address at which the pluggable transport should listen
for incoming connections (if such a notion makes sense for
the transport). TOR_PT_EXTENDED_SERVER_PORT is the TCP
address of Tor’s Extended ORPort [6], the interface between
the pluggable transport and the ordinary Tor network. The
pluggable transport process receives connections from the
Internet, removes the obfuscation layer, and forwards the tun-
neled stream to the Extended ORPort of the Tor process. The
Extended ORPort supports a meta-protocol to tag incoming
connections with client IP address and transport names, which
is what Tor Metrics uses to break down metrics by country and
transport. TOR_PT_AUTH_COOKIE_FILE is the path to a file
containing an authentication secret that is required when con-
necting to the Extended ORPort—synchronizing this secret
across multiple instances of Tor will be one of the complica-
tions to deal with in the next section.

3 Multiple Tor processes

The first and most important bottleneck to overcome is the
single-threaded nature of the Tor implementation.” A single
Tor process is limited to one CPU core: once Tor hits 100%
CPU, the performance of the bridge is capped, no matter the
speed of the network connection or the number of CPU cores

! The Pluggable Transports 2.x and 3.x specifications [8], which descend
from Tor’s version 1 specification, define an “API” interface for linking
pluggable transports directly into an application, in addition to a Tor-like
“IPC” interface. Tor does not use or support these later specifications.

2We expect that Arti, the in-progress reimplementation of Tor, will be
natively multi-threaded, and remove this primary complication.
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Figure 1: The normal way of running a server pluggable
transport. The init system spawns a Tor process, which in turn
spawns a pluggable transport process. This model reaches a
performance plateau when the Tor process saturates one CPU.
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Figure 2: The multi-Tor configuration, which permits more
scaling. The init system spawns multiple independent Tor
processes and a load balancer to distribute traffic across them.
The pluggable transport process is no longer a subprocess of
a Tor process, but is spawned by the init system directly, and
communicates upstream with the load balancer, which makes
the Tor instances’ several Extended ORPorts appear as one.
Each Tor process spawns an extor-static-cookie process (in the
manner of Figure 1), in order to present a predictable Extended
ORPort authentication secret through the load balancer.

to spare. For us, this started to be a problem at around 6,000
simultaneous users and 10 MB/s of Tor bandwidth.

Our solution is to run multiple Tor processes concurrently,
and mediate the pluggable transport’s access to them with a
load balancer. (We use HAProxy, though any load balancer
will do.) Refer to Figure 2. As many Tor processes can be run
as are needed to distribute CPU load; we started with 4 and
currently use 12. The several Tor instances are independent,
in the sense that they do not communicate with one another;
but they all share the same long-term identity keys, so they are
equally capable of serving as the first hop in a Tor circuit for
a client that expects a certain relay fingerprint. The pluggable
transport server receives incoming connections, as before, but
instead of forwarding connections to the Extended ORPort
of a single Tor process, it forwards them to the load balancer,
which then chooses one of the many Tor processes. The extor-
static-cookie component paired to each Tor process resolves
a complication that will be explained in Section 3.1.



This multi-instance arrangement requires subverting the
usual pluggable transports subprocess model of Section 2.
Normally, the operating system’s init system (e.g. systemd)
starts Tor, and Tor starts the pluggable transport server. Here,
we have the init system start the pluggable transport server, the
load balancer, and all the instances of Tor as sibling processes.
We set up an environment of the pluggable transport server to
appear as if it had been started in the normal way, but we make
TOR_PT_EXTENDED_SERVER_PORT point at the load balancer,
rather than any particular instance of Tor. (See Appendix A
for sample systemd and other configuration files.)

On Debian or Ubuntu, the tor-instance-create utility [7] is
a convenient way to create and manage multiple instances of
Tor with independent configurations:

tor-instance-create myptl
tor-instance-create mypt2
tor-instance-create mypt3
tor-instance-create mypt4

Each instance exposes an Extended ORPort interface on a dis-
tinct, static localhost address. The Extended ORPort addresses
are then listed in the load balancer configuration file.

