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Chapter 1: Introduction to Computer Graphics and Vertex-Based
Rendering

This chapter begins your study of graphics by starting with a discussion of the fundamental
constructs of graphics and then developing a straightforward but inefficient implementation
of a 3D rendering engine.

Section 1.1: Basic Concepts in Graphics

Computer graphics is the study of software and hardware related to deciding at each step
of a program what color each pixel should be. Technically any program that produces
any output to the display device, or to a printer, is a graphics program, but we are most
interested in applications that specifically involve producing an image, often in real-time,
of a scene. The typical application involves modeling a scene which is then rendered .
The model or scene is simply a computer-generated simulation of a virtual reality of some
sort. Rendering is the process of computing the color of each pixel in the window that is
displaying a image of the scene.

In one common scenario, physical reality provides the scene, and a camera takes the light
from that scene and uses it to determine the color of each position on the photograph. If
it is a camera using chemical film, each chunk of chemical on the film reacts to the light
that hits it by changing in some way. If it is a digital camera, each sensor determines its
color from the light hitting it.

This is not the scenario we will pursue. Instead, we will use a computer-generated, or
virtual, reality to produce the scene, and each pixel in a window will be set to a color
depending on the scene, as determined by the rendering computation.

So, we have two fundamental issues to deal with: how can a scene be modeled, and how
can the information from the model be used to compute the color of each pixel in the grid.

The coordinates in three dimensional space of the points in the model are referred to as
world coordinates. They are real numbers (floating point numbers in a program) and can
be specified and computed with to a very high degree of precision.

The hardware has a pixel grid, with something on the order of a thousand by thousand
grid of individual spots that can be lit up in some color.

This is a common technique—right now you’re reading a document that was printed
with a grid of rather small black or white dots, and then duplicated by a machine that
scanned the printout to produce a similar grid in its internal memory and then printed
those dots. And, your brain is perceiving those dots through your eyes, each of which
has a sort of grid of receptors set up to detect incoming light and send that information
to the brain. Indeed, all of physical reality, at least with a somewhat simple view of
physics, ultimately breaks down into tiny component particles.

The pixel grid is like a sheet of graph paper, but note that the pixels are not the squares,
but rather are little blobs (circles or squares, say, depending on the display device)
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drawn with their centers at where the lines cross. Thus, a pixel has a mathematically
exact representation given by its row and column coordinates in the pixel grid, with that
exact point being in the center of the pixel. The fundamental inaccuracy in computer
graphics (for example, that straight lines look staircasey) comes from the fact that a
whole volume of space in world coordinates maps to a single pixel grid location.

We will do all our modeling and rendering work using floating point numbers, and only
at the end of the entire process map to the rather coarse pixel grid.

We have been talking about “color,” so it should be defined carefully. The eye has a lens
which takes light from the scene—the part of the physical world currently in sight—and
aims it onto the back of the eye, which has a large number of different kinds of receptors
that are sensitive to red, green, blue light.

There are also receptors that are sensitive just to intensity, of whatever frequency,
allowing for monochrome vision. Apparently the peripheral vision of a human is not in
color, and dogs have monochrome vision which is more effective in low light conditions
than human color vision.

Each little receptor can detect how much light of its favorite color is hitting it, and sends
that information to the brain, which forms a picture.

A CRT (cathode ray tube) display device has a red gun, a green gun, and a blue gun, and
all of these scan the entire pixel grid many times (say 60) a second, with each gun aiming
at each pixel in succession and firing with some intensity, from 0 to 255, at that position,
which then lights up with a color depending on the three color intensities it is hit with.

So, there are 2563 = 16777216 different colors, and that’s it—in principle all any application
can do is simply to set the color, in some reasonable way, of each pixel in the window each
time it renders an image of a model.

This is incredibly cool—when doing graphics programming, it’s like you’ve been given a
box of crayons with 16 million-some colors that are always one pixel sharp!

Example: navigating the color cube

On the web site you will find a number of Java source files in a folder named colorcube.
Download them, compile them, and run this program.

