Comments on certain past cryptographic faults
affecting randomized censorship circumvention
protocols

David Fifield

draft November 1, 2022

Abstract

This talk presents three retrospective case studies of cryptography-related
faults in censorship circumvention protocols: a decryption oracle vulner-
ability in Shadowsocks “stream cipher” methods, non-uniform Elligator
public key representatives in obfs4, and a replay-based active distinguish-
ing attack exploiting malleability in VMess. These three protocols come
from the family of so-called “randomized” or “look-like-nothing” proto-
cols: their communications stream is indistinguishable from a uniformly
random byte string (that is, when nothing goes wrong). Some of the faults
are fixable implementation errors; some are rooted in more fundamental
design flaws. Their consequences range from enabling probabilistic pas-
sive detection to complete loss of confidentiality. All the issues I mention
have been fixed, mitigated, or superseded since their discovery.

I have two goals in giving this talk. The first is to furnish examples of
surprising effects of cryptographic faults, in non-contrived, deployed pro-
tocols of some importance, in order to help build motivation and intuition
in learners of cryptography. The second goal is to increase appreciation
of censorship circumvention threat models among specialists in cryptog-
raphy, and in particular, to help explain why the problems I will cover did
not have as big a negative effect as one might predict. Practical circum-
vention is a topic in which cryptography is a necessary tool, but is not
the only or even the most important consideration.

Anyone who has taught beginning cryptography knows the experience of justify-
ing adversary models and formal security reductions in response to well-meaning
questions by students. Why do we care about chosen ciphertext attacks—won’t
it just decrypt to gibberish? Why is it a problem for an attacker to learn some
information about a message, as long as they can’t decrypt the whole thing?
How would an attacker get access to an encryption/decryption oracle, anyway?
In response to questions like these it is good to have a few ready examples of
how things have gone wrong in practical cryptographic deployments, to moti-
vate the need for proofs and demonstrate that intuitions about security can be
misleading.

In this talk I will present a few such examples that I have found interesting
and instructive. They come from the field of censorship circumvention, specifi-
cally from the subcategory of protocols that use cryptography to present a byte
stream that is indistinguishable from uniform randomness. While the faults
I will discuss affect systems that are socially important and easily have millions
of collective users, I believe they are not well-known outside a small group of
specialists.

1 Censorship circumvention

Censorship circumvention studies how to enable communication between two
network endpoints, despite the interference of a censor that controls part of
the network paths between them. In a typical model, a client resides in a
network that is completely controlled by a censor, and wants to reach some
destination (for example, a web site) that is located outside the censor’s network
but which the censor wants to prevent access to. The censor is presumed, at
a minimum, to block all network traffic that is addressed directly to or from
the prohibited destination, and additionally has the power to inspect and block
other flows based on any other observable characteristics (such as, for example,
whether they contain references to the blocked destination in the contents of
their packets).

A system for circumvention, then, must satisfy at least two requirements.
It must access the destination only indirectly (generally, through a proxy server),
because direct access is blocked; and it must hide the content of communications
(in particular, it must not reveal the true target address in any traffic sent to
a proxy). Put simply: avoid address blocking, avoid content blocking.

To meet these requirements, a large number of circumvention systems have
been invented, tackling the problem in a variety of ways. In this talk I focus on a
particular subfamily of circumvention protocols, sometimes known as “look-like-
nothing” or “randomized” protocols. Protocols of this type use cryptography
to ensure that every part of their communications stream is (computationally)
indistinguishable from a uniformly random byte stream. In contrast to TLS, for
example, which has plaintext fields in its handshake and a recognizable record
format, these fully randomized protocols offer a censor no static features to
serve as a basis for classification. Why protocols of this type are effective for
circumvention is an interesting question: I will return to this point later, but
for now, let it suffice to know that they are, empirically, effective.

Of course, real censors are not limited to passive examination of byte streams.
The complicated world of networks provides an intermediary with a number of
avenues of attack, which realistic circumvention threat models must take into
account. Attacks based on inspecting packet boundaries or measuring timing,
replays, port scanning—all these are fair game for the censor, but in this talk
I will only cover topics that have a cryptographic flavor.