To make the instances all have the same identity keys, start
and stop one of them to make it generate keys for itself:

systemctl start tor@myptl
systemctl stop tor@myptl

Then copy that instance’s “keys” subdirectory into the data di-
rectory of the other instances, fixing permissions as necessary.
This operation causes all the instances to be interchangeable,
in terms of being able to build circuits under the shared bridge
fingerprint.

With multiple instances of Tor created and their identity
keys replicated, there are just a few more details to look after.

3.1 Extended ORPort authentication

The Extended ORPort protocol begins with an obligatory au-
thenticated handshake. Both Tor, and the pluggable transport
that connects to it, cryptographically verify that the other
has access to a secret “cookie” stored in a file [6 §2.1]. Tor
regenerates the cookie file every time it is restarted, and
shares the path to the file with the pluggable transport in
the TOR_PT_AUTH_COOKIE_FILE environment variable. This
poses a problem for the multi-instance Tor setup. Since ev-
ery instance generates its cookie file independently, and the
pluggable transport cannot predict which Tor instance it will
be connected to through the load balancer, it does not know
which Extended ORPort authentication secret to use.

Tor does not expose a configuration option to control or dis-
able the regeneration of authentication cookie files. We need
a way to expose an Extended ORPort interface with a uniform
authentication secret across all Tor instances. To do this, we
interpose an adapter, called extor-static-cookie [5], between

the load balancer and the Extended ORPort of each of the Tor
processes. The adapter acts as an Extended ORPort client to-
wards its parent Tor process, and an Extended ORPort server
towards the load balancer (and the server pluggable transport
in turn). As a client, extor-static-cookie communicates with its
respective instance of Tor using the authentication cookie spe-
cific to that instance. As a server, it uses a static authentication
cookie file that is also provided to the server pluggable trans-
portinits TOR_PT_AUTH_COOKIE_FILE environment variable.
Each Tor process spawns a copy of extor-static-cookie using
the normal pluggable transports subprocess machinery of Sec-
tion 2.

It would be nice if there were a way to disable Extended
ORPort authentication cookie regeneration in Tor, or if the
Extended ORPort offered an alternative authentication type,
one that is easier to coordinate over multiple instances. Apart
from its cookie juggling, extor-static-cookie does nothing but
add overhead to the communications pipeline. We did con-
sider a few alternative solutions to the problem of Extended
ORPort authentication. It would be easy to patch Tor to use a
hardcoded cookie, say, but maintaining a forked version of Tor
complicates the deployment of security upgrades, which we
deemed unacceptably risky. In place of the Extended ORPort,
it is possible to use the regular, non-extended ORPort. The
regular ORPort does not have an authenticated handshake,
but it also does not provide a way to tag connections with the
client’s IP address, which would mean the loss of country-
specific metrics.

3.2 Disabling onion key rotation

Besides its identity key, which never changes, a Tor relay or
bridge has medium-term onion keys that are used during cir-
cuit construction [3 §4]. Onion keys are rotated on a fixed
schedule (every 28 days, as of this writing). A relay’s current
onion keys appear in the Tor network consensus; when clients
make circuits through it, they expect it to use certain onion
keys. Immediately after being created, our multiple Tor in-
stances have identical onion keys, because of the copying oper-
ation described above. But without further arrangements, the
instances would eventually independently rotate their onion
keys, which would cause later circuit creation attempts to fail.

To prevent this divergence, we disable onion key rota-
tion. Tor does not expose a configuration option to control
this, so we resort to external means. We create preexist-
ing directories at the filesystem paths that Tor uses as the
destination of file rename operations during key rotation,
secret_onion_key.old and secret_onion_key_ntor.old. (Preex-
isting files are not good enough; they must be directories to
stop the rename operation from succeeding.) Tor will log an
error every time thereafter it tries and fails to rotate its onion
keys, but will otherwise continue running. The hack is effec-
tive, but it would be better if there were a supported way to
do this in Tor.



4 Further bottlenecks

Distributing Tor processing over many CPU cores is the essen-
tial step to enable scaling. As the number of users increases,
the bridge will begin to bump into other, less restrictive limi-
tations.