This program shows one way to produce a pixel grid in a Java program. It uses a Frame,
but draws to a Canvas so that the (0, 0) location is not hidden behind the title bar the
way it is in a Frame. This program also shows how event handling is used to produce
an interactive program. Study the code and note how this all works—the basic principle
is that inputs from the user produce events which go into the operating system queue to
be processed in turn. When an object registers itself as a listener for a certain type of
event, its corresponding method gets called whenever an event of that type is processed.
The event object includes detailed information about the event, such as the key that was
pressed for a key listener.

Study the appropriate keyPressed method to see what keys you can press to interact with
this program. Run the program, hit those keys, and admire the effect—with this program

CSI 3510 Page 2



February 7, 2005

you can move about in color space, hitting any color you wish. Each point in color space
corresponds to an ordered triple, (r, g, b), where r is the intensity of red light, g is the
intensity of green light, and b is the intensity of blue light. All three of these are integers
in the range 0 to 255, inclusive.

In addition to the issues of how to produce a computer-generated scene, and how to render
an image of that scene in the pixel grid, a key issue is how fast this can be done.

In real-time graphics applications, modeling and rendering need to happen very quickly.
The prime example of this is immersive computer games. But, certainly some very im-
portant applications of computer graphics can sacrifice real-time modeling and rendering
for higher quality images. For example, when making a computer-generated movie, hours
of computer time might be spent in rendering each frame, which only displays for about
1/30th of a second.

In this first part of the course, we will not worry about efficiency at all. Specifically, if the
choice is between an algorithm that takes more memory space and/or takes more time to
execute, or one that takes more effort to implement, we will pick the one that is easier to
implement. We do this not entirely out of laziness, but mostly to avoid obscuring the real
issues involved in modeling and rendering.

We will develop the concepts and mathematical tools for a very simple way to model a
scene, and in parallel create, in Java, a basic rendering engine. This will provide valuable
insight into basic computer graphics classes, as well as making our later study of OpenGL
much more effective.

Section 1.2: An Idealized Approach to Modeling and Rendering

Imagine a physical scene. It consists of a bunch of pieces of stuff, each with some physical
properties that determine the color of light it sends out in various directions, given light
sources in the scene. This is actually very complex physically, so at this point we will
just simplify and pretend that each piece of stuff has a color. Later we’ll add lighting and
material properties to our modeling and rendering scheme.

So, we have a gazillion pieces of stuff in the scene. Each piece of stuff has a position in
space, which can be represented in some coordinate system. We’ll use a standard right-
handed Cartesion coordinate system, with the x axis being a line in space, the y axis
perpendicular to it, with the point where they intersect being the origin, with coordinates
(0, 0, 0), and the z axis passing through that point and perpendicular to both the x and
the y axes.

Each axis is a number line, and if you look down the z axis with the positive end toward
you, you see the positive x axis going off to the right and the positive y axis going upward.

This coordinate system is the “world” coordinates, and each piece of stuff in the scene has
a location given by its x, y, and z coordinates.
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Now, how does viewing work? First, the eye is at some location in this same coordinate
system. Right now, your left eye is somewhere in the room. We will call this point in space
the eyepoint.

But, that’s not all there is to it, because you are “looking in some direction.” So, we’ll put
a huge sheet of glass in the scene, which is known as the view plane, and say that you are
looking through the view plane. This is where the image of the scene will be formed, as
follows. For each piece of stuff in the scene, draw a line from the eye to it, and color the
point where this line crosses the view plane the color of the piece of stuff.

This way of approaching viewing is known as perspective projection, and it is pretty much
how real viewing works.

Of course, the line between the piece of stuff in the scene and the eye may not hit the view
plane, in which case we don’t need to do anything with it.

This approach to viewing is highly idealized, and doesn’t even mention the pixel grid,
but it is a good starting point for what we will actually do, so we will now develop the
mathematical tools needed to do this approach, and later turn to a more practical approach.

Representing a Point in Space

We will represent a point in space as a column vector, such as





a
b
c



, where a is the x

coordinate, b is the y coordinate, and c is the z coordinate of the point.

In mathematical notation, we will often represent a point P , say, by

P =





Px

Py

Pz



 .

⊲ Begin developing a Java class SGPoint that implements point objects. All the classes in
the on-going project will have an SG prefix, which stands for Simple Graphics, but is
really just to relieve us of the burden of thinking of names for things that don’t match any
standard Sun Java classes.