A presentation like this one runs the risk of giving an exaggerated impression
of the importance of content obfuscation in circumvention. It is an indispensable

element, to be sure, but circumvention is not, as one might think at first, purely
a matter of steganography or encryption. In practice, obscuring the contents
of communication is comparatively easy—what’s harder is stopping the cen-
sor from discovering and blocking endpoint addresses (including those of proxy
servers). Meeting this latter challenge requires a different, almost orthogonal set
of techniques. Even within the scope of content obfuscation, look-like-nothing
is only one technique among many. Keep in mind that what I will present is
just one interesting facet of a larger field. It is good to remember, also, that
while there are still advancements to be made, censorship circumvention is not
an unsolved problem: it is used with success by millions every day.

2 Shadowsocks stream ciphers decryption oracle

Shadowsocks is an encrypted proxy protocol. It is particularly commonly used
in China, but its simplicity and effectiveness have lent it popularity in many
areas subject to network censorship. (There are businesses centered around
managing and selling access to Shadowsocks servers.) Shadowsocks has many
independently developed, but compatible implementations, and they and the
protocol itself are under ongoing development. The vulnerability I will tell you
about is in an older version of the protocol, which is now deprecated but still
widely supported, known as “stream ciphers” methods. (The label is in contrast
to the newer and currently recommended “AEAD ciphers” methods, which,
though not without flaw, do not have this particular problem.) The consequence
of the vulnerability is total loss of confidentiality in past recorded sessions to
an attacker who is able to guess a short prefix of the plaintext. It works by
tricking a Shadowsocks server into connecting to an attacker-controlled host
and forwarding a decrypted session there. It was found and first described in
2020 by Zhiniang Peng [7].

Shadowsocks stream ciphers methods [9] are easy to describe and implement.
Only symmetric key cryptography is used. Client and server share a symmetric
key (derived from a password), which is used to encrypt communications be-
tween them. The same key is used in both directions and for all sessions; only
the initialization vector changes in each new connection. The choice of cipher
(supported options include ChaCha20 and AES in CFB or CTR mode) must be
settled in advance, out of band. The client connects to the server and sends it
one long ciphertext, whose content consists of a target specification and the data
to send to that target. The server decrypts the target specification, makes a
TCP connection to the given host, then decrypts the client’s data and forwards
it to the target. Any response from the target is proxied back to the client.

oo pomm e +
client=server |IV|encrypted target|encrypted datal

e S Hmmmmmmm oo +
e +

server-client |IV|encrypted datal
e +

The target specification can take three forms, which are distinguished by a
one-byte type prefix. Type 1 is IPv4, type 3 is a hostname, and type 4 is IPv6.

type IPv4 port

do—d ot
| 11 A.B.C.D | XXYY|
s e e St 2

type hostname port

e e +-—+——+

| 3| Nl|abcd.example...| XXYY|

s S +-—t——+

type IPv6 port

s e e B s At S e s it ST e
| 4] AA:BB::CC:DD | XXYY|

ot —d bbbttt ——t——t——t——t——t——t——t——t——F——+

These protocol details are enough to imply the attack, though it takes a
little creativity to find. The crucial observation is that there is no integrity
protection on ciphertexts: even without knowing the shared secret key, you can
send data to a Shadowsocks server and the server will attempt to act on it.
As a simple example, if you send a random bytes to a Shadowsocks server, then
with probability 1/256 the first byte will decrypt to a 1, which will cause the
server to interpret whatever the next 6 bytes decrypt to as an IPv4 address
and port, to which the server will attempt to connect and send the rest of the
stream (decrypted under the server’s key). The combination of being a proxy
server and knowing a secret key means that a Shadowsocks server is a machine
for decrypting a ciphertext stream and sending it somewhere, the “somewhere”
being part of the ciphertext. In other words, a Shadowsocks server is a particular
kind of decryption oracle.