File descriptor limits. Every open socket consumes a file
descriptor. Because the pluggable transports model uses sock-
ets not only for external connections but also for interprocess
communications, and the number of sockets is proportional
to the number of users, it is easy to exceed the operating sys-
tem’s default limit on the number of file descriptors, which
manifests in error messages like “too many open files.” Tor
and HAProxy automatically override the defaults and set suffi-
ciently high limits for themselves, but for the server pluggable
transport process you can use, for example, LimitNOFILE in
a systemd service file to raise the limit (see Section A.2). For
us, a limit of 64 thousand was insufficient, but we have not
had problems since raising the limit to 1 million.

Ephemeral TCP ports. TCP sockets are distinguished
from one another by a four-tuple consisting of the source
and destination IP addresses and the source and destination
port numbers. When connecting a socket, the operating sys-
tem chooses a port number from the ephemeral port range to
serve as the socket’s source port. If all ephemeral ports are
already in use, such that the socket’s four-tuple would not be
unique, the connection fails with an error like “cannot assign
requested address.”

The baseline mitigation for ephemeral port exhaustion is
expanding the range of ephemeral ports. This is common
advice for operators of all Tor relays. On Linux, it looks
something like this:

sysctl -w net.ipv4.ip_local_port_range="15000 64000"

But this alone is not enough for a pluggable transports bridge.
The bridge’s outgoing connections to other Tor relays are
not the main problem—the same source port can be used
in many sockets, as long as the destination addresses are
different. The real crunch comes from the bridge’s many local
TCP connections, the internal links in Figure 2. If source
and destination IP addresses are both 127.0.0.1, source and
destination port numbers are all that remain to make TCP
sockets distinct.

Part of the solution is using different localhost IP addresses
for different listening sockets. Not only 127.0.0.1, but the
entire 127.0.0.0/8 range is dedicated to localhost.We use
127.0.0.1 for HAProxy, but 127.0.3.N for the Nth instance of
extor-static-cookie, and 127.0.4.N for the Nth Tor instance’s
Extended ORPort. But this still is not enough; we must also di-
versify source addresses. In HAProxy we use the source op-
tion to use 127.0.2.N as the source address when connecting

to the Nth instance of extor-static-cookie (see Section A.3);
this expands the number of possible simultaneous connections
by a factor equal to the number of Tor instances. For the bottle-
neck connection between the pluggable transport and the load
balancer, we added a custom option orport-srcaddr to the
pluggable transport (Section A.2); that instructs it to choose a
random source address in the range 127.0.1.0/24 when con-
necting to the load balancer, which increases the number of
usable source addresses by a factor of 256. The extor-static-
cookie adapter also supports the orport-srcaddr option
(Section A.1), though it is less necessary there, because each
instance of extor-static-cookie sees only a fraction of total
connections.

Firewall connection tracking. The connection tracking
(conntrack) feature of the Linux firewall has a default limit of
262,144 connections in Linux 5.15. When the number of con-
nections reaches that limit, new connections will be dropped.
Our experiments showed that the number of connections was
getting close to the limit during the busiest times of day, so
we doubled the size of the connection tracking table:

sysctl -w net.netfilter.nf_conntrack_max=524288
sysctl -w net.netfilter.nf_ conntrack_buckets=524288

5 Discussion

The multiple-Tor architecture of Section 3 may be useful
also for non—pluggable transport relays, such as large exit
relays that process many connections, though we hope that
in the future Tor or Arti will be able to more naturally scale
across CPU cores, and make the multiple-process workaround
obsolete.

The pluggable transports model of interprocess communi-
cation over TCP sockets is suitable for clients and low- to
medium-use servers, but it starts to become awkward for high-
use servers, primarily because of ephemeral port exhaustion
and the required workarounds. Future designs should consider
alternatives, such as Unix domain sockets, or the in-process
API of later pluggable transports specifications [8].
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A Configuration files

A.1 Per-instance torre files

This is a template for the per-instance torrc configuration file. If using tor-instance-create [7] with instance name prefix “mypt”,
the file for instance N will be at the path /etc/tor/instances/myptN/torrc. Replace the highlighted text with appropriate values.
NICKNAME and EMATIL will be the same for all instances; N is the instance number. It is important to give every instance a
distinct nickname, because that is how Tor Metrics disambiguates multiple descriptors with the same relay fingerprint.