Representing a Line in Space

This is probably the most important mathematical tool in the course! They are all crucial
at times, but this one comes up in lots of different situations. Given two different points
in space, say P and Q, we can represent the unique line L that passes through them using
a parametric representation, namely

L(λ) = P + λ(Q − P ).

⊲ Verify that this makes sense by computing L(0) and L(1).

Write down this representation for the points





1
2
3



 and





−1
0
4



.
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Write down the the midpoint of the two given points, and the points that are a quarter
of the way from each one to the other.

We call the quantity Q − P a “direction vector” of the line. You can also represent a line
that passes through P with direction vector d by

L(λ) = P + λd.

⊲ You’ve spent a lot of time in previous math classes learning how to find the equation of
a line through two points. Compare that approach (in 2D) to the parametric approach.
Why was your previous work so focused on the non-parametric approach?

Points vs. Vectors

A point in space is a basic concept, and so is a vector, and they are closely related, but at
times it is important to distinguish between them. A point is a location is space, while a
vector represents a direction and length of movement from one point to another.

For example, even though it makes algebraic sense to form a quantity such as P +Q, using
ordinary matrix operations, this actually makes no sense if P and Q are points. You can
subtract points to get the vector between them, and you can add two vectors, and add a
point and a vector, but adding two points makes no sense.

We won’t worry much about this now, but later we’ll see how OpenGL uses a technique
known as “homogeneous coordinates” to manage this carefully.

Representing a Plane in Space

We have seen how to represent the line from the eyepoint to a piece of stuff in the scene,
but our idealized rendering scheme involves setting up a view plane, so we need to know
how to represent planes in space.

A plane in 3D space is defined by a single point on it, say P , and a vector N , known as a
“normal vector for the plane.” The plane is all points Q such that the vector from P to
Q, namely Q − P , is perpendicular to N .

This leads to a natural digression: how can you tell if two vectors are perpendicular? We
will return to this topic later, but for now, just take on faith that for any two vectors A
and B in space, the so-called “dot product” of A and B is defined by

AT B = ||A|| ||B|| cos(α),

where for any vector X ,

||X || =
√

XT X,

which is known as the length or norm of X , and α is the angle between A and B.

⊲ Try out this definition a little. Pick two points in space and compute the various
quantities involved.

This fact tells us, among many other useful things, that the angle between two vectors A
and B is 90 (or 270 degrees, depending on how you rotate) if and only if AT B = 0.
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So, the plane through P with normal vector N is the set of all points Q such that

NT (Q − P ) = 0.

⊲ Play with this definition a lot, as follows. First, pick P and N and compute the
equation of the plane. Note that the equation can be rewritten as NT Q = NT P . If we
use a different point on the plane, and a different length normal vector, is the resulting
represenation the same? Compare this equation of a plane to the more traditional
ax + by + cz = d form.

Finding a Plane Containing Three Given Points

Before, we saw how to get a representation of a line given either two points, or a point and
a direction.

So far we have seen how to get a representation of a plane given a point and a normal, but
it is more common to want to find the unique plane through three given points.

So, given points A, B, and C, we can first form the two vectors B − A and C − A that
lie in the plane, and hence are both perpendicular to any normal vector for the plane. So,
to find the normal vector, we can use the cross product (which we’ll look at more later)
operation to compute

N = (B − A) ⊗ (C − A).

The cross product of the vector





a
b
c



 into the vector





d
e
f



 is defined as





a
b
c



 ⊗





d
e
f



 =





bf − ce
cd − af
ae − bd



 .

⊲ Verify that this formula does produce a vector whose dot products with each of the
two given ones are zero.

Try this out with two numeric vectors.

Compute the cross product of the positive x axis into the positive y axis, and verify
that you get the positive z axis.

Prove that A ⊗ B = −B ⊗ A.

Putting It All Together

The preceding discussion concludes the math tools needed to do our idealized rendering.
The following Test Question Type summarizes what you need to know (at a minimum!)
from the preceding material

Test Question Type 1

Given an eyepoint E, a point in space (representing the location of a colorful piece of stuff)
P , and three points A, B, and C on the view plane, compute the point where the line from
E to P hits the view plane.
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⊲ Render, by hand, a very simple scene consisting of three points “in the room” by using
the algorithm of TQT1, where points “in the room” are picked for for E, A, B, and
C. Verify that the rendered scene appears reasonable. Note that the room has an x-z
coordinate grid on the floor.