The full attack is to replay a previously recorded encrypted Shadowsocks
stream, tweaking the first 7 bytes so they decrypt to a specification of an IPv4
address controlled by the attacker. Tweaking the first 7 bytes requires the at-
tacker to know the plaintext of those bytes. If the attacker can tolerate the data
being sent to any TCP port on a single host, then the first 5 bytes are enough.
4 bytes are enough if the attacker controls an entire /24 network. If all but a few
bytes are known, the unknown ones can be brute-forced over multiple connection
attempts. Because the same key is used in both directions, both client—server
and server—client streams can be attacked. It is often easier to guess the initial
bytes in the server—client direction; for example, all HTTP /1.1 responses begin
with the 7 bytes ‘HTTP/1.’. Below is a real recorded server—client Shadowsocks
session (minus the initialization vector, for clarity):

7c20£534e986dbce37£555c6760ea24faa928£760db22438c8963c57e83b36fe

Sending this recorded ciphertext back to the same server that produced it results
in the server closing the connection. If we could peek at the server’s logs, we
would see a warning:

unsupported addrtype 72, maybe wrong password or encryption method

What happened is the server decrypted the first byte and got the value 72,
which is the ASCII code for ‘H—the first byte of ‘HTTP/1.’. Because 72 is not
one of the known target specification types (1, 3, or 4), the server closes the
connection.

Suppose the attacker guesses the full plaintext prefix ‘HTTP/1.’ (which is
485454502£312e in hexadecimal) and controls a host at 203.0.113.5:8000 (whose
target specification is 01cb0071051£40). The attacker XORs out the known
plaintext and XORs in their own target specification, changing the first 7 bytes
to 7c20£534e986db ¢ 485454502£312e G 01cb0071051f40 = 35bfal15c3a8bb:

35bfall15c3a8bbce37£555c6760ea24faa928£760db22438c8963c57e83b36 e

On receiving the modified ciphertext, the Shadowsocks server connects to the
attacker’s host and sends it the decryption of the remainder of the stream.

What can we learn from this attack? The developers of Shadowsocks em-
phasize that it is a tool for access (i.e., circumvention), not for secrecy or any
other security property. Still, such a complete loss of confidentiality is surely
unexpected by most Shadowsocks users, and unintended by the protocol de-
signers. It is severe enough to threaten even the limited goal of access, as it
provides an effective active-probing test for Shadowsocks servers (which then
can be blocked by address). The lesson, perhaps, is that it is hard to skimp on
security properties without giving up more than you intend: you need integrity
protection even when you “don’t need” integrity protection. In this case, the
problems with Shadowsocks stream ciphers methods ran too deep to be fixed.
They could only be deprecated, and users encouraged to transition to the newer
“AEAD ciphers” methods (which fortunately had already been developed, in
response to other known vulnerabilities).

3 obfs4 non-uniform public key representatives

obfs4 is another fully randomized circumvention protocol [10]. For several years
it has been the most-used Tor pluggable transport. The protocol is consid-
erably more sophisticated than Shadowsocks’s, featuring client authentication,
a Diffie-Hellman exchange (X25519) with ephemeral session keys and forward
secrecy, and affordances for traffic padding. Unlike Shadowsocks, obfs4 is not
itself a proxy protocol. Its only job is content obfuscation; it delegates proxying
to some other service, usually Tor. Also unlike Shadowsocks with its multi-
ple implementations, there is only one main implementation of obfs4, called
obfsdproxy.

obfs4’s use of public-key cryptography (its Diffie-Hellman exchange) adds
a notable complication to the design, namely that ephemeral public keys (i.e.,
points on Curve25519) must be conveyed on the network, and these, like every
other part of the protocol, must be indistinguishable from random. Encoding
(z,y) coordinates as binary strings does not meet the requirement, because

an observer can check whether = and y satisfy the curve equation y? = 23 +
48666212 4+ x. Even compressing the point to just its x-coordinate does not
work, because an observer can check whether the quantity =>4 48666222 + x is
a square in GF(22°° — 19), which is true for every x on the curve, but only half
of random strings.