The orport-srcaddr transport option is not a universal standard; it is a special feature in extor-static-cookie to avoid
ephemeral port exhaustion as described in Section 4. When connecting to the Tor process’s Extended ORPort, extor-static-cookie
will choose a random source IP address in the range 127.0.5.0/24.

BridgeRelay 1

AssumeReachable 1

BridgeDistribution none

ORPort 127.0.0.1:auto # unused

ExtORPort 127.0.4.N :auto

SocksPort 0

ServerTransportPlugin mypt exec extor-static-cookie /etc/extor-static-cookie/static_extended_orport_auth_cookie
ServerTransportListenAddr mypt 127.0.3.N:10000
ServerTransportOptions mypt orport-srcaddr=127.0.5.0/24
Nickname NICKNAME N

ContactInfo EMAIL

A.2 Pluggable transport systemd service file

Install this file as /etc/systemd/system/mypt.service. You can then enable it with systemctl enable mypt and start it running
with systemctl start mypt. The service file assumes the existence of a user called “mypt” (adduser --system mypt).
The Environment variables set up a simulated pluggable transports environment, with TOR_PT_EXTENDED_SERVER_PORT
pointing at the load balancer. PORT is the pluggable transport server’s external listening port. As with extor-static-cookie, the
orport-srcaddr transport option whose purpose is to conserve ephemeral ports is something special we have implemented, not
a part of pluggable transports or any other standard.

[Unit]
Description=DESCRIPTION

[Service]

Type=exec
Restart=on-failure
User=mypt
StateDirectory=mypt
LogsDirectory=mypt

# Use CAP_NET_BIND_SERVICE if the server needs to bind to a privileged port.
AmbientCapabilities=CAP_NET_BIND_SERVICE
NoNewPrivileges=true

ProtectHome=true

ProtectSystem=strict

PrivateTmp=true

PrivateDevices=true

ProtectClock=true
ProtectKernelModules=true
ProtectKernelLogs=true
LimitNOFILE=1048576

Environment=TOR_PT_MANAGED_TRANSPORT_VER=1

Environment=TOR_PT_SERVER_TRANSPORTS=mypt

Environment=TOR_PT_SERVER_BINDADDR=mypt-[::]: PORT
Environment=TOR_PT_EXTENDED_SERVER_PORT=127.0.0.1:10000
Environment=TOR_PT_AUTH_COOKIE_FILE=/etc/extor-static-cookie/static_extended_orport_auth_cookie
Environment=TOR_PT_SERVER_TRANSPORT_OPTIONS=mypt:orport-srcaddr=127.0.1.0/24
Environment=TOR_PT_STATE_LOCATION=%S/mypt/pt_state

Environment=TOR_PT_EXIT_ON_STDIN_CLOSE=0



ExecStart=/usr/local/bin/mypt

[Install]
WantedBy=multi-user.target

A.3 HAProxy configuration file

The below configuration defines a frontend listener at 127.0.0.1:10000, which forwards to a backend consisting of the multiple
Tor instances (actually their extor-static-cookie adapters). Each backend connection uses a different source IP address, to conserve
ephemeral ports. There is no need for any kind of backend affinity based on source address or any other feature; simple round-robin
balancing is sufficient. This configuration should be added to any defaults already present in /etc/haproxy/haproxy.cfg.

frontend tor
mode tcp
bind 127.0.0.1:10000
default_backend tor-instances
option dontlog-normal
timeout client 600s
backend tor-instances
mode tcp
timeout server 600s
server myptl 127.0.3.1:10000 source 127.0.2.1:15000-64000
server myptl 127.0.3.2:10000 source 127.0.2.2:15000-64000
server myptl 127.0.3.3:10000 source 127.0.2.3:15000-64000
server myptl 127.0.3.4:10000 source 127.0.2.4:15000-64000
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