⊲ Implement these ideas in Java, figuring out what classes are needed, and giving them all
the prefix SG. Test the engine by a program that asks for the eyepoint and viewplane and
then takes any number of input points representing points in the scene and produces
the rendered points.

Use a simple view plane so that the results can be sanity-checked.

Precise Mathematical Description of Idealized Rendering

In case it is not clear from the previous work, and by way of review, here is a precise
description of the idealized rendering process developed so far.

Let a view plane have a normal vector N and a point on it A. Then any point R in 3D
space is on the plane if and only if NT (R − A) = 0.

N may have been computed as (B − A) ⊗ (C − A), given three points A, B, and C
known to be on the view plane.

Let E be the eye point. Consider a point P that is to be “rendered,” that is, to find where
the line from E to P hits the view plane.

All points on the line segment in space going from E to P have the form E + λ(P − E)
for some λ ∈ [0, 1].

So, we want λ such that
NT (E + λ(P − E) − A) = 0,

and by basic matrix algebra,

NT (E + λ(P −E)−A) = NT E + λNT (P −E)−NT A = NT (E −A) +λNT (P −E) = 0,

so

λ =
NT (A − E)

NT (P − E)
.

⊲ Does this expression for λ always give a value in (0, 1)? Can it be zero? Negative?
Undefined? Relate each of these to the corresponding positions of E and P relative to
the view plane.

⊲ Check the algebraic steps above carefully. Note that matrix algebra is the same as
“regular algebra” except that you can only commute multiplication (like AB = BA)
when one of the quantities is a scalar (a number as opposed to a matrix). Note that
dot product quantities such as AT B are scalars. You also need to know, at places in
the course, that the transpose operator has the properties

(A + B)T = AT + BT ,
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(AB)T = BT AT ,

and
AT T

= A.

Finally, to get the point that P renders to, we simply substitute the value for λ into the
form of the point on the line, obtaining

E +
NT (A − E)

NT (P − E)
(P − E).
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Section 1.3: Rendering Model Points to the Pixel Grid

The preceding discussion covered a lot of the basics of rendering a model point P onto a
view plane, but ignored the fact that we actually want to end up coloring pixels in a pixel
grid that corresponds to points on the view plane.

To do this, we have to establish a view rectangle on the view plane and map the points on
the view rectangle to the pixel grid.

To establish a view rectangle on the view plane, let’s just say that A is the origin, at the
lower left corner of the view rectangle, and use the segment from A to B as the bottom
edge of the view rectangle, and use the segment from A to C as the left edge of the view
rectangle. Equivalently, the segment from A to B lies along the positive x axis of the
coordinate system we are establishing, and the segment from A to C lies along the positive
y axis.

For this to make sense, we must have (B − A)T (C − A) = 0, which is the same as saying
that these two lines in space are perpendicular to each other.

Now, consider any point Q on the plane (we’re thinking of the point that P renders to,
of course). Here is a picture of the situation (where Q is shown as lieing within the view
rectangle):

• •

•

A B

C

Q
•

α(B − A)

β(C − A)

With this setup, it turns out that we can figure out the “coordinates” of Q in the new
view rectangle coordinate system quite easily, as follows. We express the vector Q − A as
the sum of two vectors, one being a multiple of B − A, and the other being a multiple of
C − A, namely let

Q − A = α(B − A) + β(C − A)
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Then, we just have to figure out what α and β must be. The trick is to multiply this
equation on both sides by the same quantity. First, we use (B − A)T , obtaining

(B − A)T (Q − A) = (B − A)T (α(B − A) + β(C − A)) =

α(B − A)T (B − A) + β(B − A)T (C − A) =

α(B − A)T (B − A),

so

α =
(B − A)T (Q − A)

(B − A)T (B − A)
.

Similarly, by multiplying both sides by (C − A)T , we can obtain

β =
(C − A)T (Q − A)

(C − A)T (C − A)
.

⊲ Check this algebra, and note carefully how the perpendicularity of the edges B−A and
C − A comes in.

The point of the previous discussion is that we can express any point Q on the view plane
in terms of scalar multiples (α and β) of the coordinate vectors B − A and C − A. Thus,
these values α and β tell us what fraction of the way from the left edge to the right edge,
and from the bottom edge to the top edge, the point lies. And, if these values are outside
[0, 1], they tell us that Q does not lie in the view rectangle at all.