As a solution to this problem, obfs4 encodes its public keys using Elliga-
tor [2], which is designed for exactly this purpose: in the forward direction it
maps bit strings to elliptic curve points, and in the inverse direction it maps (a
subset of) elliptic curve points to bit strings that are indistinguishable from ran-
dom (provided the input points are selected uniformly). The bit string encoding
of a point is called the point’s “representative.” obfsdproxy used the Elligator
implementation from the agl/25519 package [5], which was one of the few im-
plementations of Elligator available in 2014, when obfsdproxy was created.

There turned out to be minor oversights in agl/25519 and in its interaction
with obfsdproxy that caused public key representatives to be distinguishable
from random in three different ways, some rather subtle. In what follows, recall
that Curve25519 is defined over GF(q), with ¢ = 22°® — 19. We number bits
starting from 0. The three ways in which public key representatives differed
from random were:

1. Representatives were not always canonical.
2. Bit 255 (the most significant bit) was always zero.

3. Only points from the large prime-order subgroup were represented, not
the whole curve.

The distinguishing attacks enabled by these features are passive and prob-
abilistic. A binary classifier built on these features will have 100% sensitivity
(obfs4 never falsely marked as uniform), but less than 100% specificity (uniform
sometimes falsely marked as obfs4). Unlike the Shadowsocks vulnerabilities,
taking advantage of obfs4 public key representative non-uniformity does not re-
quire the censor to send any of its own traffic; but because a single observation is
not conclusive, the censor will generally need to correlate multiple observations
before marking an endpoint as obfs4 with high confidence.

Non-canonical representatives. The final step of the Elligator inverse map
(which takes an elliptic curve point to its bit string representative) involves tak-
ing a square root in the finite field [2, §5.3]. An instantiation of Elligator is
parameterized by what might be called a “canonical” square root function, one
with the property that va2 = y/(—a)? for all field elements a [2, §5.1]. That is,
we designate just over half the field elements as “non-negative,” and the image
of the square root function consists of exactly these elements. A convenient def-
inition of “non-negative” for Curve25519, suggested by its authors, is the lower
half of the field, the elements {0,1,...,(¢ — 1)/2}. When we have two options
for a square root, we take the smaller of the two [2, §5.5]. (Note that smaller
option always fits in 254 bits; this will be relevant to the next distinguisher.)

The agl/ed25519 Elligator implementation did not do this canonicalization
of the final square root; instead it mapped a given input to either its negative
or non-negative root, in a consistent manner. This fact makes possible a pas-
sive distinguisher: observe a representative r, interpret it as a field element,
square it, then take the square root using the same non-canonical square root
algorithm.! With an affected version of obfsdproxy, the output of the square-
then-root operation always matches the input. For random strings, the input
and output will match only half the time.

An error of this kind is hard to detect because it does not cause interoperabil-
ity problems. The Elligator map takes every representative and its negative to
the same output point, so key exchanges still work. It was fixed in obfsdproxy-
0.0.12 in December 2021, which replaced the agl/ed25519 package.

Because the order of the finite field of Curve25519 is so close to a power
of 2, bit 254 of the binary representation of elements is very nearly a sign
bit: virtually all “negative” elements (by the definition above) have bit 254
equal to 1. Another way to understand the non-canonical square root issue
is as a correlation: bit 254, by itself, had a nearly uniform 0-1 distribution,
but it was not independent of the lower-order bits. This interpretation leads
us to the next distinguishing feature, which has to do with what data type
an Elligator inverse map function should output, and who is responsible for
performing certain operations.

Most significant bit always zero. Elligator representatives are formally
defined as bit strings [2, §5.4]. In the case of Curve25519, specifically, bit
strings of length 254. But in programming interfaces and network protocols, it
is more practical to work with byte arrays, not bit streams. An elliptic curve
point representative needs to be encoded as an array of 32 bytes (256 bits). The
question, then, is what to do with the 2 extra bits (bits 254 and 255), and the
answer is easy: randomize them when encoding and ignore them when decoding.
Whether this auxiliary randomization is done in the caller or the callee is an
implementation detail; but it must be done somewhere.

As it happens, neither obfsdproxy (the caller) nor agl/ed25519 (the callee)
randomized the high-order bits of the byte array. I have just described how
agl/ed25519 was sometimes setting bit 254, which was a different sort of bug,
but nothing ever touched bit 255. The result is that bit 255 of public key
representatives was always equal to 0, a property that requires no fancy test to
distinguish from random.

This error can be attributed to an unclear division of responsibilities, cou-
pled with the fact that the most reasonable representation of a bit string in
many programming languages is a byte array. Conceptually, a practical imple-
mentation of Elligator over Curve25519 needs a second pair of encoding and
decoding functions (even if they are fairly trivial) that convert between 254-bit
bit strings and 32-byte byte arrays—but this need is not obvious from reading
a formal description of the map.

ISuggested by Biryuzovye Kleshni: https://github.com/Yawning/libelligator /issues/1.

https://github.com/Yawning/libelligator/issues/1

This distinguisher was fixed, along with one already discussed, in obfs4proxy-
0.0.12. The revised Elligator implementation takes an additional “tweak” pa-
rameter, which is used to randomize the 2 most significant bits.

Only points from the large prime-order subgroup. The elliptic curve
Curve25519 has order 8p, where p is a large prime number; i.e., the cofactor
of the curve is 8. To avoid small-subgroup attacks, the base point of X25519
key exchange algorithm is chosen to generate the subgroup of order p. On
top of that, secret key scalars are “clamped,” forced to be a multiple of 8,
which ensures that multiplying any point—whether on or off the prime-order
subgroup—results in a point on the prime-order subgroup.

But for the purpose of Elligator representation, it is important that the
points represented not be constrained to the prime-order subgroup, for the sim-
ple fact that random strings do not always map to points on that subgroup.
Older versions of obfsdproxy had this problem: only representatives of points
on the prime-order subgroup were ever sent. A test for this behavior is to multi-
ply observed represented points by p, and check whether the resulting is always
the identity element of the elliptic curve group.

One fix for the issue is to add a randomly selected low-order point to public
key points, before running them through the Elligator inverse map to obtain a
representative. Conveniently, thanks to the special structure of X25519 private
keys, the low-order component disappears during the key exchange, so no further
algorithmic changes are required. This strategy was adopted in obfsdproxy-
0.0.12, but a minor implementation error prevented it from working, until a
further correction in obfsdproxy-0.0.14 in September 2022.

The Elligator encoding is, in principle, a solution for the needs of obfs4. And
yet, the integration had faults that (again, in principle) undermined the goal.
In situations like these, it is good to consider what might be done differently
to produce better outcomes. I know I am not alone in having had singular
difficulty in reading the Elligator paper. I could not have dreamed of attempting
an implementation, and I think many other practitioners were in the same
boat. An early reference implementation, a set of test vectors, would have gone
a long way to head off errors in production implementations. The existence
of a few independent implementations might have served as a cross-check for
discrepancies.

I will remark that there is no evidence that any of these features were ever
used by censors to identify and block obfs4 connections. There are many pos-
sible reasons as to why. It could be that censors were simply ignorant—the
distinguishers do take some skill to detect, after all. (Another possibility is that
censors did, in fact, make use of them, but were never caught in the act by
someone in a position to document it.) One thing that is sure is that it is not
the case that obfs4 presents too small a target to be worth the effort of blocking,
since there is evidence that the censorship infrastructure in China systematically
harvests obfs4 proxy addresses through their distribution channels (and blocks
them by IP address, thus avoiding the need for on-line protocol identification),

and censor-originated probes targeted obfs4’s predecessor protocols going back
several years [3, §5.4]. Allow me to suggest the possibility that censors find it
unappetizing to do stateful processing over multiple flows, the kind of processing
needed to take advantage of distinguishers like these in past versions of obfs4.
I will return to this idea at the end of the talk.