Mapping to the Pixel Grid

Now consider the pixel grid, say as viewed by the Java AWT class Graphics. It is a
coordinate system with x values going from 0 to some integer value w (for “width,” but
note that there are really w + 1 pixels in this range), and with y values going from 0 to h.
But, the top-most row of pixels has y = 0, with the y value increasing as you go downward,
until you reach the lowest row of pixels that has y = h.

Now, we need to map each point (α, β), in the view rectangle system just described, to
a pixel point (x, y). This is very easy to do, because we can just use a separate linear
function for each map (in the x and in the y direction).

To find a linear map, we just need its value at two arguments. Here, starting with the x
direction, note that we want 0 to map to 0 and 1 to map to w. So, we want the function
x(α) that has x(0) = 0 and x(1) = w, or, we want the equation of the line passing through
the points (0, 0) and (1, w).

Using basic algebra, it is easy to obtain

x(α) = wα.

⊲ Verify that this function has the desired two values. Derive the equation of this line
using basic algebra (find the slope, etc.).
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To find the map for the y direction, we note that we want y(0) = h and y(1) = 0, and
easily obtain the map

y(β) = h(1 − β).

⊲ Verify that this function has the desired two values. Derive the equation of this line
using basic algebra.

This actually completes our work on the mathematics of our rendering process. Here is a
summary of the entire process.

Summary of Idealized Rendering

Choose an eye point E.

Choose a view plane passing through the origin A and two other points B and C, where
B −A and C −A are perpendicular and act, respectively, as the positive x and positive y
coordinate axes on the view rectangle coordinate system.

Compute N = (B − A) ⊗ (C − A) as the normal to the plane.

Use a pixel grid in a Java window with x coordinates ranging from 0 to w inclusive, and
y coordinates ranging from 0 to h inclusive (but oriented opposite to the usual coordinate
system).

For each piece of stuff at location P in space, with color K:

Compute the point Q on the view plane where the line from E to P hits it by

Q = E +
NT (A − E)

NT (P − E)
(P − E).

Determine the coordinates of Q in the view rectangle coordinate system, namely
(α, β) by

α =
(B − A)T (Q − A)

(B − A)T (B − A)

and

β =
(C − A)T (Q − A)

(C − A)T (C − A)
.

Compute the pixel grid location (x, y) corresponding to this point in the view rect-
angle coordinate system by

x = wα

and
y = h(1 − β).

Color the pixel closest to (x, y) K.
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Test Question Type 2

Given points A, B, and C on a view plane, with (B − A)T (C − A) = 0, a point Q on the
plane, and pixel grid dimensions w and h, determine the point on the pixel grid that Q
maps to.

⊲ Run and study the code in the folder feb7 at the course web site, starting with
App1.java. Note what happens when the cube is moved in the positive z direction.
Pay special attention to how the ofTheWay method works.

⊲ Develop App2 that lets the user move the eye point and view plane interactively as
follows.

We currently require the application to provide the points A, B, and C that
define the view rectangle, but it is easy to improve on this. Create a constructor
for the renderer that takes the eye point E, a point in the scene F to “focus on,”
a desired distance d from E to the view plane, and an “up” direction U (which
is a vector). Given this information, we can compute the required information
for the view rectangle, as follows.

The normal N is taken as F − E, and then the vector pointing from F to the
right along the view plane is X = N⊗U , and the vector pointing from F upward
along the view plane is Y = X ⊗ N .

Now, to obtain the required three points on the plane, we first have to find the
point G that is on the view plane, in the center of the view rectangle. This
point is simply G = E + d

||F−E||(F −E), where the “norm” or length of a vector

V is defined as ||V || =
√

V T V . Then, we obtain A = G − w
2||X||

X − h
2||Y ||

Y ,

B = A + w
||X||X , and C = A + h

||Y ||Y .

Verify all this, and implement it in App2, which is copied from App1 and modified
as follows. Use the same keys as in App1 for interaction, but leave the cube fixed
in place and move either the eye point or the focus point F . Use the <space>

key to toggle which is controlled. Interactively change the distance from the eye
point to the view plane by hitting the keys = and -.
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Exercise 1 Target due date: Wednesday, February 16.