4 VMess header malleability

VMess is another encrypted proxy protocol, developed as part of V2Ray [8].
V2Ray is not itself a protocol; rather it is a framework for constructing proxies

by composing and layering multiple protocols. Like the other protocols that have
been discussed, VMess is intended to be fully encrypted and indistinguishable
from a random stream. It is similar to Shadowsocks in its use of symmetric
cryptography and a secret shared between client and server (in this case, a
16-byte UUID specific to a single user), and in that it has native support for
specifying a proxy destination. Unlike Shadowsocks and obfs4, VMess is not
intended to always be exposed on the wire (although it can be). In a V2Ray-
composed proxy, VMess may only be used as the inner proxy protocol inside
some other transport protocol, such as WebSocket or QUIC.

The VMess implementation in V2Ray was vulnerable to an active probing
attack to identify VMess servers, caused by the representation of structures in
the encrypted protocol header and the protocol parser’s interaction with the
network. The vulnerability was reported in 2020 by GitHub users p4gefault
and studentmain [6]. For the description here, I am grateful for the English
summary of the vulnerability posted by GFW Report [1]. I will present a
somewhat simplified version here (omitting some details of overcoming replay
protection). The vulnerability was mitigated in release v4.23.4 by changing how
the network layer reacts to malformed client requests.?

A VMess client request consists of a 16-byte authentication header, followed
by a command (which consists of a target specification and other data), then
a stream of data related to the command. The authentication header is a MAC
of a recent timestamp (a count of seconds, within 2 minutes of the current
time), keyed by the user’s random UUID. The command block is encrypted with
AES in CFB mode, using a key derived from the UUID and the timestamp.
The data stream is encrypted using a key and initialization vector from the
command block. The tolerance interval on timestamps in the authentication
header permits an attacker to replay previously observed authenticated requests
within a short time—this is the first part of the attack.

16 bytes variable length variable length
pomm - e e +
lauth infol|encrypted command|encrypted data...|
e e e +

2https://github.com/v2ray/v2ray-core/releases/tag/v4.23.4

https://github.com/v2ray/v2ray-core/releases/tag/v4.23.4

The command block is composed of many fields. I will omit all but the ones
that are necessary for understanding the attack.

39.5 bytes 4 bits 1 byte N bytes P bytes 4 bytes
Fomm o Fomm o o o +
lother fields| P |address typeladdress|padding| hash |
Fommmm o o pommm o o o oo +

The command block is encrypted using a stream cipher, but it also has a
limited form of integrity protection. A field at the end contains a hash of the
preceding bytes, something like a MAC-then-encrypt construction. (The hash
is not keyed by a secret, so it is actually more like “hash-then-encrypt,” but the
distinction does not matter for the attack.) The problem is that the length of
the command block is variable, due to the address and padding fields it contains.
The receiver of a command block cannot locate the hash to verify it without
parsing the very data the hash is meant to protect, which defeats the purpose
of integrity protection.

The vulnerability enables an active probing attack to identify VMess servers.
The idea is to replay an authentic client request, taking advantage of the lack of
integrity in the command block to modify the four-bit field P, which indicates
the size of the padding field. Stop sending the command just after the address
type field, before the variable-length part of the command block begins. Then
resume sending, one byte at a time, slowly, and count how many bytes are sent
before the server closes the connection. Behind the scenes, the VMess server is
waiting to receive a full NV bytes of address specification, P bytes of padding,
and 4 bytes of hash. The hash verification will almost certainly fail, because
of the attacker’s changes to the ciphertext, but the server will not disconnect
until it has read to what it thinks is the end of the hash field. The attacker
repeats the replay attack 16 times, tweaking the bits corresponding to P each
time, so as to cycle through every four-bit value. The sign for a VMess server
is if the server reads X + P bytes in each attempt before disconnecting, where
X is constant and P ranges through {0,...,15}.

V2Ray developers mitigated this vulnerability by having the server discon-
nect after a timeout even if it had not yet received a hash to verify, and not
close a connection immediately after a hash verification failure. These actions
are along the lines of the recommendations of Frolov et al. [4, §VI] for probe-
resistant proxies.

5 Does it matter?

The cryptographic faults described in this talk were not devastating to the
protocols involved—why?

10

6 Thanks

Special thanks go to Loup Vaillant, whose efforts in documenting and explaining
Elligator, and encouraging safer implementations, have been nothing short of
heroic. The detailed, complete, and understandable information at elligator.org
critical to my understanding of how Elligator is used in obfs4.

I also want to thank Yawning Angel for fixes in obfsdproxy; Meskio of the
Tor Project for reports on the rate of obfs4 bridge upgrades; and GFW Report

for the summary of the VMess header malleability vulnerability [1].

References

[1] Anonymous. Summary on recently discovered V2Ray weaknesses, June
2020. URL: https://gfw.report/blog/v2ray_ weaknesses/en/.

[2] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
Elligator: Elliptic-curve points indistinguishable from uniform random
strings. In Computer and Communications Security. ACM, 2013. URL:
https://elligator.cr.yp.to/papers.html.

[3] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas
Weaver, and Vern Paxson. Examining how the Great Firewall discovers
hidden circumvention servers. In Internet Measurement Conference. ACM,

2015. URL: https://ensa.fi/active-probing/.

[4] Sergey Frolov, Jack Wampler, and Eric Wustrow. Detecting probe-resistant
proxies. In Network and Distributed System Security. The Internet Soci-
ety, 2020. URL: https://www.ndss-symposium.org/ndss-paper/detecting-
probe-resistant-proxies, .

[6] Adam Langley. Implementing Elligator for Curve25519, December 2013.
URL: https://www.imperialviolet.org/2013/12/25/elligator.html.

[6] pdgefault and studentmain. vmessHMI IR I SLINERFE A] S EARSS A& £
FIRMAEIR B (B PoC) vmess protocol design and implementation flaws
can lead to servers being actively probed for distinguishing features (with
PoC), May 2020. URL: https://github.com/v2ray/v2ray-core/issues/2523. | Check En-

glish transla-
tion.

[7] Zhiniang Peng. Redirect attack on Shadowsocks stream ciphers, February
2020. URL: https://github.com/edwardz246003/shadowsocks.

[8] Project V. VMess, February 2021. URL: https://www.v2fly.org/en_US/
developer/protocols/vmess.html.

[9] Shadowsocks. Stream ciphers, June 2022. URL: https://shadowsocks.org/
guide/stream.html.

[10] Yawning Angel. obfs4 (the obfourscator), January 2019. URL: https://
gitlab.com/yawning/obfs4/-/blob/obfsdproxy-0.0.14/doc/obfs4-spec.txt.

11

https://elligator.org/
https://gfw.report/blog/v2ray_weaknesses/en/
https://elligator.cr.yp.to/papers.html
https://ensa.fi/active-probing/
https://www.ndss-symposium.org/ndss-paper/detecting-probe-resistant-proxies/
https://www.ndss-symposium.org/ndss-paper/detecting-probe-resistant-proxies/
https://www.imperialviolet.org/2013/12/25/elligator.html
https://github.com/v2ray/v2ray-core/issues/2523
https://github.com/edwardz246003/shadowsocks
https://www.v2fly.org/en_US/developer/protocols/vmess.html
https://www.v2fly.org/en_US/developer/protocols/vmess.html
https://shadowsocks.org/guide/stream.html
https://shadowsocks.org/guide/stream.html
https://gitlab.com/yawning/obfs4/-/blob/obfs4proxy-0.0.14/doc/obfs4-spec.txt
https://gitlab.com/yawning/obfs4/-/blob/obfs4proxy-0.0.14/doc/obfs4-spec.txt

	Censorship circumvention
	Shadowsocks stream ciphers decryption oracle
	obfs4 non-uniform public key representatives
	VMess header malleability
	Does it matter?
	Thanks