Modify App2.java to Ex1.java so that the modeled scene includes a collection of rect-
angular boxes—edges only—scattered around (crudely simulating a city with a number
of buildings). You must have enough buildings to give the impression of several “streets”
with buildings lined up along them. Put the bases of all the buildings on the y = 0 plane.
Your buildings must be of different dimensions. You will want to have a method that
models a “box” given its desired location, dimensions, and color. Give each box a uniform
color (as opposed to the “color cube” approach used in App1).

Turn in your file Ex1.java (the others will be copies of what we do in class, so I’ll already
have them) by email.

Section 1.4: Vertex-Based Modeling

We have been viewing the “scene” as consisting of a large number of bits of stuff, each
with its own position in space and color, and we have successfully rendered such a scene
by finding the point where the line from the eye point to the bit of stuff hits the view
rectangle, and mapping that point to the corresponding point on the pixel grid.

This is all fine, as far as it goes (except for efficiency issues, of course, which we have
intentionally been neglecting), but one problem is that there is simply too much “stuff”
in a scene for this approach to really work—it is not at all clear how to decide how many
points to render in order to tidily fill the pixel grid. Doing too few model points will leave
unpleasant holes in the rendered scene displayed in the pixel grid, and doing too many
model points will simply be a huge waste of time.

The standard solution to this problem is to pick relatively few, meaningful points on
the surface of an object that is being modeled, and use polygons through these points
to approximate the surface of the object. These points are known as vertices, and this
approach is known as vertex-based modeling.

For example, to model a rectangular box, 8 vertices can be used, with groups of four
vertices determining the polygonal faces of the box.

As another example, to model a sphere, we need to pick a fairly large number of vertices
on its surface and use the polygons they form to approximate the surface.

⊲ Think about doing this on a sphere by taking some lines of latitude and longitude and
using as the vertices the points where they cross. What type of polygons are formed?
Repeat by starting with the 6 vertices of a regular octahedron on a sphere and refining
the mesh by converting each triangle into three triangles by taking the center point as
the new vertex. Repeat again starting with an octahedron but this time refine each
triangle into 4 smaller triangles by using midpoints of the sides as the new vertices.

The key point for rendering a vertex-based model is to note that all the vertices are
rendered, just like we have been doing, but after obtaining the corresponding pixel grid
points for the vertices of a polygon, we then need to rasterize the polygon, which is the
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process of filling in, with the correct interpolated color, all the pixel grid points that are
in the interior of the polygon.

Note that this is a radically different strategy from what we were previously suggesting.
In our idealized approach, we imagined breaking the model object into a large number of
points and rendering all those points. With the vertex-based approach, only a few vertices
need to be rendered, and then all the other points are colored in by scanning the pixel
grid. This involves far less computation, and ensures that all the points inside the polygon
are colored in.

Scan-Line Algorithm for Filling a Convex Polygon

To rasterize a polygon with integer coordinates for its vertices, a so-called scan-line al-
gorithm proceeds by examining every horizontal line with a y level that intersects the
polygon, determining the first and last x values for which the line hits the polygon, and
filling in the pixels along that horizontal line by interpolating.

To be more precise, but not work too hard, let’s focus on triangles, because they are
simpler, and have a crucial property that polygons with more than 3 vertices do not: they
are guaranteed to be convex (a convex polygon is one for which if you take any two points
in its interior—including the border—then the entire line segment between them lies in
the region of the polygon).

Let the vertices be (x1, y1), (x2, y2), and (x3, y3). Note that these are the pixel grid
coordinates for the points obtained by rendering the original three vertices in 3D space.

Repeat for all integer values of y going from the minimum of y1, y2, and y3 to the
maximum of y1, y2, and y3:

Find all intersections of the horizontal scan line at height y with the three edges of
the polygon, and let xl and xr be the smallest and largest x values, respectively, of
intersection points.

As part of doing this, express (xl, y) = (1 − λl)A + λlB, where A and B are
endpoints of the edge that the scan line hits the farthest left, and similarly express
(xr, y) = (1− λr)C + λrD, where C and D are endpoints of the edge that the scan
line hits the farthest right.

Determine the colors of the pixels at (xl, y) and (xr, y) by interpolating in each of
the colors (red, green, and blue). For example, the redness of the pixel at (xl, y)
will be (1− λl)rA + λlrB , where rA is the redness of point A and rB is the redness
of point B. The other five quantities are computed similarly.

For each integer x going from xl to xr, compute λ = (x − xl)/(xr − xl), and
interpolate the color at (x, y) as being λ of the way from the color at (xl, y) to the
color at (xr, y).
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⊲ Draw some sketches of triangles in the pixel grid and make sense out of the algorithm
for those sketches. Try some triangles that might mess up the algorithm, like say one
with a horizontal or vertical edge.

⊲ Note that except in one case, finding the points A, B, C, and D can be done quite
nicely by checking incrementally how they change.

⊲ Draw a non-convex polygon for which this algorithm fails.

Test Question Type 3

Given any appropriate situation, be able to linearly interpolate from one point to another,
using either position or color.

As practice for this, note how the form

(1 − λ)A + λB

is used to interpolate in various ways in the scan-line algorithm.

Clipping

The approach we have developed to this point has a major inefficiency related to the issue
of clipping. In general, clipping refers to the idea of not rendering parts of the scene that
end up being out of sight. Our current approach renders the three vertices of a triangle,
any of which may or may not map into the pixel grid, and then rasterizes that triangle,
obtaining integer coordinates and colors for each “pixel” in the triangle, even if those
coordinates put it out of the pixel grid. A more efficient approach would be to find the
intersection of the triangle with the pixel grid, and then rasterize the resulting polygon.
We will not follow this approach, just because it is a little more difficult to program, and
we are allowing ourselves to be inefficient.

⊲ Note how inefficient our approach could be, for example when the entire triangle is out
of sight.

⊲ Draw some examples of triangles intersecting rectangles (the pixel grid). Note that the
intersection can be quite a bit more complex than a triangle.

Hidden Surface Removal

Our previous approach to modeling and rendering actually had a major flaw that we have
not mentioned, namely that two bits of stuff could map to the same pixel, in which case
the one drawn later would determine the color of the pixel, which is wrong in the case that
the bit of stuff drawn first is actually in front of the one drawn second, along the line from
the eye point to the points in space.

In the past in computer graphics, when memory was at a premium, a number of elaborate
algorithms for handling this problem of “hidden surface removal” were developed, but all
we, with no concerns about time or memory efficiency, have to do is keep a depth value
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stored for each pixel, which is the “depth” of the bit of stuff that was most recently drawn
at that location. Then, when a new bit of stuff wants to color a pixel, the depth of the bit
of stuff has to be less than the depth currently stored, or else it is ignored.

Depth

What we want for “depth” of a bit of stuff is the distance from the eye point, because
that is clearly what determines which of two bits of stuff is closer and hence should get to
determine the color. With our earlier approach, that meaning of depth would work fine,
but with vertex-based modeling and rendering, we need to work a little harder.

The problem is that even if we had the distances from the eye point for two vertices, when
we rasterize the line segment between their rendered points, we use linear interpolation,
and distance from the eye point does not follow linear interpolation.

⊲ Consider vertices A and B, and a typical point P (λ) = (1−λ)A+λB along the segment
between them. Algebraically compute ||P (λ) − E|| far enough to be convinced that
this quantity is not a linear function of λ that could easily be interpolated. As simpler
evidence of this, draw two vertices that are the same distance from an eye point and
note that the points in between them have a distance from the eye point that varies
non-linearly.

So, instead of trying to monitor the distance from the eye point of various bits of stuff, we
will use their perpendicular distance from the view plane, because this quantity does vary
linearly.

Computing the Distance from the View Plane

Let Q be any point in space, and let a view plane be defined by normal vector N and a
point A on it. The “distance from Q to the plane” is defined as the distance from Q to
the point R on the plane that is the closest point to Q on the plane. Clearly for some α,

Q = R + αN.

Thus,
Q − A = R − A + αN,

so
NT (Q − A) = NT (R − A + αN) = NT (R − A) + αNT N = αNT N,

since R is on the plane. Thus,

α =
NT (Q − A)

NT N
,

and the distance from Q to the plane is

||αN || = |α|||N ||,

so we now know how to compute the depth of a vertex in space, defined as the shortest
distance from the vertex to the plane.
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